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Nucleotide excision repair (NER) plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA
lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions
that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the
major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P), 10S (+)-trans-anti-B[a]P-N2-dG in
six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have
obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER
data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed
Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an
enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the
exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless
of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

1. Introduction

Nucleotide excision repair (NER) plays a central role in
preserving the genome of prokaryotes and eukaryotes. This
versatile repair system removes structurally and chemically
diverse bulky DNA lesions, including those induced by expo-
sure to UV light and environmental chemical carcinogens
[1, 2]. The vital importance of this mechanism is demon-
strated by several human NER-deficiency syndromes includ-
ing xeroderma pigmentosum (XP), cockayne syndrome
(CS), and trichothiodystrophy (TTD) [3]. XP, for example, is
characterized by high photosensitivity, hyperpigmentation,
premature skin ageing, and proneness to developing skin
cancer [4]. Furthermore, the capacity of the NER pathway
is important in cancer chemotherapy [5]: NER diminishes
the efficacy of chemotherapeutic agents such as cisplatin,
which act via the formation of bulky DNA adducts. A
better understanding of the mechanisms of recognition of
DNA lesions by the NER system may lead to the design of
improved chemotherapeutic drugs that can modulate the
repair response. Recent findings reveal that polymorphisms

in human NER repair genes have an impact on the repair of
DNA lesions and cancer susceptibility [6, 7], as well as on
chemotherapeutic efficacy [8].

The eukaryotic NER pathway is a biologically compli-
cated process and consists of two sub-pathways with different
substrate specificity: global genome NER (GG-NER) [9, 10]
and transcription-coupled repair (TCR) [11–14]. Both sub-
pathways consist of ordered multistep processes, which differ
in the early steps, when the DNA lesions are recognized,
but converge in the later steps. In GG-NER, the focus
of our present interest, the whole genome is scanned for
bulky lesions to initiate the repair process. Two indepen-
dent complexes, one involving the XPC/HR23B/Centrin 2
proteins [15–17] and the other involving the DDB1/DDB2
heterodimer [18–21], have been implicated in the early steps
of base-damage recognition during NER [9]. By contrast, the
TCR sub-pathway is activated by a stalled RNA polymerase
during transcription [12]. Once the lesion is detected, the
two sub-pathways proceed in an essentially identical manner
to excise it: the multisubunit transcription factor. TFIIH,
containing helicases XPB, and XPD, is recruited to the
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lesion site, followed by XPA, the single-strand DNA binding
protein RPA, and the two nucleases XPG and XPF-ERCC1.
Once assembled, a 24–32 oligonucleotide stretch containing
the lesion is excised from the damaged strand. This 24–32
oligonucleotide stretch is the hallmark of a successful NER
event. Finally, gap resynthesis by DNA polymerases δ, ε, and
κ [22] and ligation by DNA ligase I complete the NER process
[23].

One remarkable characteristic of the NER pathway is
its ability to excise an astounding variety of chemically
and structurally diverse lesions [2], and the rates of repair
can vary over several orders of magnitude. However, the
differences in the structural and thermodynamic properties
of the lesions that control the diverse NER efficiencies have
remained elusive. It has been suggested that the NER factors
do not recognize the lesion itself, but rather the local dis-
tortions and destabilizations in the DNA that are associated
with it [24–30]. A number of different properties of damaged
DNA that elicit the NER response have been proposed.
These include disruption of Watson-Crick hydrogen bonding
[24, 31], kinks in the damaged DNA [32], thermodynamic
destabilization [24, 29, 33], diminished base stacking [34,
35], local conformational flexibility [36], and flipped-out
bases in the unmodified complementary strand [37–40].
A crystal structure of yeast Rad4/Rad23, the homolog of
the human NER recognition factor XPC/HR23B, bound to
DNA containing a cyclobutane pyrimidine dimer, shows that
Rad4/Rad23 inserts a β-hairpin through the DNA duplex
and expels two mismatched thymines in the undamaged
strand out of the duplex to bind with the enzyme (PDB
ID: 2QSG) [41]. This structure suggests that lesions which
thermodynamically destabilize the DNA duplex and facilitate
the flipping of base pairs and the intrusion of the beta-
hairpin are good substrates to the NER machinery: the more
locally destabilized the lesion, the better it is repaired.

