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Abstract Systemic autoimmune diseases are a group of heterogeneous disorders caused by both

genetic and environmental factors. Although numerous causal genes have been identified by

genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively

low disease risk, indicating that environmental factors also play an important role in the pathogen-

esis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and

host-associated microorganisms, has been demonstrated to regulate the development of the body’s

immune system and is likely related to genetic mutations in systemic autoimmune diseases.

Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy,

provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal

microbiome identification for autoimmune diseases. In this review, we briefly outlined the

applications of NGS in systemic autoimmune diseases. This review may provide a reference for

future studies in the pathogenesis of systemic autoimmune diseases.
Introduction

Since the inception of cyclic array-based next-generation
sequencing (NGS) in 2005 [1], application of this high-
throughput technology has shown exponential increase in

related biomedical studies. NGS can be applied to sequence
analysis on any part of the genome and the resulting transcrip-
tome, including the whole genome, exons, and other interest-

ing regions, and accordingly can be roughly classified as
whole-genome sequencing (WGS), whole-exome sequencing
nces and
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(WES), RNA sequencing (RNA-seq), and DNA methylation
sequencing [2–4].

Systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), multiple sclerosis (MS), ankylosing spondylitis (AS),
and Sjögren’s syndrome (SS) are typical systemic autoimmune
diseases, which affect multiple organs and exhibit inherited

susceptibility. Multiple causal genes have been identified that
influence the development of autoimmune disorders by
genome-wide association studies (GWAS) [5]. However, each

of such genes is generally associated with only a relatively
low risk of autoimmune disease occurrence, indicating that
presence of the identified susceptibility genes is not a definitive
pre-requisite for the disease development [6,7]. According to

the ‘‘hygiene hypothesis”, environmental pressure affects
genetic alleles, rendering the body’s immune system to adapt
to the environmental impact, including the presence of

microorganisms [8]. Therefore, the simultaneous presence of
susceptibility genes and the gut microbiome is likely to coordi-
nate synergistically to promote the systemic autoimmune dis-

ease progression.
The human intestinal contains a vast and diverse microbial

ecosystem, consisting of 1014–1015 microorganisms, colonizing

the human intestinal tract shortly after birth, and remaining
there throughout an individual’s life. Both the quantities and
the species composition of intestinal microbiota are closely
related to human health [9]. Each person possesses millions
Figure 1 Flow chart of common next generation sequencing approach
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susceptibility genes associated with systemic autoimmune dis-
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research

With the development of NGS technology, WGS, WES, and
RNA-seq are widely used to study the genetic mutations and
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ACT1 [17,18], mutations of which can cause immunodeficiency
diseases. Compared to WES, WGS facilitates sequencing of
the whole genomes including both the coding and non-

coding regions. As a result, WGS facilitates the identification
of gene fusions and exon duplications, as well as detection of
other genetic defects that might be missing by WES [19]. After

optimizing the sequencing procedure, Mardis et al. successfully
sequenced the whole cancer genome of an acute myeloid leuke-
mia patient with increased sequencing coverage, fewer runs,

and reduced false positive as compared to a previous report
[20]. Their study provides the opportunity for the use of
WGS in the detection of other complicated diseases such as
autoimmune diseases. However, there are disadvantages asso-

ciated with WGS, including high cost and long time required
for bioinformatic analysis [19]. In recent years, the decreased
cost and newly-developed techniques for bioinformatic analy-

sis have resulted in wide application of WGS for the analysis of
systemic autoimmune diseases. Abnormal RNA expression is
closely related to the development of many diseases. NGS-

based RNA-seq is used to sequence the total RNA to detect
the change of gene expression. Recent studies on small RNAs
(sRNAs), especially microRNAs (miRNAs), have uncovered

some causative links between sRNAs and complicated dis-
eases. Although miRNAs cannot be translated, they regulate
over half of all protein-coding transcripts and function in the
pathogenesis of diseases. RNA-seq is also used to discover

novel miRNAs due to its low background and high sensitivity
[21,22]. The application of RNA-seq is limited due to the frag-
ile nature of RNA. With careful preparation, this technique

will be very powerful to analyze the entire transcriptome
including differential splicing and allelic expression [23,24].
Genetic variants related to autoimmune diseases identified or

confirmed by NGS are summarized in Table 1, while the gut
microbiotas related to autoimmune diseases identified by
NGS are listed in Table 2.
Applying NGS to SLE

SLE is a complex and heterogeneous disease involving both

genetic and environmental factors. Multiple susceptibility
genes have been identified to be associated with SLE. How-
ever, the correlation of some genes with SLE needs to be val-

idated. NGS technology provides scientists with a good
Table 1 Variants associated with systemic autoimmune diseases identi

