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Abstract: Working memory (WM) plays an important role in cognitive activity. The WM system is
used to temporarily store information in learning and decision-making. WM always functions in
many aspects of daily life, such as the short-term memory of words, cell phone verification codes,
and cell phone numbers. In young adults, studies have shown that a central memory store is limited
to three to five meaningful items. Little is known about how WM functions at the microscopic neural
level, but appropriate neural network computational models can help us gain a better understanding
of it. In this study, we attempt to design a microscopic neural network model to explain the internal
mechanism of WM. The performance of existing positive feedback models depends on the parameters
of a synapse. We use a negative-derivative feedback mechanism to counteract the drift in persistent
activity, making the hybrid positive and negative-derivative feedback (HPNF) model more robust
to common disturbances. To fulfill the mechanism of WM at the neural circuit level, we construct
two main neural networks based on the HPNF model: a memory-storage sub-network (the memory-
storage sub-network is composed of several sets of neurons, so we call it “SET network”, or “SET” for
short) with positive feedback and negative-derivative feedback and a storage distribution network
(SDN) designed by combining SET for memory item storage and memory updating. The SET network
is a neural information self-sustaining mechanism, which is robust to common disturbances; the SDN
constructs a storage distribution network at the neural circuit level; the experimental results show
that our network can fulfill the storage, association, updating, and forgetting of information at the
level of neural circuits, and it can work in different individuals with little change in parameters.

Keywords: working memory; neural network; computational model; hybrid positive and negative-
derivative feedback; memory forgetting

1. Introduction

Working memory (WM) has the ability to store information “online” during cognitive
processing, forming the essential foundation of cognitive activity. WM is an indispensable
part of working and daily living [1–5]. The construction of a storage system of working
memory needs to pay attention to four characteristics [6]. First, the storage system should
have states that can persist briefly over time; second, it should contain sufficient capacity;
and third, the states should be robust to noise, while the stored memory should not be
severely disturbed. Finally, the stored memory should be able to be retrieved correctly if a
relevant hint is given.

There have been many studies on WM. Compte et al. [7] created the recurrent net-
work model to sustain the persistent neural activity associated with WM. They proposed
a “ring” model in which neurons of the model cover all the angles uniformly along a
circle. Therefore, the cells are spatially distributed on a ring. This model achieved notable
success in simulating persistent activity related to visuospatial WM (vs. WM). However,
little attention has been paid to the heterogeneities in network topology and long-range
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connections. Rolls et al. [8] proposed a model that can hold multiple items in its mem-
ory. They emphasized the importance of inhibitory synaptics in the success of the model.
However, the parameters of the model need perfect tuning, which means the parameters
of this model do not well simulate the ordering of memory in the human brain, so it
cannot remember the order of memory. Additionally, the model does not have the ability
to update WM. Kriete et al. [9] proposed a variable binding model. When we are faced
with arbitrary instructions, we are able to understand and follow them with remarkable
ease. It has been argued that this ability is related closely related to symbol processing,
which depends critically on the ability to represent variables and binding them to arbitrary
values. In the variable binding model, a given population of neurons is assumed to encode
a particular type of information, and different patterns of activity correspond to different
possible contents of each type. This model can save a pattern’s encoding and its location
in a different part of the prefrontal cortex. They used the variable binding mechanism
to increase the flexibility of the network, but they did not describe how the pattern and
location bound together or how to update memory when the WM was full. Furthermore,
these models have strict requirements on the parameters of the network, which means a
slight change will have a great impact on network performance.

Cortical neurons receive massive amounts of excitation and inhibition [10–14], and the
pathways between pyramidal cells have slower kinetics than the pathways from pyramidal
cells to interneurons [15–17]. The negative-derivative feedback mechanism can inhibit pyra-
midal cells and interneurons. Hence, it can counteract drift in persistent neural activity [18].
There has been some research on working memory regarding how interacting neurons im-
plement the basic components of cognition; integrating these basic components to simulate
more complex cognitive processes has become equally urgent and important [19]. Allen
Newell believes that cognitive hypothesis testing needs to be supplemented by building
a comprehensive computational model of task execution [20–22]. We try to describe the
meaning of our work by comparing the process of memory management in computer
operating systems with the process of working memory in the human brain (Table 1).

Table 1. Comparison between the process of memory management in computer operating system
and the process of working memory in the human brain.

