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Stroke is a cerebrovascular disease that results in decreased blood flow. Although Panax notoginseng (PN), a Chinese herbal
medicine, has been proven to promote stroke recovery, its molecular mechanism remains unclear. In this study, middle cerebral
artery occlusion (MCAO) was induced in rats with thrombi generated by thread and subsequently treated with PN. After that,
staining with 2,3,5-triphenyltetrazolium chloride was employed to evaluate the infarcted area, and electron microscopy was used
to assess ultrastructural changes of the neurovascular unit. RNA-Seq was performed to determine the differential expressed
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genes (DEGs) which were then verified by qPCR. In total, 817 DEGs were identified to be related to the therapeutic effect of PN on
stroke recovery. Further analysis by Gene Oncology analysis and Kyoto Encyclopedia of Genes and Genomes revealed that most of
these genes were involved in the biological function of nerves and blood vessels through the regulation of neuroactive live receptor
interactions of PI3K-Akt, Rap1, cAMP, and cGMP-PKG signaling, which included in the 18 pathways identified in our research, of
which, 9 were reported firstly that related to PN’s neuroprotective effect. This research sheds light on the potential molecular
mechanisms underlying the effects of PN on stroke recovery.

1. Introduction

Stroke is a major cause of death in the world, and it can also
lead to long-term disability [1]. Ischemic stroke is due to
cerebral artery occlusion, which interrupts the blood supply
of the brain, resulting in hypoxia and a lack of nutrients,
proceeded by a series of complex pathological changes. A
common feature of ischemic stroke is cerebral ischemia
and reperfusion injury (CIRI) which results in serious dam-
age (Eltzschig and Eckle, 2011), including pathological
processes such as excitatory glutamate toxicity, energy fail-
ure, free radical formation, oxidative stress, inflammatory
response, Ca2+ overload, and apoptosis [2]. The concept of
neurovascular unit (NVU) was first recognized in 2001,
and alterations in the composition of the NVU have been
shown to increase vulnerability to the damaging effects of
ischemic stroke [3]. While the NVU has become an integral
component in the study of biomarkers of ischemic stroke
[4], effective neuroprotective drug targets in CIRI are yet to
be determined.

Panax notoginseng is a precious Chinese herbal medicine,
which is grown mainly in Wenshan Prefecture, Yunnan
Province, China. It has been reported that at least twenty
saponins were contained in this material, including notogin-
senoside R1, ginsenoside Rb1, and ginsenoside Rg1 [5, 6].
It is anti-inflammatory and antioxidative, and it is able
to regulate the balance of neurotransmitters and promot-
ing the regeneration of nerves and blood vessels [7–9].
Our previous studies have shown that Panax notogin-
seng saponins (PNS), an extract of PN, have both anti-
inflammatory and neuroprotective effects [10]. Previously,
it has been reported that PN exerted neuroprotective effect
in stroke through antioxidative and anti-inflammatory
properties [11]; in combination with Angelica sinensis, it
could also inhibit NF-κΒ signaling and DNA binding activ-
ity, downregulate NO, NLRP3 inflammasome formation,
and influence microglial pyroptosis [12, 13]. PN may also
influence the expression of Nogo-A, NgR, and p75, regulate
NgR1/RhoA/Rock2 pathway, thus contribute to the recov-
ery of nerve function in stroke [14, 15]. However, further
studies need to be conducted to explore underlying mecha-
nism(s) of PN’s protective effects on NVU, especially in
stroke.

In this study, we first evaluated the effect of PN on the
ultrastructure of the NVU, and then used the RNA-
sequencing methods to study the gene expression changes
caused by PN on the brain ischemia-reperfusion injury rats.
The differentially expressed genes (DEGs) and their signal
pathways were also examined in an attempt to gain a better
understanding of all the biochemical mechanisms involved
in this process.

2. Materials and Methods

2.1. Animal and Experimental Design. Sprague-Dawley (SD)
female rats (250 ± 30 g) were purchased from Changsha
Tianqin Biotechnology Co., Ltd, (Hunan, China). Before
the experiments, all rats were maintained under standard
laboratory conditions (a 12 : 12 hours of day and night cycle,
a relative humidity of 60 ± 5% at room temperature of
22 ± 2°C and free access to food and water). This research
was approved by the Animal Experimental Ethics Com-
mittee of Youjiang Medical University for Nationalities.

