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Promises and pitfalls of immune-based strategies for 
Huntington’s disease 

Introduction
Huntington’s disease (HD) is an autosomal dominant inher-
ited neurodegenerative disease. It is pathologically character-
ized by selective loss of neurons in the striatum and cortex, 
which leads to progressive motor dysfunction, cognitive 
decline and behavioral symptoms (Tabrizi et al., 2009). HD 
is caused by an unstable CAG trinucleotide repeat expansion 
in exon 1 of the Huntingtin gene (HTT) encoding a mutant 
form of the huntingtin protein (HTT). The presence of more 
than 40 CAG repeats is translated into the mutant HTT 
(mHTT) which causes the disease within a normal lifespan, 
while longer repeats can accelerate disease onset. The onset 
of HD usually occurs in midlife, followed by 15 to 20 years 
of disease progression (Langbehn et al., 2010). 

The HTT is ubiquitously expressed and plays several roles 
in human neurons, including embryonic development. The 
mechanisms of neuronal cell toxicity by mHTT have not 
been clearly established, possibly involving multiple path-
ways such as abnormal protein aggregation, mitochondrial 
dysfunction, excitotoxicity, among others (Labbadia and 
Morimoto, 2013). 

Currently, there is no effective disease-modifying therapy 
for HD and only symptomatic approaches are available. New 
agents have been investigated for HD and some have focused 
on immunomodulatory and/or anti-inflammatory mecha-
nisms. Herein, we will discuss the data obtained so far on the 
immune-based therapeutic strategies for HD. 

Immune Dysfunction in HD
During the last decade, great attention has been drawn to 
the involvement of neuroinflammation in the pathogenesis 
of HD. Although the primary cause of HD is the mHTT 
expression in neurons leading to neuronal death, different 

pathophysiological mechanisms participate in this process. 
In this context, immune mechanisms could be activated by 
neuronal cells in degeneration, with subsequent release of 
mediators responsible for amplifying neuronal toxicity and, 
therefore, contributing for disease progression. Besides this, 
mHTT is highly expressed in immune cells where it can 
promote cell-autonomous immune activation (Weiss et al., 
2012). Accordingly, the immune system can be directly or 
indirectly activated in HD. 

Indeed, several studies have reported immune activation 
in patients with HD. For instance, neuropathological and 
positron emission tomography (PET) studies showed accu-
mulation of reactive microglia in the brain of HD patients, 
a finding that is significantly correlated with the severity of 
the disease (Pavese et al., 2006). Microglia are central ner-
vous system (CNS) resident myeloid cells with phagocytic 
activity, and have traditionally been seen as innate immune 
cells mediating inflammatory responses in the brain. When 
activated, microglial cells produce pro-inflammatory cy-
tokines such as tumor necrosis factor alpha (TNF-α) and 
interleukin-1 beta (IL-1β). These cytokines, in turn, promote 
further activation of microglia, resulting in an inflammatory 
flow that contributes to neuronal toxicity (Kreutzberg, 1996). 
Interestingly, activation of microglia is already evident in 
pre-manifest subjects, i.e., subjects carrying more than 40 
CAG repeats of the HTT gene but not showing neurological 
symptoms. Microglial activation has been detected up to 15 
years before disease onset (Björkqvist et al., 2008). Post-mor-
tem studies have also shown elevated levels of inflammatory 
markers, such as interleukin-6 (IL-6), interleukin-8 (IL-8) 
and TNF-α in the brain of patients with HD (Silvestroni et 
al., 2009). Higher levels of IL-6, IL-8 and TNF-α have also 
been found in the cerebrospinal fluid (CSF) of patients with 
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cycline antibiotic. In addition to its antibiotic properties, mi-
nocycline can exert a variety of biological actions, including 
anti-inflammatory and anti-apoptotic activities (Noble et al., 
2009). Minocycline has been shown to be neuroprotective in 
several animal models of CNS diseases, including HD (Chen 
et al., 2000; Wang et al., 2003). Minocycline readily crosses 
the blood-brain barrier (BBB) and attenuates inflammation 
associated with microglial activation. More specifically, mi-
nocycline inhibits cyclooxygenase-2 (COX-2) expression 
and reduces prostaglandin E2 (PGE2) levels in microglial 
cells, attenuating the accumulation of activated cells (Kim et 
al., 2004; Bye et al., 2007). Clinical trials in individuals with 
HD showed that minocycline is a well-tolerated and safe 
drug. In contrast to the natural course of HD, patients treat-
ed with 100 mg of minocycline for 24 months showed stabi-
lization of motor and neuropsychological performance at the 
endpoint (24 months), after a significant improvement in the 
first 6 months of treatment. Moreover, there was a significant 
improvement of psychiatric symptoms at the endpoint that 
was not apparent in the first 6 months (Bonelli et al., 2004). 
However, in another clinical trial involving 87 patients treat-
ed with 200 mg of minocycline for 18 months, no clinical 
benefit was observed with the treatment (Huntington Study 
Group DOMINO Investigators, 2010). Therefore, the results 
with minocycline are still controversial, and further studies 
are needed to better define its potential role and mechanisms 
in HD. 