Operating System Human Brain

(1) When the program is running, the operating
system needs to allocate memory space in the
memory. The memory space takes the block as
the basic storage unit. When the process is
executing, it applies to the block space in the
memory one by one.
(2) If there is no target data in the memory,
the operating system will schedule the
required data block from the hard disk and put
it into the memory block.
(3) If there is no memory space for storing data,
it will use the scheduling algorithm to replace
the certain data stored by some previous
processes.

(1) The human brain needs to temporarily store
each memory item in the process of working
memory. The memory items are stored in the
hippocampus of the brain [23]. Understanding
the interactions between the major cellular
constituents of cortical circuits—pyramidal
cells and inhibitory neurons—is considered a
necessary step in unraveling the cellular
mechanisms subserving working memory
mechanisms and, ultimately, cognitive
processes [24].
(2) In the process of working memory in the
human brain, little is known about the
structure of a single memory item stored in the
hippocampus at the neural circuit level.
(3) It has recently been proposed that working
memory might better be conceptualized as a
limited resource that is distributed flexibly
among all items to be stored in memory [25].
At the neural circuit level, little is known about
how the hippocampus distributes multiple
memory items to multiple neurons (groups).
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2. Materials and Methods
2.1. Hybrid Positive and Negative-Derivative Feedback

The essence of WM is the temporary sustaining of information, which is achieved
by cortical neural circuits and requires the basic functional units of cortical neurons [26].
From a biophysical point of view, individual neurons are inherently “forgetful” as a result
of the rapid leakage of electrical current from the cell membrane. If a memory storage unit
includes a circuit of positive feedback, this circuit can accurately replace the leakage current
(Figure 1a). In theory, this activity could continue indefinitely. However, if the synaptic
strength of the positive feedback is too strong or too weak, neuronal activity rises or falls
rapidly until it saturates or quiets at a baseline level (resting state). Therefore, the positive
feedback model [18] needs to accurately adjust the level of feedback and maintain the
sensitivity to common disturbances.

Figure 1. Comparison of different models. The solid red line is an inhibitory connection, and the solid
black line is an excitatory connection. (a) The positive feedback model can maintain the continuous
activity of neurons. (b) The negative-derivative feedback model can offset the drift of the neuron
state to a certain extent. (c) Hybrid positive and negative-derivative feedback model (HPNF).

According to the positive feedback model in Figure 1a, a single neuron cannot sustain
information in a short period of time. The latest research on the frontal cortex circuit
reports the difference in the dynamics of excitatory pathways between excitatory and
inhibitory neurons [18,27,28]. The excitatory-to-excitatory connection is usually associated
with positive feedback and has relatively slow dynamics due to a large amount of slow
NMDA (N-methyl-D-aspartic acid) conduction. The excitatory-to-inhibitory connection is
necessary to drive negative feedback, and it is relatively fast. The characteristics of these
two connections naturally lead to a corrective, negative-derivative form of feedback that
counteracts drift in sustained activity [18] (Figure 1b). Negative-derivative feedback can
complement positive feedback by the opposite drift caused by the imperfect adjustment of
the positive feedback (Figure 1c). We use mathematical models to explain.

2.1.1. Positive Feedback

This equation describes the positive-feedback model, where τ denotes the intrinsic
time constant that receives a transient input I(t) to be stored in memory. Wpos is the synaptic
strength of positive feedback, and the memory storage unit should exhibit only very slow
changes dr in its firing rate r. The positive-feedback model maintains persistent firing with
a continuous feedback current. The model becomes balanced when the feedback is just
right (Wpos = 1). However, if the feedback is too low (Wpos < 1), the memory activity decays
to a baseline level. Similarly, if the feedback is too large (Wpos > 1), the memory activity
grows exponentially on a timescale set by the intrinsic time constant τ [18].

τ
dr
dt

= −
(
1−Wpos

)
r + I(t). (1)

2.1.2. Negative-Derivative Feedback

Equations (2) and (3) describe the negative-derivative feedback model, where τ de-
notes the intrinsic time constant that receives a transient input I(t) to be stored in memory.
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Wpos is the synaptic strength of positive feedback, Wder is the synaptic strength of nega-
tive feedback, rE is the firing rate of excitatory neurons, rI is the firing rate of inhibitory
neurons. The negative-derivative feedback mechanism is based on the fact that excitatory
and inhibitory inputs are equal in aggregates in cortical neurons and that pyramidal-
to-pyramid and pyramidal-to-interneuron connections have different dynamics. Using
Equations (2) and (3), and performing a simple subtraction, we obtain Figure 2, which
describes why we call Figure 1b a negative-derivative feedback.