The middle cerebral artery occlusion (MCAO) model has
been described in detail [16]. Briefly, we exposed the right
internal and external carotid arteries; then, we cut external
carotid artery about 3mm above the common carotid artery
bifurcation. After a silk suture was tied around the external
carotid stump, a nylon filament (diameter: 0.265mm,
rounded tip, dipped in heparin) was then inserted into the
external carotid artery and gently advanced into the internal
carotid artery, 17-19mm from the carotid bifurcation until a
detection of slight resistance. A nylon thread was then tied
into the vascular lumen. After sterilization, suture incision
and following 2h of ischemia, the thrombus was pulled out
for about 1 cm to complete reperfusion injury. Rats in the
sham group underwent the same surgical procedures except
for the nylon thread procedure. The ambient temperature
was kept constant by maintaining the rectal temperature in
the rats at 37 ± 1°C.

After being allowed to adapt to the environment for 7
days, at least 10 animals were randomly distributed in each
group. The intervention group was administrated with PN
(Sigma-Aldrich, #1291719) intragastrically at a dose of
100mg·kg-1 every 12 hours. The dose in this studywas chosen
based on previous study [13] and our preliminary experi-
ments. Basically, 3 groups were designed in our study: the
Sham group, the MCAO group which treated with saline for
7 days, and the MCAO group which treated with PN for 7
days. Both saline and PN administration started 2 hours after
surgery. All rats were fasted but allowed free access to water.

2.2. Evaluation of Neurological Defects. Neurobehavioral
impairment of rats was assessed in a double-blind manner
by two independent observers according to Longa’s [16].
Detailed information of this evaluation method was summa-
rized in the supplementary table (available here).

The rats with 1-3 points were considered as successful
modeling for I/R injury and were scored again for validation
7 days after surgery.

After 7 days, 6 rats were selected from each group and
anesthetized. The rats in this study were anesthetized by IP
injection of Ketamine (80mg/kg) and Xylazine (8mg/kg);
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supplemental heat was provided to avoid hypothermia dur-
ing anesthesia, according to IACUC guidelines [17, 18].
Brain tissue was separated rapidly, and the area of cerebral
infarction was measured using 2,3,5-triphenyltetrazolium
chloride (TTC) staining in order to show the impaired area
of cerebral ischemia.

2.3. Ultrastructural Changes of NVU [19, 20]. 7 days after
the procedure, the cortex around the ischemic focus
(1mm × 1mm × 1mm) was immersed in 2.5% glutaralde-
hyde for 2-4 hours and washed 3 times with 0.1M phos-
phate buffer (pH7.4) for 15 minutes. The samples were
fixed in osmic acid for 2 hours at room temperature,
washed 3 times with 0.1M phosphate buffer (pH7.4)
for 15 minutes, and fixed and stored at 4°C. Subsequently,
samples were dehydrated in an alcohol gradient (50%-70%-
80%-90%-95%-100%-100% ethanol-100% acetone-100%
acetone) and embedded in EPON 812 epoxy resin. Ultrathin
sections of 50nm were stained with 3% saturated solution of
uranyl acetate and 6% lead citrate staining solution. The
ultrastructure of neurons, astrocytes, and endothelial cells
was observed using a JEOL-1011 transmission electron
microscope (JEOL, Japan) at 80 kV.

2.4. RNA Extraction, Library Construction, and Sequencing.
According to the manufacturer’s protocol, total RNA was
extracted with Trizol kit (Invitrogen, USA). RNA quality
was evaluated on the Agilent 2100 Bioanalyzer (Agilent
Technologies, USA) and verified by RNase-free agarose gel
electrophoresis. After extraction, oligo (dT) beads were used
to enrich eukaryotic mRNA; then, Ribo-ZeroTM magnetic
kit (Epicentre, USA) was used to remove rRNA.

The mRNA acquired above was treated with fragmenta-
tion buffer, then reverse transcribed into cDNA. Second-
strand cDNA was synthesized with DNA polymerase I,
RNase H, and dNTP, and then purified with a QiaQuick
PCR extraction kit (Qiagen, Netherlands); end-repaired,
poly(A) tails were added and ligated to Illumina sequencing
adapters. The ligation products were separated and selected
based on size with agarose gel electrophoresis, and PCR
amplification and sequencing were performed with Illumina
HiSeq2500.

