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Abstract

Objectives: The multifinger force deficit (MFFD) is the decline in force generated by

an individual finger as the number of fingers contributing to the action is increased.

It has been proposed that as a measure of neural sufficiency rather than muscle

status, it provides a means of detecting individuals at risk of cognitive decline. Age‐
related deficits in central neural drive exert a disproportionate impact on the rate at

which force can be generated. We examined whether a MFFD derived from the

maximum rate at which force is generated, is more sensitive to individual differ-

ences in cognitive status, than one calculated using the maximum level of force.

Methods: Monotonic associations between each of two variants of the MFFD, and

cognition (measured with the Montreal Cognitive Assessment), were estimated

cross sectionally using generalized partial rank correlations, in which age, level of

education and degree of handedness were included as covariates. The participants

(n=26) were community dwelling adults aged 66‐87.
Results: The MFFD derived using the maximum rate of force development was

negatively associated with cognitive status. The association for the MFFD based on

the maximum level of force, was not statistically reliable. The associations with

cognitive status obtained for both variants of the MFFD were of greater magnitude

than those reported previously for standard grip strength dynamometry.

Conclusion: The sensitivity with which the MFFD detects risk of cognitive decline

may be enhanced by using the maximum rate of force developed by each finger,

rather than the maximum force generated by each finger.
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Key points

� The multifinger force deficit (MFFD) was not reliably associated with cognitive status, as

determined by the Montreal Cognitive Assessment (MoCA)

� An estimate of the MFFD derived using the rate‐of‐force‐development (rofMFFD) was

negatively associated with cognitive status
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� The magnitudes of the negative associations between the rofMFFD and the MFFD, with

MoCA scores, were larger than those reported for standard grip strength dynamometry

1 | INTRODUCTION

Longitudinal studies indicate that in older adults, low grip strength is

associated with subsequent manifestations of cognitive dysfunction,

diagnoses of mild cognitive impairment (MCI), and the incidence of

various types of dementia.1–4 It is also apparent that rates of decline

in grip strength and cognitive function are closely aligned.5 Although

grip strength is often treated as a proxy for “muscular fitness” (for

example,6) there are no indications that cognitive and muscle func-

tion are linked.7 Since the effective application of grip force demands

sophisticated neural control, it has been argued that a decline in grip

strength which emerges beyond middle age should instead be

considered a marker of brain health.8

In view of its power to anticipate impairments that may only

become evident several years later, there have been recommenda-

tion that measurements of grip strength be used to identify older

adults at risk of neurological degeneration and cognitive decline (for

example,.9–11) Morphometric factors, including height, body‐mass,
and hand size also contribute to individual differences in grip

strength. They do so independently of variations in brain health that

account for the associations between grip strength and cognition

seen in large cohort studies. Differences in individual morphology

therefore reduce the sensitivity with which a conventional mea-

surement of grip strength can provide prognosis of cognitive

function.

It has been proposed12 that multifinger dynamometry13 be used

to overcome this limitation. The essential feature of this assessment

is that the force production capacity of each finger (digits II to V) is

registered in two contexts. In the first, force is applied by only one

finger at a time (e.g., the index finger). In the second, force is

applied by all four fingers simultaneously. The multifinger force

deficit (MFFD) expresses the magnitude of the force that is applied

by each finger when it is used in combination with the other fingers,

relative to that generated when it is used in isolation. An individual

for whom the sum of the forces generated by the four fingers in the

multifinger condition is 40% of the sum of the forces produced by

the fingers in their respective single‐finger conditions, is deemed to

have a greater MFFD than an individual for whom the corre-

sponding figure is 60%. As the measure is relative, the absolute

level of force that can be generated (by any finger) has no bearing

on the magnitude of the deficit that is calculated. It is thus insen-

sitive to the influence of morphometric factors that contribute to

individual differences in conventional grip strength assessments.