Method Disease Gene/gene locus

WGS SLE IRF2

WGS MS IL21R

WES RA CD2

IL2RA

IL2RB

PLB1

WES MS CYP27B1

TYK2

Note: WGS, whole-genome sequencing; WES, whole-exome sequencing

rheumatoid arthritis; IRF-2, interferon regulatory factor 2; IL21R, interleu

receptor, alpha; IL2RB, interleukin 2 receptor, beta; PLB1, phospholipase B

TYK2, tyrosine kinase 2.
opportunity to evaluate the validity of previously-identified
genes. In a study to evaluate the contribution of IRF2
polymorphisms to SLE in an Asian population, Kawasaki

et al. re-sequenced the IRF2 genes using the 454 sequencing
platform. The WGS results demonstrated that the
rs66801661A gene variant could independently contribute to

SLE. Additionally, it was observed that both rs66801661 and
rs6233999 variants were correlated with transcriptional activa-
tion of IRF2 [25]. This study rectified the previous interpreta-

tion that the IRF2 correlation with SLE depended on other
factors, demonstrating the power of NGS in validation of
previously-identified genes. In addition, traditional sequencing
did not allow for sufficient analytical accuracy for small

sample size, while NGS can facilitate scientists in profiling
transcription of disease-related genes in small sample popula-
tions. For instance, IRF5 gene has been confirmed as a genetic

risk factor for SLE by RNA-seq [26]. Analysis of the full-
length IRF5 transcription unit by RNA-seq from six patients
and three healthy donors confirmed that the IRF5 transcrip-

tion profile differed in SLE patients compared to the controls.
The abnormal IRF5 transcriptional signature was determined
by IRF5-SLE risk haplotype [27]. A Solexa deep sequencing on

40 peripheral blood mononuclear cell (PBMC) samples from
SLE patients and healthy controls revealed 61 novel miRNAs,
such as hsa-miR-5683, that displayed different expression
levels in SLE patients when compared to the controls. Genes

targeted by these miRNAs function in cell metabolism and
are likely related to the risk of SLE [28]. RNA-seq is an ideal
tool to attain more in-depth information when using only

small amounts of material.
Although human genetic factors have attracted most atten-

tion, there is emerging evidence supporting that the bacterial

flora contribute to the pathogenesis of SLE. Culture-
independent, high-throughput NGS technologies enable us to
investigate the function of the gut microbiome in diseases.

Sequencing of the 16S rRNA gene variable region using
NGS technology has been used to distinguish and classify bac-
teria. For instance, 16S rRNA gene sequencing in combination
with NGS was used to assess fecal microbial profiles of SLE

patients and matched controls, revealing some significantly-
decreased Firmicutes families and a lower Firmicutes/
Bacteroidetes ratio in SLE individuals compared to controls

[29]. This is the first report to show that dysfunction of the
immune system in SLE patients may influence the gut
fied or validated by NGS

Variant Ref.

rs66801661, rs62339994 [25]

Eae29 [41]

rs699738, rs624988 [35]

Unidentified [35]

Unidentified [35]

rs116018341, rs11651814, P.G755R [36]

rs118204009 [42]

rs55762744 [43]

; SLE, systemic lupus erythematosus; MS, multiple sclerosis; RA,

kin 21 receptor; CD2, cluster of differentiation 2; IL2RA, interleukin 2

1; CYP27B1, cytochrome P450, family 27, subfamily B, polypeptide 1;



Table 2 Alteration in gut microbiota related to autoimmune diseases as identified by NGS

Disease Fecal sample Alteration in microbiota Ref.

SLE SLE patients Firmicutes;
Firmicutes/Bacteroidetes;

[29]

MRL/lpr mice Clostridiaceae"
Lachnospiraceae"

[30]

SNF1 lupus mice Lactobacillus reuteri"
Turicibacter spp."

[31]

RA RA patients Prevotella"
Bacteroides;

[37]

RA patients Haemophilus spp.;
Lactobacillus salivarius"

[39]

AS Transgenic Lewis rats Paraprevotella"
Bacteroides vulgatus"

[51]

AS patients Lachnospiraceae"
Ruminococcaceae"
Rikenellaceae"
Porphyromonadaceae"
Bacteroidaceae"
Veillonellaceae;
Prevotellaceae;

[52]

Note: SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; AS, ankylosing spondylitis. The increased and reduced abundance of the

specified bacteria is indicated with " and ;, respectively.
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microbiome community. Another group employed the