2.5. Assembling and Processing Sequencing Raw Data. Clean
readings were obtained by removing reads which contain
adapters, those with more than 10% of unknown nucleotides
(N) and low-quality reads containing more than 50% of
low quality (Q value ≤ 20) bases. Using StringTie v1.3.1
[21, 22], transcripts were assembled from sequenced raw
data processed by the HISAT2. 2.4 [23] method. For each
transcription region, a fragment per kilobase of transcript
per million mapped reads (FPKM) [24] value was calcu-
lated to quantify its expression abundance and variation,
using the StringTie software.

2.6. Differentially Expressed Genes. RNAs differential expres-
sion analysis was performed by using DESeq2 [25] software
between two different groups (and by edge R [26] between
two samples). The genes with a false discovery rate (FDR)
below 0.05 and an absolute fold-change ≥ 2 were considered

to be DEGs. qPCR was performed in order to verify the
expression of these screened DEGs between the different
groups.

2.7. Validation of the RNA-Sequencing Results by qPCR. To
verify the reliability of sequencing results, qPCR was used
to verify gene expression in the same batches of MCAO
and PN samples (n = 6), and β-actin was used as an internal
reference. The 20μL reaction system contained 5μL of
cDNA, 0.5μL of each primer, 0.5μL 2 x SYBR Green qPCR
SuperMix (InVitrogen), and 4μL dH2O, and the reaction
conditions were as follows: 50°C for 2min, 95°C for 2min,
95°C for 15 s, and 60°C for 32 s plate read for 40 cycles
followed by melting curve analysis (60°C to 95°C). The
2−△△Ct method was used to determine the relative amount
of mRNA, and 3 measurements were made for each sample.
Primers used for Cttn amplification are 5′-ATGTGGAAA
GCTTCAGCAGGCC-3′ (forward) and 5′-TCACGGGCA
CT CCGGGACCCAA-3′ (reversed); primers used for Cxcl1
amplification are 5′-AAATGGTGAAGGTCGGTGTGAA-
3′ (forward) and 5′-CAACAATCTC CACTTTGCCACTG-
3′ (reversed); primers used for Snap25 amplification are 5′
-AGGACTTTGGTTATGTTGGAT-3′ (forward) and 5′
-GATTTAAGCTTGTT ACAGG-3′ (reversed); primers
used for Nox1 amplification are 5′-CTTTAGCATCCATA
TCCGCATT-3′ (forward) and 5′-GACTGGTGGCATTG

a1

a2

b1

b2

c1

c2

SalineSham PN
MCAO

Figure 1: Brain tissue samples of rats from each group. (a) Sham
group, (a1) cerebral vessels are abundant and clearly visible, (a2)
brain tissue is full and symmetrical. (b) MCAO group treated with
saline, (b1) blood vessels around the infarction show exudation,
blocked blood vessels are seen to be collapsed and atrophied, and
(b2) brain tissue is swollen and white. (c) MCAO group treated
with PN, (c1) blood vessels around the infarction are mostly new,
with less exudation than MCAO group and (c2) brain tissue is not
swollen obviously. The yellow lines indicate the infarct area.
Similar experiments were performed at least 5 times.
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TC ACAATA-3′ (reversed); primers used for Bcl2 amplifica-
tion are 5′-ACGAGTGG GATACTGGAGATG-3′ (forward)
and 5′-TAGCGACGAGAGAAGTCATCC-3′ (reversed);

primers used for Kdr amplification are 5′-TCACGGTTGGG
CTACTGC-3′ (forward) and 5′-AGACCTTCTGCCATCA
CG-3′ (reversed); primers used for Foxo3 amplification are
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Figure 2: The effects of PN on MACO in rat infarction volume. (a) Compared with the MCAO group treated with saline, scores of neural
function were decreased in the PN group (n = 10 in each group). (b) TTC staining, normal tissues are red and infarcted tissues are white.
PN can effectively reduce the range of cerebral infarction in rats. (c) Compared with MCAO group, the infarct area and percentage in the
PN group decreased significantly (n = 6 in each group). In (a) and (c), data shown indicated as mean ± SEM values. Similar experiments
were performed at least 3 times. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Figure 3: The effect of PN on ultrastructural changes of NVU. Similar experiments were performed at least 4 times. BMEC represents brain
microvascular endothelial cell. The red triangle indicates a severe swollen/inflammation around neuron, the green triangle indicates an
irregular nucleus. The blue triangle indicates the lumen side of brain microvascular.
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5′-TGGATGACCTGCTAGATAACAT-3′ (forward) and 5′
-AACACGGTACTGTTAAAGGAGC-3′ (reversed); primers
used for Notch3 amplification are 5′-GCTGGCGTCTCTTC
AACAACA-3′ (forward) and 5′-TGGTCGGCGCAGTACT
TCTTAT-3′ (reversed); primers used for β-actin (reference
gene used in this study) amplification are 5′-AGGGAAATCG

TGCGTGACAT-3′ (forward) and 5′-GAACCGCTCATTGC
CGATAG-3′ (reversed).