The MFFD is larger in older persons than in the young14–16 and in

those who have incurred brain damage following stroke.17 Since it

can be interpreted as a measure of neural sufficiency, it has been

argued that the MFFD provides a candidate marker of incipient

cognitive decline.12

During ageing, diffuse degenerative processes affecting muscles,

motoneurons, and the CNS lead to a diminution of the force that can

be generated during voluntary contractions. This is accompanied by

an even faster decline in the facility to produce force rapidly.18

Although attributable in part to a disproportionate atrophy of fast‐
twitch muscle fibres and reductions in the contractile velocity of

single muscle fibres, deficiencies in central drive also play a deter-

mining role.19 The rate at which force can be generated therefore

provides a more sensitive measure of age‐related changes in neural

sufficiency than force magnitude.20 Consistent with this supposition,

age‐dependent (60–81 vs. 21–37 years) differences in the maximum

rate of force development (η2 = 0.51) recorded in a grip task

(engaging digits II to IV together) are markedly larger than differ-

ences in maximum level of force (η2 = 0.09).21 It is therefore

hypothesised that a measure of the MFFD that is derived from the

maximum rate at which force is generated will be more sensitive to

individual differences in cognitive function, than a MFFD calculated

from the maximum level of force.

The present report provides a test of this proposition, based on a

convenience sample. The data were obtained in the context of a

study that had a primary focus on adaptations to a resistance training

program. Prior to the commencement of training, the participants

were assessed using multifinger grip dynamometry. They also

completed the Montreal Cognitive Assessment (MoCA).22 The MoCA

encompasses several cognitive domains, including short‐term mem-

ory, visuospatial ability, executive functioning, attention, concentra-

tion and working memory, verbal fluency, orientation to time and

place. It has good construct validity23 and a sensitivity of 77‐96% for

mild cognitive impairment (MCI).24 The internal consistency of the

MoCA is reasonable, with a Cronbach alpha of 0.83 for the stan-

dardized items.22

2 | MATERIALS AND METHODS

2.1 | Participants

Recruitment was undertaken via advertisements in Parish newslet-

ters and on noticeboards in Dublin City and County Dublin. Fifty‐six
respondents were first screened by telephone to assess eligibility. A

medical history questionnaire was administered to establish whether

there was evidence of: neurodegenerative disease, a history of pre-

vious neurological events (e.g., stroke), use of medications known to

affect neural plasticity, difficulty using the hands or restricted

movement of hands due to a diagnosed condition such as arthritis, or

other age‐related pathologies. The 26‐point telephone version of the

Mini Mental State Examination (MMSE) was used to identify and

exclude individuals with discernible cognitive impairment. Volunteers
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were required to be right‐handed by self‐declaration, and over 66

years of age. Twenty‐seven took part in the study (10 females, 17

males). The median age was 71.5 years (range 66‐87). All participants
provided written informed consent to procedures approved by the

Trinity College Dublin School of Psychology Research Ethics Com-

mittee (SPREC112018‐06). The most recent iteration of the Decla-

ration of Helsinki (2013) states, "Every clinical trial must be

registered in a publicly accessible database before recruitment of the

first subject". Excepting this requirement, all testing was conducted

in accordance with the Declaration of Helsinki.

2.2 | Procedure

Height and weight were first recorded, followed by completion of the

Edinburgh Handedness Inventory.25 The MoCA was then adminis-

tered. A standard assessment of grip strength (three attempts with

each hand) was undertaken using a Jamar Plus Digital Hand Dyna-

mometer. Participants then performed the Timed Up‐and Go.26 The 9
hole peg test27 was carried out following.28 The results of these

additional assessments of motor function are not included in the

present report.

2.3 | Multifinger dynamometry

Participants sat adjacent to a table, with their hand and forearm

resting on a fabric covered board, palm facing down. The flexion

angle of the elbow was approximately 90 degrees. (Figure 1). A

piezoelectric sensor (Model FX190, compression load cell (Mea-

surement Specialties Inc.) was placed under the finger pad of each

digit (II to V), and affixed to the board using Velcro. The upper sur-

face of each sensor was covered with sandpaper to increase contact

friction. The positions of the sensors were adjusted to accommodate

individual variations in hand and finger anatomy. A cloth covered

Styrofoam hemi‐sphere was placed under the palm to support the

hand. The size of hemi‐sphere that was most comfortable for each

participant was established prior to testing.14 The non‐testing arm

rested naturally on the opposite thigh. The sensor signals were

amplified (BIOPAC, DA100C) and digitised at 200 Hz with 16‐bit
resolution (National Instrument, BNC‐2090A). The control of data

acquisition and cue presentation was implemented via custom

MATLAB routines. The sensors were calibrated prior to testing using

precision masses (1kg, 2kg, 3kg, 4kg, and 5kg).

