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Abstract 
Context: Children with X-linked hypophosphatemic (XLH) rickets have muscle weakness that severely impairs their function. Intermuscular and 
intramuscular adipose tissue (IMAT and intraMAT, respectively) may contribute to this muscle weakness.
Objective: This work aimed to compare IMAT and intraMAT in XLH children vs typically developing (TD) children.
Methods: A prospective, monocentric cohort study was conducted of XLH (n = 11; aged 10.3 years [6-17]) and TD children (n = 22; aged 10.2 
years [5-15.5]). All children underwent magnetic resonance imaging of the lower limbs; IMAT and intraMAT percentages were calculated 
after manual contouring of each muscle of the thigh and the deep fascia at mid-thigh level.
Results: XLH children were comparable in age but shorter and heavier than TD children (P= .001 and P= .03, respectively). They had smaller 
muscle length and volume than TD children (P< .001) but there was no statistically significant difference in muscle cross-sectional area 
between the groups (P= .833). The total percentage of IMAT was higher in XLH children (8.66% vs 3.60% in TD children; P< .0001). 
In addition, though the total percentage of intraMAT did not differ significantly (12.58% and 10.85% in XLH and TD children, respectively; 
P= .143) intraMAT was statistically significantly higher in XLH children than TD children in 4 of the 13 muscles studied.
Conclusion: Our results show that IMAT is higher in young children with XLH, independently of obesity and overweight. Further, these results 
will facilitate both the early prevention of functional and metabolic consequences of the increase in adipose tissue in XLH children.
Key Words: XLH rickets, IMAT, intraMAT, muscle weakness, MRI
Abbreviations: BMI, body mass index; CSA, cross-sectional area; CT, computed tomography; IMAT, intermuscular adipose tissue; intraMAT, intramuscular 
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X-linked hypophosphatemic (XLH) rickets is a rare condition 
with a prevalence of 3.0 (1.4-6.5) to 8.1 (5.8-11.4) per million 
in the most recent UK epidemiological study [1]. It is the result 
of a mutation in the PHEX gene and the main clinical features 
in children are the combination of bone abnormalities (rickets 
and lower limb deformities), dental abnormalities, and muscle 
weakness [2]. While the first 2 of these symptoms have already 
been the subject of many studies [3–6], very few have object-
ively studied the quantitative and qualitative characteristics of 
muscles in these patients.

In 2012, Veilleux et al [7] described evidence muscle ab-
normalities in children with XLH on peripheral quantitative 
computed tomography (CT) scans. A study of muscle com-
position (via quantitative CT) and function (via jump mecha-
nography) showed lower than normal muscle volume, 
density, and strength in the leg. Further, studies by Ducher 
et al [8] and Farr et al [9] suggest that the low muscle density 
and strength found in these XLH children are related to a 
high rate of intramuscular fat infiltration, highlighting the 
need for objective measurement of this type of adipose tissue. 

In 2020, our group reported on a cohort of 172 children 
with XLH (113 girls/59 boys) almost a third of whom 
were overweight or obese at as early as age 5 years and rec-
ommended careful monitoring of body mass index (BMI) in 
these patients [10].

Over the last decade, there has been growing interest in ec-
topic adiposity, especially that found in the lower limbs, 
known as intermuscular (IMAT, ie, beneath the deep fascia 
and between muscle groups) and intramuscular (intraMAT, 
ie, within and between muscle fibers). Ectopic fat is known 
not only to be predictive of metabolic disease such as insulin 
resistance [11–15], but also to be associated with decreased 
strength [16–19] and mobility impairment [20–23] and to 
have a direct role in muscle weakness [24, 25].

We describe a prospective analysis to quantify and compare 
muscle composition (IMAT and intraMAT) in XLH children 
vs typically developing (TD) children using magnetic reson-
ance imaging (MRI). We hypothesize that IMAT and/or 
intraMAT are higher in XLH children than in TD children 
and that this may help explain muscle weakness.
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Materials and Methods
Patients
A prospective, single-center, longitudinal cohort study was 
conducted at the Reference Center for Rare Disorders of the 
Calcium and Phosphate Metabolism, France. Patients diag-
nosed with XLH were included in the study and underwent 
an MRI scan if they met the following criteria: PHEX muta-
tion; aged between 5 and 17 years; treatment with convention-
al therapy or burosumab; ongoing bone growth; no history of 
lower limb surgery; and ability to remain motionless during 
MRI. Further, TD children aged between 5 and 17 years 
were included as controls applying the following exclusion 
criteria: any diagnosis of metabolic or muscle disease, any his-
tory of lower-limb surgery or long-term treatment; or high- 
performance athlete status.