2.8. Enrichment Analysis of DEGs. In order to understand the
biological functions and pathways of DEGs in rat cerebral
ischemia after PN intervention, we used an annotation and
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Figure 4: Volcano plots and hierarchical clustering heat map of DEGs and DETs. (a) Volcano map for DEGs where red represents
upregulated genes and green represents downregulated genes. (b) Heat map for hierarchical clustering of DEGs. (c) Volcano map for
DETs, red represents upregulated transcripts, and green represents downregulated transcripts. (d) Heat map for hierarchical clustering of
DETs). n = 3 in each group.
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visualization integrated OmicShare cloud platform to analyze
and visualize the biological functions and pathways of differ-
ential genes.

2.9. Statistical Analysis. All data are expressed as mean ±
SEM, and statistical analysis was performed using the SPSS
22.0 statistical software (IBM, Chicago, Illinois). The experi-
mental data were analyzed by one-way analysis of variance.
Student’s paired t-test was used to compare qPCR results,
and P values < 0.05 were considered statistically significant.
GO Analysis was based on the GO database. Fisher’s exact
test and multiple comparison test were used to calculate the
significance level (P value) and false positive rate (FDR) of
each function. P value < 0.05 was the criterion for signifi-
cance screening. Pathway analysis was based on the KEGG
database, and Fisher’s exact test and chi-square test were used
for the DEGs. A pathway in which the target gene partici-
pated in was analyzed for significance and selected according
to P value < 0.05.

3. Results

3.1. The Effects of PN onMCAO in Rats Infarction Volume. In
order to evaluate the protective effect of PN on cerebral ische-
mia, on the seventh day of the experiment, the neurological
functions were assessed blindly using the Longa Neurological
Severity Score; the brain was removed after anesthesia
(Figure 1) and subjected to TTC staining in order to evaluate
the scope of infarction (Figure 2). Comparing with the
MCAO group treated with saline, PN-treated animals

showed decreased disease score (Figure 2(a)) and signifi-
cantly less infarct area (Figures 2(b) and 2(c)).

3.2. Ultrastructural Regulation of the NVU after PN
Treatment. Ultrastructural changes in the NVU were
observed after 7 days of cerebral ischemia. Figure 3 shows
in the Sham group the neurons, and astrocytes are clearly vis-
ible and have large and rounded nuclei. The microvascular
endothelial cells are clear structures without edema around
them, and the lumen is normal. At high magnification, the
binuclear membrane appears clear and complete with a clear
field of view of the integrity of the cell structure. Organelles,
such as lysosomes, are distributed throughout the cytoplasm.
The surface of vascular endothelial cells is smooth and flat;
and the endothelium, basement membrane, and foot pro-
cesses are in close contact.

In the MCAO group, the neurons and astrocytes are
irregular and show an accumulation of chromatin. Cyto-
plasm lysis and vacuole formation were observed. There
appears to be estrogen receptor expansion, mitochondrial
bending, disorder, shrinkage, and vacuolation in the cyto-
plasm. Mitochondrial and other organ-related injuries were
more severe than those in the treatment group. Edema
around blood vessels is obvious, showing vacuoles or blank
areas (Figure 3).

In the PN group, the nuclei of neurons appear more nor-
mal with the nuclear membrane being intact, and the nucleoli
are visible. The astrocyte structure is more complete than in
the MCAO group with the nuclear morphology being more
complete and clear, the microvascular endothelial cells are

Table 1: The partially DEGs from RNA-Seq [MCAO(Saline)/MCAO(PN)].

Ensembl gene ID Gene symbol Log2-fold change P value P adj Style

ENSRNOG00000050994 Cttn 12.67967226 0.001172369 0.104286972 Up

ENSRNOG00000002802 Cxcl1 2.948761024 0.007257485 0.253659663 Up

ENSRNOG00000006037 Snap25 1.675988534 0.0003127 0.046747614 Up

ENSRNOG00000048706 Nox1 1.96651 0.011922266 0.31373928 Up

ENSRNOG00000002791 Bcl2 -1.777692036 0.003557504 0.176645472 Down

ENSRNOG00000046829 Kdr -1.524693848 0.000278591 0.044899468 Down

ENSRNOG00000000299 Foxo3 -1.159297737 0.035026006 0.476124441 Down

ENSRNOG00000004346 Notch3 -1.450412508 0.014108102 0.337843688 Down

Table 2: The partially DETs from RNA-Seq [MCAO(Saline)/MCAO(PN)].