τ
drE
dt

= −WposrE + I(t). (2)

τ
drI
dt

= −WderrI + I(t). (3)

Figure 2. Firing rate experiment of negative-derivative feedback.

2.1.3. Hybrid Positive and Negative-Derivative Feedback

Considering the simple mathematical model described above, in order to successfully
remember the offset after this input, the memory storage unit should only show a very slow
change dr/dt in its firing rate r(t). This requires a positive feedback of the synaptic strength
Wpos and a negative-derivative feedback of the synaptic strength Wder to counteract its
inherent leakage of current. Combined with the positive feedback model, we obtain the
following formula:

τ
dr
dt

= −r + Wposr−Wder
dr
dt

+ I(t). (4)

We use positive feedback and negative-derivative feedback together to construct
a hybrid positive and negative-derivative feedback (HPNF) model. The HPNF model
solves the problem of poor stability in the positive feedback model. The HPNF model can
resolve the problem of drift and leakage in neural activity. Positive feedback can offset the
leakage of currents, and negative-derivative feedback can counteract drift in persisting
activity caused by the deviation of positive feedback (Figure 1c). To remember the input,
the memory storage unit should exhibit only very slow changes in its firing rate, which
requires intrinsic leakage of current [18]. The HPNF model can maintain neural activity for
a while because it is robust to common perturbations.
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Next, we design a more robust network based on the HPNF model. We use neurons
and the neural circuits they constitute to fulfill the self-sustaining information [29,30]. Then,
we use the HPNF model to construct a memory-storage sub-network (SET).

2.2. Memory-Storage Sub-Network Based on HPNF Model—SET Network

The SET network is used to implement the self-sustaining mechanism of neural
information, which is connected by multiple HPNF networks (Figure 3). Furthermore,
it uses the neural information self-sustaining mechanism to achieve short-term storage
of WM. In order to clearly explain the choice of the number of HPNF networks and the
reason for the choice, we use the mean field model as the computational model to calculate
the mean firing rate of the neuron population, and we conduct a series of experiments in
Section 2.2.2.

Figure 3. The SET network uses an HPNF model as a neural signal self-sustaining unit (NSSU).
Triangles represent excitatory neurons (pyramidal cells, etc.) and circles represent inhibitory neurons
(interneurons, etc.). The NSSU is divided into two types: basic unit and backup unit. The topology of
the basic unit (backup unit) is identical to that of Figure 1c (HPNF). The difference between the basic
unit and the backup unit is that the content stored in the backup unit is the backup in the basic unit.

Based on the research of Rombouts et al., we can make neurons learn to linearly store
task-related information. During the learning process, these neurons are associated with
different characteristics of an object and represent them with continuous activity during
the memory delay [31]. Therefore, we can use the firing rate to express WM, such as in
the mean field model. As a result, our model can use different units to process different
characteristics of objects. Similarly, visual signals and auditory signals correspond to
different processing circuits. This fits Baddeley’s WM model [32].

2.2.1. Mean Field Model

We use the mean field model to describe the mean firing rate of one pyramidal cell
group or one interneuron group. In the firing-rate model, E represents pyramidal cells,
I represents intermediate neurons, rE and rI denote the mean firing rates of the element
E and element I, and the synaptic state variables sij denote the connection from element
i to element j. These firing rate and synaptic state variables are governed by the below
equations:

τE
drE
dt

= −rE + f (JEEsEE − JEIsEI + JEOi(t)) (5)

τI
drI
dt

= −rI + f (JIEsIE − JI IsI I) (6)

τij
dsij

dt
= −sij + rj, f or i, j = E or I (7)

where τi denotes the element i’s intrinsic time constant, Jij represents the synaptic connec-
tivity strength from element i to element j, i(t) denotes the external stimulus current and
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noise, and f(x) represents the steady-state neuronal response to input current x and has the
following Naka–Rushton form [33]:

f (x) = M
(x− xθ)

2

x2
0 + (x− x0)

2 h(x− xθ) (8)

where M represents the maximal neuronal response, xθ denotes the input threshold, x0
denotes the half-activation parameter, and h(x) represents the Heaviside step function.
Throughout our study, the maximal response M = 100, the input threshold, xθ = 30,
and the half-activation parameter x0 = 30. The parameters for the time constant are
assigned as follows: τE = 20 ms, τI = 10 ms, τEE = 100 ms, τEI = 25 ms, and τIE = τI I = 10 ms.
The parameters for the synaptic connectivity are assigned as follows: JEE = 300, JEI = 450,
JIE = 900, JI I = 900, when x = y, it represents a connection inside the HPNF model; JEE= 150,
JEI = 300, JIE = 600, JI I = 600, when x 6= y it represents a connection between different
HPNF models; other JEO = 0–6000.