In accordance with the Jardé law in France, the study was 
approved by the French Data Protection Authority (CNIL) 
and by the institutional review board (Comité de Protection 
des Personnes reference No. 2020-A01386-33). Written in-
formed consent was obtained from parents, along with assent 
from children (where appropriate).

Methods
Muscle MRI scans were performed in the Pediatric Radiology 
Department at Bicêtre Hospital (Le Kremlin-Bicêtre, France). 
The MRI was performed on a 3-Tesla whole-body scanner 
(Magetom Skyra, Siemens Healthcare) using a 24-channel 
spine matrix coil and three 4-channel flex coils from the 
same manufacturer. Image volume covered the pelvis and 
the limbs to the tip of the toes. The imaging protocol included 
a T1-weighted turbo spin-echo sequence for applying the 
Dixon method (repetition and echo times = 836 and 20 ms, 
field of view = 375 mm, voxel size = 1.0 × 1.0 × 5.0 mm, slice 
thickness = 5 mm, interslice gap = 10 mm). Water and fat im-
ages were automatically generated by the scanner. The pa-
tients were lying supine on the scanner bed with their 
ankles, knees, and hips in a neutral and relaxed position. No 
sedation or contrast injection was performed. The average ac-
quisition time was 30 minutes.

To identify intraMAT, muscles needed to be reconstructed 
in 3 dimensions using specific software (Arts et Métiers 
ParisTech), based on a discrete particle swarm optimization 
method [26]. Muscle belly contours were detected on the 
MRI slices (on the in-phase images) between the proximal 
and the distal muscle-tendon junctions and the 3-dimensional 
reconstruction was semiautomatic. The muscle-tendon junc-
tion was identified on the T1-sequence images as the level 
where muscle fibers (dark color) were no longer visible and 
the tendon became visible (light color). Muscle contours 
were approximated, and at the end, the operator verified 
each slice and adjusted the contour as appropriate. This tech-
nique has been previously described and validated [27, 28]. 
Muscle lengths and volumes were calculating using MATLAB.

The intraMAT fraction of each entire muscle was then cal-
culated using the following formula:

% Fat Fraction =
Fat intensity

Water intensity + Fat intensity 

To identify IMAT, the fascia was manually traced to separate 
the subcutaneous fat from the IMAT at the mid-thigh [29–31]. 
To minimize the risk of errors, IMAT was estimated by taking 

the mean over 5 slices: the slice at the middle of the femur (ie, 
between the femoral head and intercondylar notch) and the 2 
closest slices above and below it [31] (Fig. 1).

Statistical Analysis
For each of the parameters studied, the 2 populations were 
compared in MATLAB using the t or Wilcoxon– 
Mann-Whitney tests, depending on whether the correspond-
ing data were normally distributed. A correction for the 
multiple testing was applied. A P value of less than .05 was 
considered statistically significant. The normality of distribu-
tions was established using the Lilliefors test. Quantitative 
variables were described as means (± SD) and qualitative 
variables as numbers (percentages). We considered a value 
as normal when it falls within 1 SD of the mean value of 
the control group.

Results
Clinical Characteristics and Muscle Geometry at the 
Lower Limbs
We prospectively included 11 XLH children (5 boys and 6 
girls), with a mean age of 10.3 years (6-17 years); and a group 
of 22 TD volunteers (13 boys and 9 girls), with a mean age of 
10.3 years (5-15.5 years). Table 1 summarizes the clinical 
characteristics and muscle geometric parameters of partici-
pants. The ages of the XLH and TD children were comparable 
(P = .9); as expected, the XLH children were shorter and heav-
ier than the TD children (P < .0001 and P = .022, respective-
ly). In the lower limbs, XLH children had less muscle length 
and volume than TD children (P < .001); interestingly, how-
ever, muscle cross-sectional area (CSA) did not differ signifi-
cantly between the groups (P = .833).

Intermuscular Adipose Tissue
One child from the TD children group was excluded because 
of motion artifacts. The total percentage of IMAT was signifi-
cantly higher in XLH children (8.66% [±3.26] vs 3.60% 
[±1.29] in TD children; P < .0001). We plotted a range of nor-
mality of IMAT and the variability of IMAT in the XLH chil-
dren (Fig. 2): IMAT values were more than 2 SD above the 
mean for most XLH patients (82%; n = 9), 1 having IMAT 
values between 1 SD and 2 SD and only 1 having values within 
the range of normality.