Transcript ID Gene ID Gene symbol Log2-fold change P value P adj Style

ENSRNOT00000000508 ENSRNOG00000000439 Ager 3.050138008 0.022180829 0.401239754 Up

ENSRNOT00000000553 ENSRNOG00000000473 Pfdn6 2.208199784 0.002663896 0.121543007 Up

ENSRNOT00000000657 ENSRNOG00000000546 Nt5dc1 1.080452666 0.036038318 0.50948505 Up

ENSRNOT00000000817 ENSRNOG00000000657 Nek7 3.035450677 0.001253867 0.070869068 Up

ENSRNOT00000002487 ENSRNOG00000001816 Rfc4 1.358324579 0.00530658 0.182793209 Up

ENSRNOT00000000205 ENSRNOG00000024631 Chadl -1.127386831 0.006102632 0.202410056 Down

ENSRNOT00000000824 ENSRNOG00000000661 Hps4 -2.446591496 0.004995283 0.177592248 Down

ENSRNOT00000001185 ENSRNOG00000000886 Caln1 -1.460830778 0.015749777 0.338238335 Down

ENSRNOT00000001248 ENSRNOG00000000940 Flt1 -1.41782469 0.001002321 0.059826058 Down

ENSRNOT00000001479 ENSRNOG00000001117 Fbxl18 -1.477639058 0.020547561 0.386592868 Down
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not deformed significantly, and the lumen is basically unob-
structed. The peripheral edema is reduced compared with the
MCAO group (Figure 3).

3.3. Gene Expression and Transcript Data Analysis. To inves-
tigate the molecular mechanism of the protective effect of PN
on MCAO in rats, brain tissue gene expression profiles of the
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Figure 6: Gene ontology enrichment analysis of DEGs. The ordinate is the number of genes, the abscissa is the GO name. Blue refers to the
upregulated genes; orange refers to the downregulated genes.
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n = 6 in each group). Data shown indicated as mean ± SEM values. Similar results were obtained from at least 3 independent experiments.
∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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Sham, MCAO, and PN groups were measured by using
RNA-Seq. A total of 817 DEGs were observed in MCAO
group compared to PN group, of which, 390 genes were
upregulated and 427 were downregulated (Figures 4(a) and
4(b), Table 1). In addition, there were 1422 differentially
expressed transcripts (DETs) which included 692 upregu-
lated and 730 downregulated transcripts (Figures 4(c) and
4(d), Table 2).

3.4. RNA-Seq Validation by qPCR. To verify the expression of
the DEGs obtained from the RNA-Seq results between
MCAO and PN groups, we randomly selected 8 genes for val-
idation, including 4 upregulated genes (Cttn, Cxcl1, Snap25,
and Nox1) and 4 downregulated genes (Bcl2, Kdr, Foxo3 and
Notch3). The relative expression was determined by the 2−△△Ct

method, and the results were consistent with the expression
trends seen during RNA-Seq analysis (Figure 5). The qPCR
results were consistent with the sequencing experiments.

3.5. GO and Pathway Analyses. In order to determine the
functions and pathways of DEGs and DETs related to
PN treatment, we performed GO and pathway analysis.
Using P < 0:01 identified 332 GO terms, 202 of which
were related to nerves and 55 were related to blood ves-
sels, of which the following GO terms: cellular process
(GO:0009987), biological regulation (GO:0065007), meta-
bolic process (GO:0008152), regulation of biological pro-
cess (GO:0050789), response to stimulus (GO:0050896),
binding (GO:0005488), catalytic activity (GO:0003824),
transcription regulator activity (GO:0140110), molecular
transducer activity (GO:0060089), molecular function regula-
tor (GO:0098772), cell (GO:0005623), cell part (GO:0044464),
organelle (GO:0043226), membrane (GO:0016020), and
organelle part (GO:0044422) were significantly different
between saline and PN-treated groups. This indicates that
the above biological processes are potentially related to the
therapeutic function of PN.

Table 3: GO classification of DEGs in MCAO(Saline)/MCAO(PN) (Top30).