2.2.2. Reasons for Choosing the Number of NSSU (NEURAL Signal Self-Sustaining Unit)

The SET network uses an HPNF model as its NSSU. We use the mean field model to
simulate the average firing rate of the SET network. After a series of experiments intended
to compare eleven combinations of NSSUs, we find that the combination of eight NSSUs is
the optimal choice.

In Figure 4, we measure the robustness of eight or nine NSSUs to noise interference.
As shown in Figures 4 and 5, it is more appropriate for the model to select eight NSSUs
to form the entire memory circuit because the combination of eight NSSUs is the most
stable. When the number of NSSUs is less than eight, the entire model will not stabilize in
the end (Figure 5); when the number of NSSUs is greater than eight, the robustness of the
entire model is not significantly improved (Figure 4), but the computational complexity
will rise sharply. The SET network is composed of eight NSSUs. The fifth NSSU is called
the basic unit, and the rest are called the backup units. The NSSUs can fulfill the storage of
memory. The parallel connection of multiple NSSUs increases the robustness of the model
and conducts redundant backup on the memory signals. The parallel connection of eight
NSSUs is the most efficient.

2.3. Storage Distribution Network (SDN)

In Sections 2.1 and 2.2, we describe the structure of the HPNF model and SET. In order
to fulfill the storage and distribution process of memory items, we construct a storage
distribution network (SDN) at the neural network level based on SET. SDN provides a
possible explanation for the forgetting of WM at the microscopic neural network level.

2.3.1. FIFO Mechanism

It is believed that the forgetting of the working memory in the human brain is due
to “interference” [34]. In other words, the new memory covers the weaker old memory.
However, we know very little about the detailed implementation of the mechanism at
the neural network level. We try to use the FIFO mechanism to explain the forgetting of
working memory. First input first output (FIFO) is the first in first out queue. We use the
idea of FIFO to store memory items in order. The first incoming storage signal is the first to
become weak and be replaced. We built SDN, which uses SET composed of pyramidal cells
and interneurons as the “container” for storing memory. SDN follows the FIFO principle.

2.3.2. Implementation of Storage Distribution Network at the Neural Circuit Level

The central memory store is limited to three to five meaningful items in young
adults [2–4]. To facilitate the understanding of SDN (Figure 6), we give the first four
simple memory items to stimulate the process from E00 entering the network to the first
four memory items being stored in the SET. When four stimulation signals enter the SDN,
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Figures 7–11 show the state changes of excitatory (green) neurons and inhibitory (red)
neurons. Gray means that the neurons are in a resting state and do not participate in
network activity during this period.

Figure 4. (a) Firing rate of 8–9 NSSUs when adding a maximum intensity of 5% JEE disturbance
within a time range of 2%. (b) Firing rate of 8–9 NSSUs when adding a maximum intensity of 5%
JIE disturbance within a time range of 2%. (c) Firing rate of 8–9 NSSUs when adding a maximum
intensity of 5% JEI disturbance within a time range of 2%. (d) Firing rate of 8–9 NSSUs when adding
a maximum intensity of 5% JI I disturbance within a time range of 2%. The robustness of 8 NSSUs
and 9 NSSUs is basically the same, but the computational complexity of 9 NSSUs is higher. This
figure demonstrates that 8 NSSUs are the most suitable for this model.