Illumina platform and showed the presence of increased
Clostridiaceae and Lachnospiraceae populations in MRL/lpr
mice during disease progression [29]. The gender-specific alter-

ation of disease status due to the presence of certain bacterial
phylotypes (such as Lachnospiraceae) in the gut microbiota
may be associated with the degree of severity of lupus

symptoms in female MRL/lpr mice [30]. Most recently, a
NGS-based study was performed to detect the impact of drink-
ing water pH on the gut microbiome in association with disease

development in (SWR � NZB)-F1 (SNF1) spontaneous lupus
mice. Sequencing of fecal samples of diseased mice showed that
individual mice that drank acidic pHwater (AW) possess higher
levels of Lactobacillus reuteri and Turicibacter spp. than those

ingested neutral pH water (NW). The relative proportions of
some bacterial species such as Ruminococcus gnavus,
Trichodesmium hildebrandtii, Hydrocarboniphaga daqingensis,

and Polaribacter butkevichii were higher in AW recipients than
in NW recipients even in the pre-disease stage [31]. Although
traditional sequencing technologies such as Sanger sequencing

can help facilitate studies of the gut microbiome, they are
time-consuming and unable to detect low frequency bacteria.
With the high efficiency, high sensitivity, and high throughput
properties associated with NGS, scientists are now capable of

in-depth characterizing the components of the intestinal micro-
biome. Previous culture-based studies and studies detailed in
this review have shown that gut bacterial populations might

be correlated to the pathogenesis of SLE. Future gut
microbiome studies associated with SLE should focus on the
correlation of the relative change in proportion of bacteria with

the mucosal immune response.
NGS application and RA

RA is a chronic complex genetic autoimmune disorder charac-
terized by synovial inflammation and erosion of bone and
cartilage, which affects around 1% of the world’s population

[32]. Klarenbeek and his colleagues conducted a series of exper-
iments to characterize the T-cell receptor (TCR) and B-cell
receptor (BCR) repertoire using RNA-seq. Through sequenc-

ing of TCR from synovial samples of patients with recent onset
or established RA, more than 10,000 TCRs were attained per
sample. This study demonstrated that the T cell repertoire was

dominated by highly-expanded clones in early RA synovium.
Such clonal dominance was more obvious than that observed
in samples from patients with established RA [33]. Using the

same protocol, the BCR repertoire in the synovium and blood
of patients with early and active stage RA was sequenced to
identify autoreactive B-cell and plasma-cell clones related to
the disease status. It was shown that the dominant synovial

clones with longer complementary-determining region 3
(CDR3) and immunoglobulin heavy chain (IgH) gene segment
V4–34 enrichment were associated with RA severity [34]. As

demonstrated by these two aforementioned studies, high sensi-
tivity associated with NGS has permitted sequencing low
blood or synovium cell quantities, which has been previously

proven difficult using traditional protocols. Additionally,
NGS allows screening clone activity quantitatively, which
was previously difficult using Sanger sequencing.

NGS is also very powerful in assessing variants that occur

at low frequencies. A group of rare non-synonymous variants
was found in the IL2RA and IL2RB genes in RA patients in a
European project. WES studies identified a missense variant

(rs699738) and a non-coding variant (rs624988), which are
believed to contribute to the risk of RA development [35].
Recently, a WES was performed in a 4-generation consan-

guineous pedigree study. A novel single missense mutation
(p.G755R) within the PLB1 gene locus and two independent
non-coding variants (rs116018341 and rs116541814) close to

PLB1 gene were identified to be associated with the risk of
RA development, indicating that PLB1 is a susceptibility gene
for RA [36]. Although GWAS allows for the identification of
susceptibility variants, the associated low sensitivity limits its
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application. NGS technology, with high sensitivity and
high-throughput properties, results in the provision of more
convincing data, which cannot be obtained using GWAS.

Scher et al. sequenced V1 and V2 region of 16S rDNA on
the Roche 454 platform by shotgun sequencing. They found
a significant increase in Prevotella copri at the level of family

abundances in new-onset untreated RA (NORA) patients.
Such increase in P. copri is strongly correlated with disease
progression. Interestingly, with increased amount of Prevo-

tella, there is a concomitant reduction in abundance of Bac-
teroides in RA patients [37]. Recently, in collagen-induced
arthritis mice, gut microbiota was found to promote the differ-
entiation of IL-10, producing regulatory B cells in the spleen

and mesenteric lymph nodes [38]. Both of these studies
sequenced the different variable regions of 16S rDNA using
fecal material on high-throughput NGS platforms. Most

recently, a clinical research detected dysbiosis in RA patients’
oral and gut microbiomes in comparison to healthy controls.
The dysbiosis was remitted to a certain extent after treatment

with disease-modifying antirheumatic drugs (DMARDs).
Fecal, dental plaque, and salivary samples were subjected to
paired-end metagenomic sequencing on the Illumina platform.