Term Description Type Count P value

GO:0031323 Regulation of cellular metabolic process BP 218 2.85E-06

GO:0001568 Blood vessel development BP 40 2.99E-06

GO:0001944 Vasculature development BP 41 3.22E-06

GO:0006836 Neurotransmitter transport BP 23 3.64E-06

GO:0080090 Regulation of primary metabolic process BP 213 3.85E-06

GO:0019222 Regulation of metabolic process BP 230 3.92E-06

GO:0065008 Regulation of biological quality BP 153 4.21E-06

GO:0072358 Cardiovascular system development BP 41 4.92E-06

GO:0050905 Neuromuscular process BP 14 5.87E-06

GO:0007626 Locomotory behavior BP 20 6.12E-06

GO:0003676 Nucleic acid binding MF 163 1.31E-06

GO:0097159 Organic cyclic compound binding MF 233 1.29E-05

GO:1901363 Heterocyclic compound binding MF 230 1.40E-05

GO:0046872 Metal ion binding MF 138 1.89E-05

GO:0043169 Cation binding MF 141 2.04E-05

GO:0005488 Binding MF 488 5.61E-05

GO:0016263 Ion binding MF 200 0.002322647

GO:0043565 Sequence-specific DNA binding MF 53 0.001285424

GO:0003677 DNA binding MF 85 0.001632778

GO:0003690 Double-stranded DNA binding MF 44 0.001941181

GO:0045202 Synapse CC 70 3.86E-08

GO:0044456 Synapse part CC 55 2.90E-06

GO:0098794 Postsynapse CC 40 4.36E-06

GO:0098984 Neuron to neuron synapse CC 23 0.000185124

GO:0005622 Intracellular CC 454 0.000264158

GO:0045211 Postsynaptic membrane CC 20 0.000272495

GO:0097060 Synaptic membrane CC 25 0.000310002

GO:0098978 Blutamatergic synapse CC 26 0.000423116

GO:0032279 Asymmetric synapse CC 21 0.000463989

GO:0034707 Chloride channel complex CC 6 0.000580336
∗BP: biological process; MF: molecular function; CC: cellular component; Count: gene number listed in GO term.
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According to the enrichment degree of functional anno-
tation, the top 10 biological processes, molecular functions,
and cellular composition are shown in Figure 6 and
Table 3. KEGG pathway analysis leads to a better under-
standing of the role of PN in the treatment of cerebral ische-
mia. 39 pathways were screened with P values of less than
0.05, of which 18 pathways were enriched with more
than 10 genes. These include PI3K-Akt (ko04151), Rap1
(ko04015), neuroactive ligand-receptor interaction (ko04080),
calcium (ko04020), focal adhesion (ko04510), oocyte meiosis
(ko04114), cAMP (ko04024), glutamatergic synapse (ko04724),
dopaminergic synapse (ko04728), apelin (ko04371), cGMP -
PKG (ko04022), chemokine (ko04062), cholinergic synapse
(ko04725), vascular smooth muscle contraction (ko04270),
AMPK (ko04152), and signaling pathways regulating pluri-
potency of stem cells (ko04550) (Figure 7), and the genes par-
ticipated in the above pathways were listed in Table 4. These
pathways and genes may play an important role in the anti-
ischemic effect of PN (Figure 8).

4. Discussion

It has been proven that PN possesses therapeutic properties
against stroke, and it has been reported in previous studies
about the molecular mechanism(s) explaining PN’s clinical
outcomes [11–13]. However, most of previous research
focused on single a gene/pathway, still no systemic evaluation
of PN’s molecular mechanism(s) in neuroprotection effect.

In this case, based on a rat stroke model treated with PN,
we employed the second generation sequencing technology,
which is a high-throughput method, in combination of qPCR
and transmission electron microscopy; this study identified
817 DEGs potentially related to PN’s neuroprotection effect,
and we firstly identified 18 pathways involved in its therapeu-
tic effect.

The development of stroke involves energy metabolism
disorder, inflammatory response, free radical formation, cal-
cium overload and apoptosis, and destruction of blood-brain
barrier [2]. These adverse factors cause pathological damage
to neurons, glial cells, and microvessels in the NVU [27].

In this study, we investigated the protective effect of PN
on ischemic stroke in rats. Compared with the MCAOmodel
group, PN treatment can significantly decrease the infarct
volume/size in rats with cerebral ischemia and reduce the
volume of cerebral infarction as shown by TTC staining.
Hence, PN has an anti-ischemic effect. Ultrastructural results
show that PN can reduce the pathological changes of the
NVU in ischemic stroke.