In the network, the memory-storage sub-network can at most store four items with the
assistance of SDN. When people want to remember a new item, the human brain will split
the item into multiple features and form a control signal for each feature. In our model,
one SDN stores one characteristic. Therefore, we try using multiple SDNs to distribute
multiple features to complete the process of remembering and forgetting new information.
When it is necessary to memorize multiple features, such as the size and color of an object,
the differences among the features will be relatively large, and the stimulus intensity
received by the neuron will also vary significantly. SDN can distribute new stimuli to
the proper SET. In the HPNF model, the new memory can update the old memory. SDN
directly selects an idle SET for storage. When we observe an object repeatedly, the same
characteristic signal is transmitted to SDN, and SDN selects the SET in which the memory
was originally stored. In this way, the firing rate of SET is updated, and its stored memory
is enhanced due to memory retelling.
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Figure 5. (a) Comparison of 2–12 NSSUs. The meaning of “time steps”: steps represent the number
of iteration steps of the ordinary differential equation in the mean field model. The firing rate is
related to time, so we call it “time steps”. After many experiments on the computer, we obtained
the optimal number of NSSUs that can be included in the SET. Compared with the combination of
8 NSSUs, the average firing rates of the combination of 2–3 NSSUs show a steady trend. (b) When
the number of NSSUs increases to 4–8, the average firing rates will not stabilize until the number
of NSSUs increases to eight. (c) The firing rate of 8–12 NSSUs. The firing rates show a steady trend.
However, the differences among them in the dynamic equation are very small.

Figure 12 shows two possible situations when a new memory item comes in. One is
that there is a free set to store the new item (Figure 12a), so the SDN chooses the free set to
store memory (Figure 12b). The other situation is that all SETs in the SDN store memory,
and set A stores the earliest memory in the selector circuit (Figure 12c). Therefore, set A
has the lowest firing rate in the SDN. The SDN deletes the old memory stored in set A and
then updates set A with the new memory (Figure 12d).
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Figure 6. A storage distribution network implemented by pyramidal cells and interneurons. Light
red indicates the inhibitory connection of interneurons to interneurons, and dark red indicates the
inhibitory connection of interneurons to pyramidal cells. Pyramidal cells are a type of excitatory
neurons, so “(E00, E11, E12. . . )” are used as the abbreviations for pyramidal cells. Interneurons are a
type of inhibitory neurons, so “(I11, I12, . . . )” are used as the abbreviations for interneurons.“set” in
the paper is the same as “SET”. In the absence of interference, we use the FIFO principle to explain
the forgetting of working memory. The network fulfills the forgetting of memory over time at the
neural network level and reveals the process of the storage of memory and replacement of multiple
memory items at the neural network level.
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Figure 7. The activity of neurons in the time period from the first signal entering E00 to the activation
of E12 (before set11 is activated). After the signal reaches E11, I11 is activated. At this time, E22 also
has a signal. However, the inhibitory signal intensity from I11 is greater than the excitatory signal
intensity, so E22 is inhibited. Similarly, E32 and E42 are also inhibited; this ensures that the “winner
takes all”.
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Figure 8. The activity of neurons in the time period from the activation of set11 by the first signal to
the activation of E23 by the second signal (before set21 is activated). After the signal enters E12, set11
and I12 are activated, and set11 performs information storage. I12 inhibits I11, which eliminates the
influence of I11 on other pyramidal neurons when the second signal enters. The suppression of E12
by I12 increases the difficulty of replacing set11 when other SETs are not activated. After the second
signal enters, the E11 branch has been locked, but the latter branch is still open and can be used for
storage. E22 activates I21, and I21 is used to inhibit E33 and E43.
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Figure 9. The activity of neurons in the time period from the activation of set21 by the second signal
to the activation of E34 by the third signal (before set31 is activated). When E23 is activated, I22
inhibits I11 and I21. This prevents the next signal from entering the E11 branch and E21 branch to
affect E31 and E41. The suppression of E12 and E23 by I22 increases the difficulty for set11 and set21
to be activated when set31 and set41 are not activated. After the third signal enters, at this time,
the E11 and E21 branches have been locked, but the latter branches are still open and can be used for
storage. E33 activates I31, and I31 is used to inhibit E44.
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Figure 10. The activity of neurons in the time period from the activation of set31 by the third signal
to the activation of E45 by the fourth signal (before set41 is activated). When E34 is activated, I32
inhibits I11, I21, and I31. E12, E23, and E34 have the same effects as Figures 8 and 9.
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Figure 11. The activity of neurons in the time period from the activation of set41 by the fourth signal
to the activation of E11 by the fifth signal (before E12 is activated). After the fourth signal enters,
when E45 is activated, I41 inhibits I21, I31, E23, E34, and E45. All neurons in the E11 unit are not
inhibited at this time. When the fifth signal is reached, repeat (Figure 7).
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Figure 12. Memory update. If there is a free set (a), SDN chooses the free set to store new memory (b).
If there is no free set (c), SDN updates the set that has the lowest firing rate in the SDN (d).