Recently, laquinomod has been evaluated in HD. Laquino-
mod is a disease-modifying therapy approved for the treat-
ment of multiple sclerosis, an autoimmune demyelinating 
disease of the CNS (Kolb-Sobieraj et al., 2014). Laquinomod 
is a small molecule that can be given orally with a good 
safety profile, exerting both immunomodulatory and neu-
roprotective effects. Laquinomod has been shown to upreg-
ulate brain-derived neurotrophic factor (BDNF) in patients 
with multiple sclerosis (Thone et al., 2012), a neurotrophic 
factor with reduced expression and secretion in HD, and 

HD in comparison with controls (Björkqvist et al., 2008).
In parallel with these changes in the CNS, there is a signif-

icant increase in the circulating (blood) levels of inflamma-
tory cytokines, such as IL-6, IL-8, and TNF-α, and chemok-
ines like eotaxin/CCL11 and monocyte chemotactic protein 
1 (MCP-1/CCL3) in patients with HD compared to controls. 
Increased circulating levels of inflammatory cytokines are 
also observed in pre-manifest subjects (Rocha et al., 2016). 

It is worth noticing that different animal models of HD 
exhibit alterations in inflammatory markers and activated 
microglia, corroborating the findings from clinical studies 
(Franciosi et al., 2012). In sum, immune activation and en-
hanced inflammation are important features of HD, being 
already present in pre-clinical stages of the disease, i.e., years 
before the onset of motor symptoms. In this context, the 
study of immune-related mechanisms as potential therapeu-
tic targets for HD is warranted. 

Treatment Strategies for HD
Even though the HD gene was identified over 20 years ago, 
there is no effective disease-modifying therapy for HD and 
only symptomatic treatments are currently available. Most 
therapies for HD target motor symptoms, such as chorea, 
i.e., involuntary movements that can affect different parts of 
the body, interfering in activities of daily living. Although 
chorea is only one dimension of the constellation of motor 
symptoms of HD, it is the most recognizable and treatable 
characteristic of HD (Armstrong et al., 2012). Recently, 
tetrabenazine and deutetrabenazine were approved by the 
Food and Drug Administration for the treatment of chorea 
in HD. Psychiatric and behavioral symptoms such as ag-
gression, irritability, impulsiveness, anxiety, depression and 
psychosis represent a significant burden for patients with 
HD and their caregivers (Teixeira et al., 2016). Accordingly, 
antidepressants, antipsychotics, and mood stabilizers are 
commonly prescribed for HD. 

Different treatments have been evaluated as disease-mod-
ifying strategies for HD. Most studies have targeted intracel-
lular pathways that are imbalanced in HD, such as protein 
synthesis and aggregation. Nevertheless, the strategies tested 
in clinical trials failed to show a significant change in motor, 
cognitive or functional decline (Wild and Tabrizi, 2014). 
Based on the emerging data on immune/inflammatory 
changes in HD, agents targeting immune mechanisms have 
been investigated (Figure 1). 

Nonsteroidal anti-inflammatory drugs (NSAIDs) have 
been evaluated for behavioral and cognitive symptoms in 
neurodegenerative diseases with mixed results (Terzi et al., 
2017). Celecoxib and meloxicam attenuated behavioral and 
biochemical changes present in a rat model of quinolinic 
acid-induced HD (Kalonia and Kumar, 2011). Conversely, 
another study failed to show neuroprotective effects of ace-
tylsalicylate and rofecoxib in N171-82Q and R6/2 transgenic 
HD mice (Norflus et al., 2004). No clinical trial has been 
conducted to evaluate potential benefits of NSAIDs in pa-
tients with HD. 

Minocycline is a second-generation, semi-synthetic tetra-

Figure 1 Immune-based strategies can theoretically modify the 
progression of Huntington’s disease. 
mHTT: Mutant huntingtin protein; CSF: cerebrospinal fluid.
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to reduce the levels of secreted pro-inflammatory factors, 
leading to neuroprotection (Varrin-Doyer et al., 2014). 
However, its immunomodulatory mechanisms are still not 
clear (Kolb-Sobieraj et al., 2014). In animal models of HD, 
laquinomod has shown neuroprotective effects, rescuing 
striatal and cortical neurodegeneration, and improving be-
havior in YAC128 mice (Garcia-Miralles et al., 2016). A clin-
ical trial (NCT02215616) is currently recruiting participants 
for testing laquinomod in patients with HD. 