KEGG pathway analysis showed PN’s therapeutic effect
involves various pathways such as PI3K-Akt pathway, Neu-
roactive ligand-receptor interaction, Rap1 signaling pathway,
proteoglycans in cancer, calcium signaling pathway, focal
adhesion, oocyte meiosis, cAMP signaling pathway, Gluta-
matergic synapse, Dopaminergic synapse, Apelin signaling
pathway, cGMP-PKG signaling pathway, Alcoholism, Che-
mokine signaling pathway, Cholinergic synapse, Vascular

5 10
Gene number

p.adjust

PI3K-Akt signaling pathway 4.74E-07

Neuroactive ligand-receptor interaction 7.53E-07

Rap1 signaling pathway 1.39E-08

Proteoglycans in cancer 3.49E-08

Calcium signaling pathway 1.28E-07

Focal adhesion 1.42E-07

Oocyte meiosis 1.22E-08

Dopaminergic synapse 1.85E-08

cAMP signaling pathway 1.52E-06

Glutamatergic synapse 3.34E-08

Apelin signaling pathway 1.41 E-06

cGMP-PKG signaling pathway 7.05E-06

Alcoholism 8.81E-06

Chemokine signaling pathway 8.82E-06

Cholinergic synapse 1.58E-06

AMPK signaling pathway 3.76E-06

Vascular smooth muscle contraction 6.21E-06

Signaling pathways regulating pluripotency of stem cells 8.21E-06

15

Figure 7: The list of top 18 enriched pathway analysis of DEGs.
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smooth muscle contraction, and AMPK signaling pathway.
Nine of which were firstly reported in this research to be
related to PN.

It has been reported that PN exerts different molecular
mechanisms and pathways related to its neuroprotective
effect. Panax notoginseng saponins are the representative
bioactive agent of PN extracts, and it is widely used in the
treatment of ischemic stroke, probably due to its inhibition
of apoptosis via upregulation of SIRT1 and antioxidants
[28]. PN and its extract are known to have a variety of protec-
tive neurovascular mechanisms. For example, PNS protects
cerebral microvascular endothelial cells by activating the
PI3K/Akt/Nrf2 antioxidant signal pathway [29]. Notoginse-
noside R1 plays a neuroprotective role by activating the
estrogen receptor-dependent Akt/Nrf2 pathway to inhibit
NADPH oxidase activity and mitochondrial dysfunction
[30]. Ginsenoside Rb1 can upregulate the expression of
GDNF to inhibit neuron apoptosis [31] and promote motor
function recovery and axon regeneration in mice after stroke
through the cAMP/PKA/CREB signaling pathway [32]. Gin-
senoside Rd has been shown to inhibit microglial proteasome
activity and inflammatory response [33, 34] through mito-
chondrial protection, apoptosis inhibition, and energy recov-

ery. Ginsenoside Rg1 can regulate the inhibition of NMDA
receptor channels and L-type voltage-dependent calcium
channels on Ca2+ influx and the decrease of intracellular-
free Ca2+ caused by it, thus playing a neuroprotective role
[2]. Studies have also shown that the cGMP-PKG pathway
mediates the proliferation of neural stem cells after cerebral
ischemia [35]. Ras-associated protein 1 (Rap1) is known to
be involved in integrin and cadherin-mediated adhesion,
which can mediate angiogenesis in endothelial cells [36].

In our research, we identified another 9 pathways poten-
tially related to PN’s neuroprotective effect, including Neuro-
active ligand-receptor interaction, proteoglycans in cancer,
focal adhesion, oocyte meiosis, Apelin signaling pathway,
Alcoholism, Chemokine signaling pathway, Cholinergic syn-
apse, and Vascular smooth muscle contraction.

Genetically modified animals should be used to confirm
the biological/pathological role of these newly identified
pathways related to PN’s therapeutic effect against stroke.

5. Conclusions

The NVU is the structural and functional unit of the nervous
system. Our study shows that PN has a protective effect on

Table 4: A list of the top 18 KEGG pathway DEGs.