3. Results

In experiments A, B, C, and D, we use electrical signals to simulate the stimulus in
human brains, which convert the neural firing rates into more intuitive results. The SDN
selects different SETs according to the features of the object. Each SET stores different
features of an object, such as the number in Experiment B, the letter in Experiment C,
or the color and shape in Experiment D. We use the firing rate of pyramidal cells in SET
to represent the memory stored in the cerebral cortex. The firing rate of SET gradually
decreases over time, and the memory also becomes blurred. Therefore, the probability of
successfully recalling the object‘s features decreases gradually. When the firing rate of SET
drops to a certain threshold, it means total forgetting of WM.

Our model duplicated the results of the oculomotor delayed-response task experi-
ment [4], limited-hold memory task experiment [35], encoding and immediate recall of a
word list [36], feature association experiment [37], and serial-position effect experiment [38].
The results of the SDN in our experiments obtain the same trend as the above experiments.

3.1. Experiment Study A

In Experiment A, we compare the SDN’s performance to a monkey’s oculomotor
delayed-responses recorded in a 1989 study by Funahashi [4]. The results are shown in
Figure 13. At the outset of Funahashi’s trials, each monkey’s eye position was controlled
so that it remained gazing at the central spot of a computer monitor. After a brief visual
stimulus flashed, there were delay and response periods. During the response period,
the central spot disappeared, and then each monkey was allowed to move its eyes freely.
The room was dark, and there was nothing shown on the monitor. Funahashi recorded
whether the monkey would move its eyes back to the position where the previous visual
stimulus had flashed. Different neurons represented different visual positions. Funahashi’s
results showed that WM is closely linked to the dorsolateral prefrontal cortex, and many
neurons engage in persistent activity to help recall memory.

Figure 13a shows that the monkey’s level of recall accuracy varied for different delay
periods. Soon after receiving a stimulus, the monkey could clearly recall the position of the
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flash. As time went on, the monkey’s memory became increasingly confused, until it finally
forgot the position of the flash. We use the SDN to simulate the experiment (Figure 13b,c).
The model’s distribution of the firing rates of different components was largest during the
response period. The firing rates between different components became closer over time.
Figure 13b shows more intuitive results of the firing rate. In this experiment, the HPNF
model can sustain the memory’s existence. When time goes on, memories will be forgotten
as the firing rate decreases. These results have the same trend as the results of the monkey
in Funahashi’s study.

Figure 13. Oculomotor delayed response task experiment on a monkey and the stimulation results of
SDN. (a) Experimental data from Funahashi et al. using a monkey’s oculomotor delayed-response
task. (b,c) SDN simulation results.

3.2. Experiment Study B

We compare the results generated by SDN with the WM study findings of Inoue and
Matsuzawa [35], who developed a test called the “limited hold memory task” to compare
the WM of chimpanzees and humans. In this test, the numbers 1 to 9 were displayed for a
limited time on a touchscreen monitor according to an arrangement shown in Figure 14.
The numbers were covered by white squares after the display time was up. Figure 14A
shows a chimpanzee, which they had trained to perform well at the task. The chimpanzee
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performed better than humans in touching the white squares in the original numerical
order. The results of our SDN can associate the numbers with their positions. The model’s
simulation is consistent with the results of Inoue and Matsuzawa’s experiment (Figure 15).

Figure 14. Chimpanzee Ayumu performing the limited-hold memory task. (A) Ayumu touches the
first number. (B) The remaining numbers are covered by white squares.

Figure 15. Comparison of SDN and chimpanzees in a limited hold memory task. (a) The results of
Inoue and Matsuzawa’s chimpanzees in the limited-hold memory task. (b) Our model’s simulation
during the 210 ms hold time.

3.3. Experiment Study C

We compare the results of SDN to those of humans in a test administered by
Kusak et al. [36]. They showed participants 90 consonant sequences constructed with
three to eight characters. Each sequence length appeared with the same probability pseudo-
random selection. Each character appeared for 200 ms on the screen, and then the screen
remained blank for 800 ms. After the last consonant of a sequence, the participants were
instructed to reproduce the last three characters in the order of presentation (Figure 16).
Figure 17 compares the results of Kusak et al. and the SDN’s simulation. SDN successfully
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associates the characters with their positions in the sequences, and it also updates old mem-
ories with new memories. The results of SDN are consistent with the results of humans in
Kusak et al.’s experiment.