The assessment protocol comprised instances in which a single

finger applied force, and others in which all four fingers were to be

used together to apply force. The participant was asked to exert as

much pressure as possible on the sensor using the designated finger

(s), without lifting the other fingers. The advice was that in single

finger conditions, they were to ignore any pressure that they might

be exerting with other fingers, and to focus on the application of

force by the designated finger. At the start of each trial, an audio

command (speech synthesised in an Irish female voice) indicated the

finger or fingers to be used: “Index finger”, “Middle Finger”, “Ring

Finger”, Little Finger”, or “All Fingers”. Thereafter a 500 Hz tone (1 s

duration) signalled that the participant was to apply force. They were

asked to continue generating force for 5 seconds. Once five seconds

had elapsed, a positive feedback sound indicating the end of the trial

was generated. Each of three assessment blocks consisted of 10 trials

– two in each of the 5 different conditions. The order in which the

conditions were presented within each block was randomised. A rest

period of one‐minute was provided between successive blocks. In

order to familiarise the participants with the task, one block of ten

practice trials was undertaken.14 Both the left and right hand were

assessed, in an order of testing that was counterbalanced across

participants.

2.4 | Data processing

Level of education is one of the variables considered in the fully

adjusted norms for the MoCA.22 In the present study, this was scored

in accordance with the Operational Manual Guidelines for classifying

national education programmes and related qualifications29 and with

reference to the Irish National Framework of Qualifications (NFQ).30

Due to a technical malfunction that was undetected during the

testing session, the data from one participant could not be used. The

authors independently inspected visually all finger force recordings

with the aim of identifying trials on which the finger(s) engaged by

the participant were not in accordance with the instruction given.

Any such trials (34 of 1248 trials) were excluded from analysis. Force

F I GUR E 1 Multifinger dynamometry was implemented using
four force transducers (each in the style of a “button”) placed on a
flat surface. Downward pressure was applied upon each transducer

by a single finger.
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time series were low‐pass filtered digitally at 6 Hz with a second‐
order, dual‐pass Butterworth filter. Differentiation to obtain the

rate of force application was by estimation of the slopes of five‐point
first order polynomials fitted to the force time series. For each trial,

the maximum force applied by each finger (N), and the maximum rate

of force (Ns‐1) was identified.

Following,13 for each participant, the sum of the median (across

trials) maximum force values recorded for the four individual digits in

the multifinger condition, was expressed as a proportion of the sum of

the (median) maximum force values recorded for each digit when it

was used in isolation. The magnitude of the MFFD was obtained for

each participant by subtracting this value from 1 (Figure 2). This

formula cannot be extended logically to the rate‐of‐force MFFD. That

is, by assigning as the numerator the sum of the maximum rates of

force obtained for the four digits. The rate‐of‐force MFFD (rofMFFD)

was therefore calculated by first expressing for each finger the (me-

dian) maximum rate of force generated in the multifinger condition, as

a ratio of the the (median) maximum rate of force generated when

that finger was used in isolation. The mean of the four ratios thus

generated (i.e., one for each finger) was subtracted from 1 to obtain

the rofMFFD for the participant (Figure 2). Although the formulae are

related, it should be noted that for any given variable, the ratio of

sums (used in this case for theMFFD) will not generally be equal to the

average of ratios (used in this case for the rofMFFD) (for example,.31)

They also have somewhat different statistical properties.32

2.5 | Statistical analysis

All analyses were implemented in R.33 The MFFD and the rate‐of‐
force MFFD were first computed separately for the left and right

hands. For each variable, a robust inferential test of equivalence

was conducted using the rtost function available via the “equiva-

lence” package. Epsilon, which corresponds to the equivalence

margin, defines the magnitude of difference below which the values

for the left and right hands may be considered indistinguishable.

Since there were no quantified predictions concerning the hand

differences considered here, it was necessary to use a subjective

justification of the smallest difference likely to be of interest. A

value of 0.1 for epsilon appeared reasonable to the authors and

was adopted in each case. Using this value, with respect to both

the MFFD (p = 0.003) and the rate‐of‐force MFFD (p = 0.009), the

left and right hand were deemed to be equivalent. Additional steps

were taken to confirm that the subjective justification of epsilon

produced equivalence test outcomes in accordance with other

means of gauging the magnitude of the differences between the

hands. Effect sizes for robust tests of difference (Yuen‐Welch Test)

were 0.12 for the MFFD and 0.01 for the rofMFFD. Both estimates

were within the interval (0 – 0.15) that, for this test, defines a

small effect size.34 The mean of the values obtained for the left

and right hand of each participant were therefore used in the

subsequent analyses. The Laterality Quotient (LQ, derived from the
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F I GUR E 2 Schematic representation of the means by which the multi‐finger force deficit (MFFD) and the rate‐of‐force MFFD (rofMFFD)
were calculated.
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Edinburgh Handedness Inventory) was available for inclusion as a

covariate.