A B

Figure 1. A, TD child; age 11 years. B, XLH child; age 10 years. 
Measurement of IMAT by manual tracing of the deep fascia at mid-thigh 
level. Green: deep fascia; red: external contour of the muscle. The inner 
and outer cortex were also traced. IMAT, intermuscular adipose tissue; 
TD, typically developing; XLH, X-linked hypophosphatemia.
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Intramuscular Adipose Tissue
Table 2 illustrates the results of intraMAT in the lower-limb 
muscles of both groups. Two children from the control group 
were excluded: one had motion artifacts, and one was consid-
ered an outlier (value > 3 times the total intraMAT value).

The total percentage of intraMAT was not statistically 
significantly different in XLH and TD children, with values 
of 12.58% [±4.12] and 10.85% [±1.69], respectively 
(P = .143). We plotted a range of normality of total 
intraMAT and the variability of total intraMAT in the XLH 
children (Fig. 3): Three XLH patients (27%) had values below 
the range of normality, another 3 (27%) had values within the 
range of normality, and 5 patients (46%) had values more 
than 2 SD above the mean.

On the other hand, intraMAT percentages were statistically 
significantly higher in XLH children than in TD children in 
specific muscles, namely, the gluteus maximus (P = .0056), 
the femoral biceps (P = .0314), the sartorius (P = .0097), and 
the gracilis (P = .0242) as shown in Fig. 4.

Table 3 illustrates the selectivity of the intraMAT depend-
ing on the CSA of some muscles. In XLH children, for each 
muscle infiltrated by a substantial amount of fat, the muscle 
CSA was smaller than that in the TD children group. After 
normalization by body weight, however, only the gluteus 
maximus, vastus medialis, and femoral biceps muscles were 
significantly more infiltrated in XLH children (P < .0001, 
P = .0011, and P = .0094, respectively).

Discussion
To our knowledge, this is the first study to objectively charac-
terize the amount of adipose tissue in the thigh in XLH pa-
tients. We show that XLH children have statistically 
significantly more IMAT and, in certain muscles, more 
intraMAT than TD children. Higher values of IMAT or 
intraMAT are nowadays known to be linked to muscle weak-
ness in healthy young adults, age-related muscle loss, and 

obesity [18, 24, 25, 32]. Our hypothesis that increased 
IMAT and/or intraMAT percentages may contributed to 
muscle impairment in XLH patients is therefore supported 
by our findings.

Muscle Composition in X-linked Hypophosphatemic 
Children
In this study, we found that XLH children have a significantly 
higher percentage of IMAT than TD children. The underlying 
cause of the accumulation of IMAT is not well understood 
[33, 34]. In XLH children, it might be related to significantly 
shorter muscle lengths and volumes. Indeed, IMAT is particu-
larly high in populations in whom muscle volume is decreased, 
such as people with age-related sarcopenia [22, 35] or spinal 
cord injury [13, 36, 37]. In 2017, Whitney et al [23] quantified 
muscle volume and adipose tissue volume of the mid-leg in 
children with mild spastic cerebral palsy compared to TD chil-
dren. In the paretic population, they observed a smaller 
muscle volume whereas the IMAT volume was significantly 
higher. That is, even though the origin of muscle volume de-
crease is not the same, our findings are similar to other re-
search in which muscle atrophy is observed.

In the case of intraMAT, the difference between the groups 
did not reach statistical significance, but there was a tendency 
to a higher total percentage in the XLH children compared to 
the TD children. In 2015, Akima et al [38] looked at the rela-
tionship between intraMAT and muscle CSA in adults and re-
ported that smaller skeletal muscle size could be associated 
with an accretion of intraMAT. These results are similar to 
those found by Ryan et al [39] in stroke survivors, in whom 
atrophy in the paretic thigh was related to fat infiltration of 
the muscles. The higher intraMAT percentages observed in 
our study could then be explained by the muscle atrophy 
found in XLH children. On the other hand, intraMAT showed 
muscle selectivity, similar to that already observed by Akima 
et al [38]. Specifically, 4 of the 13 muscles studied showed a 
significantly greater infiltration in XLH than in TD children. 
All 13 muscles had individually a shorter length and smaller 
volume, even after normalization by height and height × 
weight respectively, and the only variable parameter was the 
CSA. The 4 muscles with the greatest intraMAT had a smaller 
muscle CSA even if this did not reach statistical significance 
for all. Nonetheless, after normalization of the muscle CSA 
by body weight, only 3 muscles had a significantly lower 
muscle CSA/body weight ratio in cm²·kg−1. These findings 
confirmed the muscle selectivity of intraMAT, without identi-
fying the exact mechanism.