Figure 16. Time course of stimulus presentation. Adapted from [39]. Every character, including
the fixation cross, was shown for 200 ms, followed by a blank screen for 800 ms. When ‘Enter’ was
pushed, the input screen was replaced by the following blank screen of 1000 ms duration.

Figure 17. Comparison of the results of SDN and humans in a test devised by Kusak et al. (a) The
results of Kusak et al.’s experiment. (b) Our model simulation results.

3.4. Experiment Study D

We compare the results generated by our model to the findings of Wheeler and
Treisman’s study [37]. In Wheeler and Treisman’s study, in each trial, the sequence of
displays was as follows: A small, black warning cross was presented at the center of the
screen for 506 ms. This was followed by a blank screen for 253 ms, which was followed by
an initial display of squares flashed for 147 ms, then by a 906-ms blank interval. Finally,
there was a test display that remained present until a response was made. The participants
indicated by a keypress whether the whole display was the same or different from the
initial display. Experiments had four different kinds of changes:

(1) Color only: Participants were told that only the color of items could be changed.
In different trials of the test, the same shapes were present, but two items had changed
to two new colors. These colors were not previously presented in the initial display.

(2) Shape only: Participants were told that only the shape of items could be changed.
In different trials of the test, the same colors were present, but two items had changed
to two new shapes. These colors were not previously presented in the initial display.

(3) Either shape or color: Participants were told that either the color or the shape of items
could be changed. Half the trials were shape trials in which two squares changed
to two new shapes. Half the trials were color trials in which two new colors were
presented. These color and shape trials were randomly intermixed with no indication
of which type of information would be probed until the test.
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(4) Binding shape and color: All the same colors and shapes were presented. However,
in different trials, the binding, that is, the relationship between color and shape,
changed for two items. In effect, two shapes switched their colors or shapes with
each other.

Figure 18 shows the results of Wheeler and Treisman’s experiment and our model’s
simulation. SDN can associate the specified features in this experiment. It exhibits the same
trend as the humans in Wheeler and Treisman’s experiment.

Figure 18. The results of Wheeler and Treisman’s experiment and our model’s simulation results.

3.5. Experiment Study E

We compare the results of the SDN with the results of humans in a study by
Bhatarah et al. [38]. In the study, eight words were shown to participants for 1 s at 2
s intervals. Participants read each word aloud as it was presented. Then they were asked
to recall the words in a 25 s recall period. Figure 19 shows the results of the experiment
and SDN’s simulation. SDN can enhance memories through rehearsal in this experiment.
SDN’s results had the same trend as the results in Bhatarah et al.’s experiment.
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Figure 19. The results of Bhatarah et al.’s experiment and our model’s simulation results.

4. Conclusions

We propose a new approach to the study of the neural circuits of WM. In the exper-
iments, we use the HPNF model to build a memory-storage sub-network (SET) capable
of remembering and forgetting. Compared with the single feedback model, the memory-
storage sub-network (SET) is more robust to common disturbance and can adapt well to
differences in network parameters among individuals. Additionally, we construct a storage
distribution network (SDN), which is used to choose the proper SET and update it accord-
ing to the firing rate of existing memory and new memory. The SDN limits the maximum
amount of memory that can be stored at the same time. The SDN model duplicated the
findings of Funahashi et al., Inoue and Matsuzawa, Kusak et al., Wheeler and Treisman,
and Bhatarah et al., demonstrating that our proposed approach closely matches many
characteristics of WM.

The SET we constructed is a creative modeling work for the self-sustaining of neural
information in working memory. Analogous to the storage of memory in computers,
SET reveals a topology of neural circuits that may exist in the human brain. At the
same time, analogous to the storage distribution and refreshing of memory in computers,
SDN also reveals a possible mechanism of memory distribution and forgetting in the
process of WM. The models may have a positive impact on the future research on working
memory. In addition, recent research shows that WM can be impaired in several psychiatric
disorders such as schizophrenia and bipolar disorder and linked to impaired sustained
attention [40,41]. The most common cognitive impairment of mild cognitive impairment
(MCI) includes episodic memory loss and difficulties in working memory (WM). Research
by Sara Aurtenetxe et al. [42] shows that interference can deplete WM, and an optimal
WM performance requires effective control of attentional resources between the storage
of memory and the incoming stimuli. Our research on memory storage and memory
distribution may be potentially helpful for the treatment of some diseases related to memory
impairment such as MCI.
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