Other compounds with anti-inflammatory and/or immu-
nomodulatory properties have been investigated in HD, such 
as an inhibitor of soluble TNF-α (XPro1595) and an anti-SE-
MA4D monoclonal antibody. Semaphorin 4D (SEMA4D) is 
a transmembrane signaling molecule that modifies a variety 
of mechanisms central to neuroinflammation and neurode-
generation (Southwell et al., 2015). These compounds were 
only used in pre-clinical settings to date. In a transgenic 
mouse model of HD (R6/2), XPro1595 decreased TNF-α lev-
el in the cortex and striatum, enhanced motor function and 
reduced the burden of mHTT aggregates (Hsiao et al., 2014). 
Treatment with anti-SEMA4D improved neuropathological 
signs, cognitive deficits and a subset of behavioral symptoms 
including anxiety-like behavior in YAC128 mice (Southwell 
et al., 2015). 

Stem cell therapy is a promising treatment for neurode-
generative diseases (Dutta et al., 2013; Colpo et al., 2015; 
Salem et al., 2016). The goals of stem cell therapy involve the 
replenishment of lost cells and/or the increase in cell sur-
vival, reversing the disease phenotype or delaying disease 
progression overtime. Among the potential mechanisms of 
action of stem cells, the release of growth factors, such as 
BDNF and glial cell-derived neurotrophic factor (GDNF), 
is of great relevance as they provide trophic support to dif-
ferent cell types in the damage areas. Besides that, stem cells 
exhibit immumodulatory and anti-inflammatory properties 
which can contribute to decrease and/or control the inflam-
matory response in HD (Uccelli et al., 2011). Studies have 
proven the efficacy of stem cells in providing functional 
recovery in various pre-clinical models of HD (Rossignol et 
al., 2015; Kerkis et al., 2015). Although stem cells improved 
behavior and neuropathological signs, and increased the 
levels of neurotrophic factors in animal models of HD, in-
formation about the immunodulatory effects of stem cells is 
lacking in HD. As immunomodulatory and anti-inflamma-
tory effects are important mechanisms by which these cells 
work, further studies addressing these effects are warranted 
in HD. One clinical trial (NCT01834053) is registered to 
test autologous stem cell in HD patients with no available 
results to date. 

The attempt to develop a vaccine for HD occurred in the 
context of a larger effort to develop vaccines for a variety of 
neurological conditions. In the case of HD, they expected 
to prevent or reverse the long-term accumulation of a toxic 
protein, i.e., mHTT, generating antibodies against particular 
epitopes of the HTT protein. However, the results with the 
vaccine were disappointing in pre-clinical studies, and, as 
consequence, the endeavor was abandoned in humans (Lu-

thi-Carter, 2003).  

Promises and Pitfalls for HD 
Changes in the immune system have been recognized in the 
physiopathology of HD. Accordingly, new treatment pos-
sibilities for HD could arise from these recent insights on 
immune dysfunction in HD. However, there are potential 
pitfalls in this process. 

In first place, it is important to refine the understand-
ing of the role played by the immune system in HD. It is 
not clear whether immune changes result from neurode-
generation and/or represent an independent pathological 
mechanism in HD. Evidence of elevated cytokine levels in 
pre-symptomatic patients, for example, certainly argues in 
favor of inflammation not being a direct consequence of 
brain disease, but rather an independent phenomenon or 
a precursor of other pathological events. It is also unclear 
regarding the role of the immune system in the different 
phases of the disease, and it remains to be defined wheth-
er this role changes from early to advanced stages of HD. 
Moreover, to define new therapeutic targets and design 
suitable drugs to alter the immune response efficiently is 
necessary, first, to address the different immune mecha-
nisms that are elicited by HD pathology. 

Other pitfall is the length of a determined intervention in 
clinical trials to confirm its disease-modifying potential. As a 
neurodegenerative disease, HD progresses slowly, requiring 
long clinical trials that demand much time and resources. 
Surrogate markers of outcome could help in this regard. 
Accordingly, the role of immune molecules as biomarkers 
needs to be explored. Another important issue related with 
immune-based therapies is the increased risk of infectious or 
neoplastic diseases as many of these therapies can decrease 
the efficiency of immune responses in general. 

In conclusion, immune changes seem to play a role in the 
physiopathology of HD. However, there are several unan-
swered questions regarding the involvement of the immune 
system in HD. This is a largely unexplored area where studies 
addressing pathophysiological mechanisms, biomarkers and 
pharmacological targets can impact the clinical management 
of patients with HD in the real world. 
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