Correlation Between Muscle Composition and 
Muscle Function in X-linked Hypophosphatemic 
Children
XLH children are known to have muscle weakness, mostly il-
lustrated with an impaired 6-minute walking test [40–42], 
even if this test has many biases such as preparation, instruc-
tions, and encouragement. However, Veilleux et al [7] have 
objectively reported an alteration in muscle function of the 
lower leg in XLH population thanks to the mechanography 
of the jump. Specifically, they observed that both eccentric 
(multiple 1- and 2-legged hopping) and concentric (heel-rise 
test, chair-rise test) contractions as well as the stretch- 
shortening cycle (single 2-legged jump) were affected in 
XLH children.

Table 1. Clinical characteristics and muscle geometric parameters in 
X-linked hypophosphatemia children and typically developing 
children

XLH (n = 11)  
( ± SD)

TD (n = 22)  
( ± SD)

P

Clinical characteristics

- Age, y 10.32 (±3.1) 10.34 (±3.0) .9

- Height, cm 126.69 (±15.2) 143.75 (±16.4) .001

- Height (SD) −1.71 (±1.03) 1.28 (±1.03) <.001

- Weight, kg 31.6 (±10.3) 37.1 (±13.8) .03

- Weight (SD) 0.96 (±1.05) −0.16 (±1.62) .02

- BMI 
Geometric parameters 

of lower limb 
muscles

19.2 (±2.5) 17.3 (±3.0) .01

- Length, mm 184 (±9.5) 244 (±12.0) <.001

- CSA, mm² 1097 (±853) 1292 (±1013) .83

- Volume, mm3 123 105 (±96 442) 180 840 (±133 203) <.001

Values are presented as mean ( ± SD). In bold, P < .05. 
Abbreviations: BMI, body mass index; CSA, cross-sectional area; TD, 
typically developing; XLH, X-linked hypophosphatemia.
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The novelty of this study is the possible involvement of IMAT 
in muscle weakness in XLH children. In 2007, Manini et al [18] 
found a greater increase in IMAT than loss in muscle volume in 
healthy adults after 1 month of physical inactivity. Further, 
they observed that the increase in IMAT accounted for 4% to 
6% of the loss of muscle strength and concluded that IMAT con-
tributed to muscle weakness. These observations were confirmed 
in 2009 by Delmonico et al [32], who found a greater muscle 
strength decrease than muscle mass loss correlated with an in-
crease in IMAT. These results suggest that the muscle weakness 
observed in XLH children is not explained solely by the shorter 
length and smaller volume of their muscles. Even if there was a 
smaller muscle volume in our XLH children than in the TD chil-
dren that could partly explain muscle weakness, the total percent-
age of IMAT in our study was twice as high in the XLH 
population. We therefore propose that IMAT may be a cause 
of muscle weakness in XLH children.

IntraMAT may also be involved in muscle weakness in 
XLH population. As mentioned, Veilleux et al [7] found 

XLH patients to have significantly lower muscle function. 
They also found, using peripheral quantitative CT, a signifi-
cantly lower muscle density than controls, reflecting a higher 
level of fat infiltration in their lower legs. Their results sug-
gested an implication of the intraMAT in muscle weakness. 
As noted earlier, the total percentage of intraMAT did not dif-
fer significantly between the groups in our study, though val-
ues tended to be higher in the XLH children. It is possible that 
our results differ from those of Veilleux and colleagues [7] and 
did not reach statistical significance because of the relatively 
small number of XLH patients in our sample, the anatomic re-
gion studied (thigh vs calf), or in particular, the younger age of 
our population of XLH patients (10.3 [6-17] vs 23.8 [6-60] 
years), knowing that the intraMAT percentage increases 
physiologically with age. Notably, the composition of 
intraMAT itself may be of importance in muscle weakness, 
intraMAT being the adipose tissue between and within muscle 
fibers. In 2016, Akima et al [43] reported that only the extra-
myocellular lipid portion of the intraMAT is visible by MRI, 
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Figure 2. Variability of IMAT in XLH children in comparison with the range of normality defined by the TD child group. IMAT, intermuscular adipose tissue; 
TD, typically developing; XLH, X-linked hypophosphatemia.