The modulation of NER susceptibility for the same lesion
by neighboring base sequence context, is however, a relatively
unexplored area. If a lesion is better repaired in one sequence
context than the other, a lesion-induced mutational hotspot
could result. In order to elucidate the relationship between
NER efficiency and base sequence-governed DNA distortion
and destabilization induced by a bulky DNA adduct, we have
employed as a model system the major lesion derived from
the cancer-causing compound benzo[a]pyrene (B[a]P) [42].
B[a]P is the most well-studied member in a family of ubiqui-
tous environmental pollutants known as polycyclic aromatic
hydrocarbons. The tumorigenic metabolite of B[a]P [43]
is the diol epoxide r7, t8-dihydroxy-t9,10-epoxy-7,8,9,10-
tetrahydrobenzo[a]pyrene (B[a]PDE). This intermediate
reacts with DNA and RNA; the most abundantly stable
adduct produced in mammalian cells [44–46] is the 10S (+)-
trans-anti-B[a]P-N2-dG adduct ([G∗]) (Figure 1(a)), the
focus of our work. This adduct, unless removed by DNA
repair mechanisms [47], is highly mutagenic [48, 49].

We have investigated the identical 10S (+)-trans-anti-
B[a]P-N2-dG adduct in the six sequence contexts shown
in Figure 1(b), utilizing an array of approaches: NER in
human HeLa cell extracts, ligation and polyacrylamide gel
electrophoresis techniques to assess bending properties of

the modified duplexes, and structural studies utilizing high
resolution NMR methods as well as unrestrained molecular
dynamics (MD) simulations. The position of the B[a]P
ring system in the B-DNA minor groove, directed 5′ along
the modified strand, was first determined by NMR in the
5′-. . .C[G∗]C-I. . . sequence in 1992 [50], but sequence-
governed structural details as well as dynamic properties
remained to be elucidated. One important motivation for
our work was to explore the role of nearby guanine amino
groups on the structural properties and NER susceptibilities
of these duplexes. The key difference in these duplexes is
the presence and positioning of guanines flanking the [G∗],
either immediately adjacent to the lesion or beyond: the
B[a]P rings compete for space with the bulky amino group
of guanine on the minor groove side of B-DNA, which
we anticipated would differentially impact the structures
of the damaged duplexes in a sequence context-dependent
manner. A further motivation was to explore the role of
differing sequence contexts beyond the lesion that vary
in intrinsic flexibility. We hypothesized that subtle but
critical structural effects governed by sequence context would
manifest themselves by impacting NER efficiencies. Our
results determined that sequence context could cause an up
to four-fold difference in relative NER susceptibility, with
even distant neighbors influencing NER. Locally disturbed
Watson-Crick hydrogen bonding and flexible bending are
two key sequence-governed structural distortions caused by
this lesion that the NER machinery appears to recognize
with different efficiencies. More generally, different lesions
in varied sequence contexts will cause different kinds of
distortions; thus, the extent of the local thermodynamic
destabilization will also vary; we hypothesize that it is the
extent and type of destabilization that determines the relative
NER efficiency.

2. Nearest Neighbor Base Sequence
Context Impacts NER of the
10S (+)-trans-anti -B[a]P-N2-dG Adduct

The 5′- . . .C[G ∗]G. . ., 5′- . . .G[G ∗]C. . ., and 5′- . . .I[G
∗]C. . . Sequences. High resolution NMR solution studies
have shown that the bulky aromatic B[a]P residue is
positioned in the minor groove on the 5′-side of [G∗]
[51] in the 5′-. . .C[G∗]G. . . and 5′-. . .G[G∗]C. . . duplexes
(Figure 2). However, there are sequence-governed differences
in some of the structural features. Specifically, in the 5′-
. . .C[G∗]G. . . duplex, NMR studies revealed that the C : G
base pair on the 5′-side of [G∗] is severely disturbed. In
the case of the sequence-isomer 5′-. . .G[G∗]C. . . duplex, this
perturbance is not observed. On the other hand, analyses of
MD simulations [51, 52] based on the NMR data revealed
significant unwinding near the lesion site combined with an
anomalously enlarged Roll (Figure 3), not observed in the
5′-. . .C[G∗]G. . . duplex. Polyacrylamide gel electrophoresis
techniques revealed an unusual slow electrophoretic mobility
of the 5′-. . .G[G∗]C. . . duplex, which is a manifestation of
a kink [53] that is highly flexible [54]. This flexible bend
is caused on a molecular level by the severe untwisting
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Figure 1: (a) Chemical structure of the 10S (+)-trans-anti-B[a]P-N2-dG adduct. (b) Base sequence contexts investigated. For 5′-
. . .I[G∗]C. . ., formally, inosine is the nucleoside, while hypoxanthine is the correct name for the corresponding base; for simplicity we
utilize the term inosine.