Both the MFFD and the rofMFFD are ratio measures. As these

have disagreeable statistical properties (for example,35) robust sta-

tistical analysis methods were applied. A generalized partial rank

correlation,36 implemented via the taba package, was used to

determine the degree of monotonic association between the MoCA

and, respectively, the MFFD and the rofMFFD. With respect to the

MoCA, age and ISCED classification were included as covariates. For

the MFFD and rofMFFD, the covariates were age and LQ. As the

motivating hypotheses specified negative relationships between the

MoCA, and the MFFD and rofMFFD respectively, one‐tailed tests

were indicated.

Confidence intervals for the generalized partial correlation co-

efficients were calculated using a Fisher‐Transformation. It has been
demonstrated that for samples smaller than 30, this method com-

pares favourably with bootstrapped confidence intervals.37

3 | RESULTS

The final sample consisted of 26 participants (Table 1). The range of

MoCA scores was 21‐29 (median = 26). The range of the MFFD was

0.12 to 0.66 (median = 0.43). The range of the rofMFFD was 0.11 to

0.59 (median = 0.44) (Figure 3). Notwithstanding the similarity in

their ranges, the MFFD and rofMFFD differed in respect of

covariate‐adjusted association with the MoCA (Figure 4). The

generalized partial rank correlation between the MFFD and the

MoCA was ‐0.11 (p = 0.308 (one‐tailed), ‐1 – 0.23 (95% c.i.)). That

between the rofMFFD and the MoCA was ‐0.38 (p = 0.035 (one‐
tailed), ‐1 – ‐0.06 (95% c.i.)).

The formula used to calculate the rofMFFD (Figure 2) has been

used in some cases to derive the MFFD (e.g.,.15,16) In recognition of

the possibility that the means of calculation could have had a

bearing on the magnitude of the association that was observed, we

conducted an additional analysis, for which the MFFD was gener-

ated using the formula applied to the rofMFFD values (i.e., as

per.15,16) The generalized partial rank correlation between this

measure of the MFFD and the MoCA did not differ from zero (p =
0.50 (one‐tailed), ‐1 – 0.33 (95% c.i.)).

4 | DISCUSSION

In relatively few instances (e.g.,40,41) have reliable associations be-

tween conventional measurements of grip strength and MoCA scores

been obtained.42 failed to do so when undertaking a pooled analysis

of two studies comprising 152 participants (see also.43–46) Including

data from 5980 adults enrolled in the Irish Longitudinal Study of

Ageing (TILDA) (mean � SD age of 62.29 � 8.21 years), and a locally

recruited sample of 250 adults (mean � SD age of 73.12 � 9.06

years),47 reported a weak but statistically significant (i.e., p < 0.05)

linear relationship between grip strength and MoCA, when age, sex

and education were included as covariates. As standardized beta

coefficients and partial correlations can be treated as being inter-

changeable with r, regardless of the number of covariates that have

been included,48 it is possible to compare the size of the effects

obtained in the present study, with those generated by Hooyman and

colleagues. The beta coefficients obtained for the TILDA sample

(0.052, 0.037 – 0.061 (95% c.i.)), and for the locally recruited sample

(0.03, 5.1e‐5 – 0.071 (95% c.i.)), are considerably smaller (see also41)

than the (absolute) magnitude (0.38) of the generalized correlation

between the rofMFFD and the MoCA reported herein. Indeed, the

(absolute) magnitude (0.11) of the generalized correlation between

TAB L E 1 Summary of variables included in the analyses.