Table 2. Intramuscular adipose tissue percentage in thigh muscles

% ( ± SD)

XLH (n = 11) TD (n = 20) P

Thigh muscles 12.58 (±4.12) 10.85 (±1.69) .14

Gluteus maximus 18.15 (±6.83) 13.66 (±3.33) .006

Gluteus medius and minimus 14.24 (±4.50) 12.23 (±1.97) .83

Rectus femoris 9.44 (±2.99) 9.90 (±1.92) >.99

Vastus medialis 11.02 (±4.91) 8.03 (±1.32) .23

Vastus intermedius 8.59 (±3.97) 6.86 (±1.10) .83

Vastus lateralis 9.89 (±4.18) 8.60 (±1.89) >.99

Femoral biceps 14.19 (±4.71) 10.32 (±1.72) .03

Semimembranosus 11.07 (±3.85) 10.22 (±1.99) .99

Semitendinosus 10.82 (±3.72) 8.69 (±2.35) .91

Sartorius 19.55 (±6.77) 15.25 (±2.7) .01

Tensor fasciae latae 14.84 (±6.04) 14.86 (±3.83) >.99

Adductor 10.92 (±3.52) 10.20 (±1.93) >.99

Gracilis 17.10 (±5.96) 13.13 (±3.42) .02

In bold, P < .05. 
Abbreviations: TD, typically developing; XLH, X-linked hypophosphatemia.
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whereas magnetic resonance spectroscopy is needed to meas-
ure the intramyocellular lipid (IMCL) portion [44, 45]. 
Furthermore, animal studies [24, 25] have indicated that it 
is IMCLs that impact muscle contraction. Our study may be 
limited by the use of MRI reflecting above all the intraMAT 
containing extramyocellular lipids; hence, further studies 
may be necessary to evaluate the link between IMCL and 
muscle weakness in XLH.

Effect of Increased Adipose Tissue in X-linked 
Hypophosphatemic Rickets
Today, IMAT and intraMAT are studied in many diseases 
[46–49]. They have shown to be a metabolic risk factor 
[13, 15, 23, 39, 50] and are strongly related to insulin resist-
ance [10, 11, 13, 47–50]. We have previously reported that 
XLH children have a statistically significant risk of being over-
weight or obese as early as age 5 years [10]. We report here lar-
ger amounts of muscular adipose tissue after adjusting for 
weight and compared to TD children, suggesting that XLH 
patients may have an elevated metabolic risk very early in life.

Based on the results of our study, we strongly recommend 
the prevention and monitoring of metabolic syndrome in 
XLH patients. It may be of interest to seek to decrease both 

IMAT and intraMAT percentages. In 2007, Prior et al [14] re-
ported that aerobic exercise training and weight loss induced 
an improvement in glucose tolerance that correlated with a de-
crease in intraMAT in older men. Further, Goodpaster et al 
[51] found that physical activity prevents increases in IMAT 
percentage in older individuals, and this was confirmed in an-
other study by Marcus et al [52], who reported that resistance 
training decreases IMAT in older adults with metabolic disor-
ders. By analogy, a recommendation of physical activity could 
be made to XLH children to prevent the accumulation of 
IMAT and intraMAT, and limit muscle weakness.

Our study has several limits. First, due to the rarity of the 
disease, the number of patients with XLH included (n = 11) 
was relatively small with a wide age range (6-17), this limiting 
the statistical power of the study. In addition, patients with a 
history of surgery of the lower limbs, although likely the most 
severely affected, were not eligible for our study and this pre-
vented the analysis of the full spectrum of the disease. 
Controls were matched for age, but not for other demographic 
data, particularly BMI. Indeed, XLH rickets is a condition 
that markedly affects patients’ height and weight; this means 
we could not recruit TD children age, height, and BMI 
matched to the children in our XLH cohort. Finally, we are 
aware that a link between muscle composition and muscle 
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Figure 3. Variability of total intraMAT in XLH children in comparison with the range of normality defined by the TD child group. intraMAT, intramuscular 
adipose tissue; TD, typically developing; XLH, X-linked hypophosphatemia.
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Figure 4. Muscle selectivity of the intraMAT. A, adductor; FB, femoral biceps; G, gracilis; GM, gluteus maximus; Gmed/min, gluteus medius and 
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function would be an important insight into the pathophysi-
ology of XLH muscle impairment; this work is in progress.

Conclusion
We propose that a high IMAT percentage contributes to 
muscle weakness in XLH children independently of their over-
weight/obesity status. Further explorations of intraMAT are 
necessary to demonstrate its involvement in muscle weakness 
in this disease. Since the accumulation of adipose tissue in 
muscle is associated with adverse metabolic outcomes in 
many conditions, we recommend preventing or minimizing 
the accumulation of such tissue by promoting physical activity 
as early as in childhood in XLH.
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