5′-. . .C[G∗]G. . .

(a)
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Figure 2: Effects of nearby guanine amino groups on the positioning of the 10S (+)-trans-anti-B[a]P-N2-dG adduct in the minor groove of
the lesion-containing duplexes. The presence or absence and exact location of the guanine amino groups is governed by the base sequence
contexts and determines the structural distortion/destabilization of the damaged duplexes. The damaged strand is light grey, and the partner
is dark grey.
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Figure 3: (a) In the 5′-. . .C[G∗]G. . . sequence context, steric hinderance between the B[a]P moiety and nearby guanine amino groups
causes the episodic denaturation of the C5 : G20 Watson-Crick hydrogen bond. (b) In the 5′-. . .G[G∗]C. . . sequence context, steric hindrance
between the B[a]P moiety and nearby guanine amino groups causes untwisting, manifested as a bend. (c) and (d) Definition of DNA duplex
helicoidal parameters Roll and Twist, respectively. These cartoons are adapted with permission from Lu et al., Nucleic Acids Res. 31 (17):
5108–5121, Figure 1, Copyright 2003, Oxford University Press.

and enlarged Roll determined by MD from the NMR
data: DNA bending is largely caused by increased Roll,
which is correlated with untwisting [55–57]. The underlying
structural reasons for the disturbed Watson-Crick hydrogen
bond in the 5′-. . .C[G∗]G. . . case and the flexible bend in
the 5′-. . .G[G∗]C. . . duplex were revealed from MD simu-
lations: for 5′-. . .C[G∗]G. . ., the bulky amino group on G20
(Figure 3), which is partner to the C on the 5′ side of [G∗],
is sterically crowded by the B[a]P ring system since both are
on the minor groove side, and hence this C5 : G20 base pair is
episodically denatured (Figure 3(a)); for the 5′-. . .G[G∗]C. . .
case, the B[a]P rings crowd the G6 amino group, and in this
case the crowding is relieved by the severe untwisting accom-
panied by the increased Roll, which produces the flexible
bend observed by gel electrophoresis. Investigations with the
5′-. . .I[G∗]C. . . sequence context substantiated the critical
role of the guanine amino group since “I” (Figure 1(b)) lacks
this group: the gel electrophoretic manifestation of a flexible
bend was abolished. The NMR data showed conformational
heterogeneity in minor groove conformations [51], and the
MD simulations showed episodic denaturation of one of the
two hydrogen bonds at the I:C base pair, explaining the
heterogeneity.

The repair efficiency relative to 5′-. . .C[G∗]C-I. . ., the
standard sequence utilized in many NMR and NER
studies [53, 58], is 4.1 ± 0.2, 1.7 ± 0.2 and 1.3
± 0.2 for the 5′-. . .C[G∗]G. . ., 5′-. . .G[G∗]C. . . and 5′-
. . .I[G∗]C. . . duplexes, respectively (Figure 4). In the 5′-
. . .C[G∗]G. . .duplex, dynamic episodic denaturation of
Watson–Crick base pairing flanking the lesion on the 5′-
side correlates with the greatest NER susceptibility while
the flexible bend in 5′-. . .G[G∗]C. . . is a less pronounced
NER recognition signal, and the disturbance to one hydrogen
bond in the 5′-. . .I[G∗]C. . . case provides a still lesser signal
[52, 53] in this series.