Participant Age (years) ISCED LQ MocA MFFD rofMFFD

100 66.3 3 100 25 0.66 0.59

101 73.5 1 90.9 25 0.44 0.39

102 69.7 2 50 23 0.44 0.47

103 68.2 5 81 28 0.2 0.11

104 72.2 4 81.8 27 0.49 0.39

105 76.4 2 100 27 0.47 0.44

106 67.3 6 100 22 0.38 0.42

107 74.5 2 81.8 26 0.47 0.5

108 67.2 4 75 26 0.54 0.49

109 67.3 3 91.7 25 0.5 0.43

112 80 3 91.7 24 0.39 0.44

113 85.4 6 16.7 27 0.56 0.54

115 87 4 66.7 21 0.32 0.33

116 71.4 3 100 26 0.18 0.33

117 79.2 5 91.7 24 0.56 0.56

118 78.9 6 91.7 29 0.48 0.42

119 67.6 4 91.7 26 0.12 0.11

120 67.1 6 100 29 0.42 0.41

121 68.4 4 58.3 28 0.43 0.47

122 82.2 1 96.2 25 0.47 0.5

123 69.7 4 100 25 0.4 0.47

124 82.4 5 44 29 0.39 0.38

125 72.1 4 100 27 0.35 0.47

126 69.3 5 96 23 0.46 0.53

127 69.5 5 41.7 28 0.41 0.22

128 74 5 96.7 26 0.3 0.28

ISCED: Level of education scored in accordance with the ISCED

Operational Manual Guidelines for classifying national education

programmes and related qualifications29; LQ: Laterality Quotient,

calculated using the Edinburgh Handedness Inventory25; MocA: score

on the Montreal Cognitive Assessment22; MFFD: multifinger force

deficit; rofMFFD: rate‐of‐force MFFD.
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(A) (B)

F I GUR E 3 A. MoCA scores plotted with respect to the MFFD. The value of the correlation representing the degree of (robust) monotonic

association between these variables, without the inclusion of covariates, was ‐0.09. B. MoCA scores plotted with respect to the rofMFFD. The
value of the correlation representing the degree of (robust) monotonic association between these variables, without the inclusion of
covariates, was ‐0.23. In both panels, the labels shown for individual datapoints correspond to the participant identifiers (IDs) given in Table 1.

(A) (B)

F I GUR E 4 It is generally recommended that, in respect of the scatter of partial correlations, partial regression plots (residuals of Y on the

corresponding covariates versus residuals of X on the corresponding covariates) be used.38 For these illustrative purposes, a rank‐based
estimation model (implemented using the Rfit package in R39 was used to generate the residuals. A. The residuals for the MoCA (i.e., which
partial out the variation attributable to age and ISCED) plotted with respect to the residuals for the MFFD (i.e., which partial out the variation
attributable to age and LQ). B. The residuals for the MoCA (i.e., which partial out the variation attributable to age and ISCED) plotted with

respect to the residuals for the rofMFFD (i.e., which partial out the variation attributable to age and LQ). In both panels, the labels shown for
individual datapoints correspond to the participant identifiers (IDs) given in Table 1.
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the MFFD and the MoCA also exceeds the magnitude (and lies

outside the confidence intervals) of the beta coefficients reported

by.47 It seems reasonable to conclude therefore, that the rofMFFD is

more strongly associated with MoCA scores than conventional as-

sessments of grip strength.

The MoCA was designed with a specific purpose in mind – to be

deployed as a screening tool to detect individuals with MCI.22 Used in

this way, as tool with which to assess global cognition, it has stood the

test of time.49 Although its structure reflects an intent to sample from

a broad range of cognitive domains, the sub‐test scores do not asso-

ciate strongly with those obtained using domain‐specific test batte-
ries.50,51 It might therefore be argued that the content validity of the

rofMFFD (or MFFD) as a marker of incipient cognitive decline should

be established using test batteries that operationalise elements of

cognition such as executive function, processing speed, attention, and

memory.12 In respect of the concurrent validity of the rofMFFD

(or MFFD) however, the use of a measure of global cognition, such as

the MoCA, appears valid. Indeed, since the rofMFFD may be best

employed as part of a diagnostic algorithm (e.g.,52) to increase the

efficiency with which a diagnosis of MCI can made (or excluded), it is

appropriate to establish the magnitude of its association with an in-

strument, in this case the MoCA, which is used routinely for this

purpose in clinical practice.

Coordinated muscle recruitment, upon which the effective

application of force depends, is mediated by the coherent engage-

ment of distributed brain networks. Accordingly, age‐related de-

creases in the capacity to apply grip force are associated with a

broad spectrum of markers that reflect waning brain health.8 Areas

of the brain and connecting white‐matter tracts that regulate

various facets of cognition and motor function overlap exten-

sively.53–55 Since they rely, at least in part, on common neural

systems, the neurodegenerative processes that are a feature of

ageing should have corresponding effects on cognitive function

and the ability to recruit muscles precisely. It may therefore be

instructive to examine the extent to which global cognition is

related to measures of muscle coordination derived from tasks

that share some of the demands imposed upon the CNS by

multifinger dynamometry.