Pathway ID Pathway Genes

ko04151 PI3K-Akt signaling pathway
Lpar4, Col6a5, Ppp2r3c, Foxo3, Flt1, Bcl2, Gsk3b, Pdpk1,Erbb2, Epha2, Gnb4, Igf1r,

Fn1, Kdr, Chrm2, Itga1, Ppp2r2c.

ko04080
Neuroactive ligand-receptor

interaction
Rxfp2, Lpar4, Gcgr, Adora2a, Adora1, Apln, Gabrb2, Drd2, Grin2b, Grik3, Aplnr,

Adra1a, Oprd1, Ednrb, Cysltr2, Grin2a, Chrm2.

ko04015 Rap1 signaling pathway
Lpar4, Map2k3, Flt1, Adora2a, Rapgef4, Adcy5, Drd2, Grin2b, Epha2, Igf1r, Plce1,

Rapgef1, Tln2, Grin2a, Kdr, Adcy1.

ko05205 Proteoglycans in cancer
Rock1, Plaur, Cttn, Itpr2, Timp3, Pdpk1, Erbb2, Itpr1, Igf1r, Plce1, Fn1, Ank1,

Camk2a, Kdr, Fzd3.

ko04020 Calcium signaling pathway
Ppp3r1, Adora2a, Itpr2, Itpkb, Erbb2, Itpr1, Adra1a,Ednrb, Plce1, Cysltr2, Camk2a,

Grin2a, Chrm2,A dcy1.

ko04510 Focal adhesion
Col6a5, Rock1, Flt1, Bcl2, Gsk3b, Pdpk1, Erbb2, Igf1r, Fn1, Rapgef1, Shc3, Tln2, Kdr,

Itga1.

ko04114 Oocyte meiosis
Rps6ka6, Pttg1, Spdya, Espl1, Fbxo5, Ppp3r1, Itpr2,Adcy5, Itpr1, Igf1r, Camk2a,

Cpeb3, Adcy1.

ko04024 cAMP signaling pathway
Rock1, Cftr, Adora2a, Rapgef4, Adcy5, Adora1, Drd2, Grin2b, Plce1, Camk2a, Grin2a,

Chrm2, Adcy1.

ko04724 Glutamatergic synapse
Ppp3r1, Arrb1,Itpr2,Adcy5, Itpr1, Grin2b, Grik3, Slc1a3, Shank1, Grin2a, Shank3,

Gnb4, Adcy1.

ko04728 Dopaminergic synapse
Ppp2r3c, Itpr2, Adcy5, Gsk3b, Ddc, Itpr1, Drd2, Grin2b, Gnb4, Camk2a, Grin2a,

Ppp2r2c.

ko04371 Apelin signaling pathway Itpr2, Adcy5, Apln, Notch3, Itpr1, Aplnr, Gnb4, Klf2, Hdac4, Acta2, Adcy1.

ko04022 cGMP-PKG signaling pathway Rock1, Ppp3r1, Itpr2, Adcy5, Adora1, Itpr1, Adra1a, Oprd1, Ednrb, Gucy1a2, Adcy1.

ko05034 Alcoholism
Adora2a, Camkk2, Adcy5, Ddc, Drd2, Grin2b, Gnb4, Shc3, Hdac4, Grin2a,

LOC103690190.

ko04062 Chemokine signaling pathway Cxcl1, Rock1, Foxo3, Adcy5, Gsk3b, Gnb4, Grk5, Cxcl12, Shc3, Arrb1, Adcy1.

ko04725 Cholinergic synapse Itpr2, Adcy5, Bcl2, Kcnq3, Itpr1, Gnb4, Camk2a, Chrm2, Adcy1, Slc18a3.

ko04270 Vascular smooth muscle contraction Rock1, Adora2a, Itpr2, Adcy5, Prkch, Itpr1, Adra1a, Gucy1a2, Acta2, Adcy1.

ko04152 AMPK signaling pathway Ppp2r3c, Cftr, Foxo3, Camkk2, Pdpk1, Adipor2, Adra1a, Scd, Igf1r, Ppp2r2c.

ko04550
Signaling pathways regulating
pluripotency of stem cells

Gsk3b, Tbx3, Skil, Lifr, Isl1, Igf1r, Bmpr1, Neurog1, Apc2, Fzd3.
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cerebral ischemia by protecting the NVU. The molecular
mechanisms involved may include the PI3K-Akt pathway,
neuroactive ligand-receptor interactions, Rap1 signaling
pathway, cAMP signaling pathway, and cGMP-PKG signal-
ing pathway. The interaction of proteins in these pathways
may be potential key targets for our future understanding
of the neuroprotective effects of PN in ischemic stroke.
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