The 5′-. . .C[G∗]C-II. . . and 5′-. . .T[G∗]T-II. . . Sequence
Contexts. The 5′-. . .C[G∗]C-II. . . and 5′-. . . T[G∗]T-II. . .
sequences (Figure 1(b)) are of unusual interest for several
reasons. While a single, well-defined minor groove adduct
conformation is observed in 5′-. . .C[G∗]C. . . duplexes
[50], in the 5′-. . .T[G∗]T-II. . . sequence context, the minor
groove-aligned adduct conformation is heterogeneous
[59]. Furthermore, polyacrylamide gel electrophoresis
studies showed that the adduct induces a rigid bend in
the 5′-· · ·C[G∗]C-II. . . DNA duplex [60], while in the
5′-. . .T[G∗]T-II. . . sequence context, the lesion induces a
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Figure 4: Hierarchy of NER recognition signals for the 10S (+)-trans-anti-B[a]P-N2-dG adduct in various sequence contexts.

highly flexible bend [59, 60]. Also, the 5′-. . .T[G∗]T-II. . .
11-mer duplex has a lower thermal melting point than
the 11-mer 5′-. . .C[G∗]C-II. . . duplex (the exact difference
depends on sequence length) [61] as expected from the
thermodynamic properties of T : A and C : G Watson-Crick
base pairs [62, 63]. Molecular insights on these experimental
observations [64] were provided by MD simulations for
the 5′-. . .T[G∗]T-II. . . and 5′-. . .C[G∗]C-II. . . duplexes.
Consistent with the conformational heterogeneity observed
in the NMR studies [59], it was found that the 5′-. . .T[G∗]T-
II. . . duplex is much more dynamic than the 5′-. . .C[G∗]C-
II. . . duplex: the highly dynamic base pair on the 5′-side of
the lesion exhibits episodic denaturation of one of the two
Watson-Crick hydrogen bonds, in agreement with the partial
rupturing of this base pair observed by the NMR methods
[59]; also, the 5′-. . .T[G∗]T-II. . . duplex shows somewhat
increased and more dynamic Roll and untwisting compared
to the 5′-. . .C[G∗]C-II. . . duplex, consistent with the flexible
bend observed only for the 5′-. . .T[G∗]T-II. . . case; in
addition, the B[a]P ring system exhibits greater mobility
and the duplex groove dimensions are more variable.
The differences are accounted for by a coupled series of
properties: the intrinsically weaker stacking of T-G compared
to C-G steps allows for greater flexibility in the 5′-. . .T[G∗]T-
II. . . duplex; the weaker T : A pair, with only two hydrogen
bonds, compared to the C : G pair, with three bonds, provides

enhanced flexibility; moreover, the absence of guanine amino
groups adjacent to the [G∗] in the 5′-. . .T[G∗]T-II. . . case
allows for greater mobility for the B[a]P ring system. Overall,
the greater flexibility of the 5′-. . .T[G∗]T-II. . . sequence is
attributable to the absence of the guanine amino group.

The rates of incision in the human HeLa cell assay
relative to 5′-. . .C[G∗]C-I. . . is 2.4 ± 0.2 and 1.6 ± 0.2 for
the 5′-. . .T[G∗]T-II. . . and the 5′-. . .C[G∗]C-II. . . duplexes,
respectively [53], corresponding to a 1.5 ± 0.2-fold higher-
repair efficiency for the 5′-. . .T[G∗]T-II. . . case relative
to 5′-. . .C[G∗]C-II. . . . The better repair susceptibility in
the 5′-. . .T[G∗]T-II. . . case is consistent with the overall
enhanced dynamics manifested in various structural proper-
ties, notably Watson-Crick hydrogen bonding and bending.

3. Distant Neighbor Base Sequence
Context Affects NER of the
10S (+)-trans-anti -B[a]P-N2-dG Adduct

The 5′-. . .C[G∗]C-I. . . and 5′-. . .C[G∗]C-II. . . sequences
(Figure 1(b)) differ in the sequences beyond the nearest
neighbors to [G∗].

Since different sequence steps are known to be differen-
tially flexible [57, 65], we hypothesized that the same minor
groove lesion [50, 64] with different distant neighbors would
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be differentially repaired. Polyacrylamide gel electrophoresis
and self-ligation circularization experiments revealed that
the 5′-. . .C[G∗]C-II. . . duplex is more bent and suggested
that it has more torsional flexibility than the 5′-. . .C[G∗]C-
I. . . duplex [66]. Our MD simulations revealed the under-
lying structural origins to this bending difference. The key
role is played by the unique -C3-A4-C5- segment in the 5′-
. . .C[G∗]C-II. . . duplex. The more torsionally flexible bend
observed for the 5′-. . .C[G∗]C-II. . . duplex originates from
the guanine amino group at the C3 : G20 pair (Figure 5).
This amino group acts as a wedge to open the minor groove;
facilitated by the highly deformable local -C3-A4- base step,
the amino group allows the B[a]P ring system to better
bury its hydrophobic surface within the groove walls. This
produces a yet more enlarged minor groove which is coupled
with more local untwisting and more enlarged and flexible
Roll [67], causing the greater bend in 5′-. . .C[G∗]C-II. . . [66]
(Figure 5).