Using a pegboard test to assess manual dexterity in a cohort of

2,361 participants (mean age 74.5 years; 721 exhibiting MCI),56 re-

ported a correlation (r = 0.25, without the inclusion of covariates)

with scores on the MMSE. Associations with the MMSE of similar

magnitude (r= 0.267 for “placement”; r= 0.143 for “turning”) were

observed by Soysal Tomruk et al.57 for 36 healthy individuals (mean

age 60.8 years; MMSE 29.5 � 1.19 SD) who performed two com-

ponents of the Minnesota Manual Dexterity Test. In the only inves-

tigation of which we are aware that permits direct comparison with

the results of the present study,47 estimated a standardised beta

coefficient of ‐0.06 (‐0.1 – ‐0.03 (95% c.i.), n = 250) for the associ-

ation between MoCA scores and performance on a functional

reaching task, when age, sex, education, and grip strength were

included as covariates. Based on the limited evidence that is available

therefore, the magnitude of the association between the rofMFFD

and global cognition, appears to be larger than that obtained for

other tasks that require a high degree of muscle coordination.

The task employed in the present study differed from conven-

tional grip dynamometry in the way in which the muscles that actuate

the metacarpophalangeal joints and interphalangeal joints were

engaged. Age‐related differences in the magnitude of the MFFD have

been obtained both using the task employed in the present study,16

and when using one that (like conventional grip strength testing)

involves flexion of the interphalangeal joints.15 The specific demands

imposed upon the CNS with respect to muscle recruitment, differ

between the two tasks. It is possible therefore, that the degree of

association between the rofMFFD (or MFFD) and measures of

cognitive function will also vary accordingly.

4.1 | Limitations

This was a small‐scale study based on an opportunistic sample. As

the statistical power was therefore relatively low, it is possible that

the size of the effect obtained is an inaccurate estimate of the

magnitude of the true effect.58 The present results do however

suggest that additional investigations, conducted on a larger scale,

are warranted. It should also be recognised that the MoCA is

characterised by undesirable statistical properties arising from the

truncated (maximum value of 30) range within which the scores lie.

Although any impact of the distributional properties of the MoCA

was obviated in the present study through robust statistical tech-

niques (and all scores fell below the theoretical maximum of 30), it

remains the case that most indices of global cognition (e.g., MMSE,

the Addenbrooke's Cognitive Examination) exhibit ceiling effects,

and may thus reduce the sensitivity with which associations with

motor function may be detected.

All derivations of the MFFD reported thus far involve the

calculation of ratios. The variant adopted herein, which corresponds

to that employed by,13 requires that one ratio be generated. Other

variants (e.g.,15,16) have been obtained as an average of four ratios.

The specific analytical problems arising from the use of ratios have

been discussed widely. It has, for example, been noted that the use

of ratios can alter the nature of correlations with other variables.

Furthermore, the ratio of the means of the numerator and the

denominator is not generally equal to the mean of the ratios.35

Indeed, in the present study, the magnitude of the association with

the MoCA depended on whether a single ratio of sums, or the mean

of four ratios, was used to generate the MFFD. With respect to the

rofMFFD, this measure was generated as the average of four ratios

(one for each digit). The single ratio (of sums) formula used for the

MFFD cannot be applied logically to the rofMFFD. We adopted

robust statistical methods throughout, to protect against potential

violation of distributional assumptions arising from the use of ratio

measures. Nonetheless, there is scope to investigate further

whether the manner that the various MFFD measures are derived,

influences the magnitude of association with other variables of

interest.
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The rofMFFD and the MFFD relate differently to the manner

that the single and multifinger tasks unfold in time. It is conceivable

that the phase of the action during which the level of applied force is

increasing (reflected in the rate of force) is differentiated with

respect to attentional demands from the phase during which the

maximal level of force is achieved. Any such difference may

contribute to the level of association with the MoCA being higher for

the rofMFFD than for the MFFD. Since the goal is to detect individual

differences in cognitive status, this possibility might be considered a

feature of the rofMFFD, rather than a limitation.

5 | CONCLUSION

In this cross‐sectional study, it was demonstrated that there is a

negative association between the MFFD – when derived from the

maximum rate at which force was generated, and scores on the

MoCA, which is independent of age and level of education. The stated

aspiration for the use of the MFFD in this context, is that it may

provide a means of detecting individuals at risk of cognitive decline.12

The present results suggest that the sensitivity with which it may be

able to do so, is enhanced by using the maximum rate of force

developed by each finger, rather than the maximum force generated

by each finger, as the basis upon which the deficit is calculated.
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