The NER efficiencies are 1.6± 0.2 times greater in the 5′-
. . .C[G∗]C-II. . . than in the 5′-. . .C[G∗]C-I. . . sequence con-
text [66] showing that distant neighbors to [G∗] modulate
the NER susceptibility. The greater NER susceptibility for the
5′-. . .C[G∗]C-II. . . duplex is explained by its greater bending
with enhanced flexibility: the intrinsic minor groove enlarge-
ment caused by both the guanine amino groups [55, 68]
and the great flexibility of pyrimidine-purine steps, including
the C-A step [57, 69–72] allow the B[a]P moiety (Figure 5)
to more favorably position itself, but at the expense of the
greater bend that makes it more repair-susceptible.

4. Understanding Repairability Differences:
the Degree of Local Thermodynamic
Destabilization Is a Unifying Hypothesis

We have carried out a series of studies with the same
10S (+)-trans-anti-B[a]P-N2-dG lesion in a number of
sequence contexts that differ in how the lesion is positioned
in relation to nearby guanine amino groups. Additionally,
we have considered differences in intrinsic flexibility of
sequences flanking the lesion. These are model systems for
gaining understanding of NER lesion recognition factors.
We have obtained molecular structural data by NMR and
MD simulations, bending properties from gel electrophoresis
studies, and NER data from human HeLa cell extracts
for all of our investigated sequence contexts (Figure 1(b)).
Figure 4 summarizes our key findings and enables us to
infer a hierarchy of NER recognition signals for the series of
sequences and the single lesion we explored. We point out
here that a variety of structural disturbances are found in
each case, which are correlated. Examples include impaired
Watson-Crick pairing that is accompanied by diminished
base stacking, and DNA bending towards the major groove,
that is induced by a minor groove lesion and is accompanied
by minor groove enlargement. Our present model system
suggests that disturbed Watson-Crick base pairing is a better
recognition signal than a flexible bend, and that these can
act in concert to provide an enhanced signal: for example,
for 5′-. . .T[G∗]T-II. . . one episodically ruptured Watson-
Crick hydrogen bond combined with the flexible bend results
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in better repair than just one disturbed hydrogen bond
as in 5′-. . .I[G∗]C. . ., or the flexible bend alone in 5′-
. . .G[G∗]C. . . (Figure 4). For our system, steric hindrance
between the minor groove-aligned lesion and nearby guanine
amino groups, if present, determines the exact nature of
the disturbances, depending on exactly where the guanine
amino groups are situated. The intrinsic flexibility of the
specific base steps also plays an important role in causing
the differential disturbances. Both the nearest neighbor
and the more distant neighbor sequence contexts have an
impact.

More globally, different lesions may cause different types
of distortions depending on the specific nature of the lesion
and its sequence context. However, regardless of exactly
what these distortions are, we hypothesize that they must
provide a local thermodynamic destabilization signal for
repair to ensue, and the greater the extent of destabilization,
the better the repair. The destabilization would facilitate
the strand separation, base-flipping, and β-hairpin insertion
by the XPC/HR23B recognition factor [41, 73] needed
to initiate NER. In this way, the NER machinery would
excise a large variety of lesions with different efficiencies,
by recognizing the thermodynamic impact of the lesions
rather than the lesions themselves [24, 29, 41, 73]. Lesions
that resist NER present a great hazard, as they survive to
the replication step and produce a mutagenic outcome;
such NER-resistant lesions provide an important opportu-
nity for gaining further understanding of the mechanism
utilized by the NER apparatus to recognize different lesions
[74].

Abbreviations

B[a]P: benzo[a]pyrene
B[a]PDE: benzo[a]pyrene diol epoxide
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9,10-epoxy-7,8,9,10
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NER: nucleotide excision repair
MD: molecular dynamics.
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