The relative abundance of Haemophilus spp. was found to
decrease in RA individuals, whereas abundance of Lactobacil-
lus salivarius showed a significant increase in active RA
patients [39]. The appraisable outcome of this study provides

the potential application of microbiome composition in clinical
prognosis and diagnosis of RA. To sum up, NGS provides a
powerful tool to examine and characterize microbial profiles,

which are vital clues in uncovering the pathogenesis of RA.
Additional studies and analysis are necessary to understand the
interplay between microbial communities and the host in RA.
The application of NGS in the study of MS

MS is a chronic autoimmune disease of the central nervous

system (CNS) involving dysfunction of the blood–brain barrier
in association with demyelination and axonal damage [40]. A
recent study reported WGS of the Dark Agouti (DA) rat

and control strains on the SOLiD platform. A single nucleo-
tide variation was identified in a regulatory region of the
IL21R gene, which is associated with MS [41]. Using the Illu-

mina platform, Ramagopalan et al. sequenced 43 MS patients
by WES, and identified a single rare variant (rs11820400) in
the CYP27B1 gene, which can cause loss of gene function,

resulting in vitamin D deficiency-induced MS. The CYP27B1
gene was also identified as a MS causative gene [42]. Another
study focused on a family with high frequency of MS, which
contains 15 individuals with MS in four consecutive genera-

tions. Among them, four family members were enrolled in
the study for WES using the Illumina genome analyzer plat-
form. Over 20,000 shared variants were identified in these fam-

ily members, along with a rare mutation of rs55762744 in the
TYK2 gene encoding tyrosine kinase 2. Interestingly,
rs34536433, which was previously reported to be associated

with MS, was not found as a risk-factor for MS in this study
[43]. In summary, WES provides a fast and cost-effective
platform to detect rare variants in limited sample size, which
cannot be achieved by the traditional Sanger sequencing

technologies.
Epstein–Barr virus (EBV) has been reported to play an
important role in the pathogenesis of MS [44]. Sequencing of
the TCR repertoire by RNA-seq in the cerebrospinal fluid

and blood of MS patients confirmed that the EBV-reactive
CD8+ T cells are intrathecally enriched in MS patients only
[45]. A recent study based on amplicon deep sequencing

demonstrated that among the EBV alleles, the 1.2 allele is
dominant in MS patients compared to healthy control. Several
novel variants at nucleotides 402, 708, 733, and 800 were

detected in the 1.2 allele. These variants were associated with
the risk of MS development. In this study, NGS not only
confirmed previous Sanger sequencing results, but also
produced data that solved previous controversy regarding

the association of Epstein–Barr nuclear antigen 2 (EBNA-2)
with MS [46]. The advantage of NGS in the detection of
cells that are present low in the peripheral blood provides

us with a more sensitive method for sequencing low-copy
mutations.

Many studies have also shown that gut microbiota plays an

important role in the pathogenesis of MS. Polysaccharide A
(PSA) produced by intestinal Bacteroides fragilis has been
discovered to protect against the disease symptoms in the

experimental autoimmune encephalomyelitis (EAE) model
[47]. Clostridium perfringens type B was found to enhance
nascent MS lesion formation [48]. Currently, there are no
reports using NGS-based technology to study the distribution

and function of the microbiome in relation to the pathogenesis
of MS. Affymetrix PhyloChip arrays have been used to study
intestinal bacteria associated with MS. Nonetheless, hundreds

of unknown gut colonizing bacteria are not identified, since
PhyloChip can only detect known bacteria [49]. Conversely,
NGS allows sequencing of most gut microbial species.

Therefore, this method provides a powerful tool to identify
new strains of gut bacteria related to the pathogenesis of MS
in future.

NGS application and other systemic autoimmune

diseases

In addition to SLE, MS, and RA, NGS has also been applied
in the studies related to other systemic autoimmune diseases,
including AS and SS. AS is an autoimmune disorder with

chronic inflammation affecting both the spine and joints. Pre-
vious studies showed that the dysbiosis of the gut microbiome
in AS is correlated with the presence of human leukocyte anti-

gen B27 (HLA-B27), which is an AS disease-risk factor [50].
Using a HLA-B27 transgenic (Tg) Lewis rat model, 16S rRNA
amplicon sequencing was used to detect HLA-B27 associated

bacteria. This study demonstrated a significant difference in
cecal microbiome between HLA-B27 Tg and wild type
control rats. The increased population of Paraprevotella and
Bacteroides vulgatus in Tg rats further confirmed that the

HLA-B27 is associated with an altered gut microbiome [51].
Most recently, a clinical study sequenced the terminal ileum
microbiome in nine patients with new-onset AS and revealed

increased levels of Lachnospiraceae, Ruminococcaceae,
Rikenellaceae, Porphyromonadaceae, and Bacteroidaceae,
along with decreased number of Veillonellaceae and Prevotel-

laceae. The altered microbial composition is likely associated
with risk of AS [52]. Both studies employed 16S rRNA gene
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sequencing using the Illumina MiSeq sequencer, demonstrat-
ing the advantages of NGS technology in aiding to identify
more disease-related gut bacterial strains and the function of

bacteria on the pathogenesis of AS.
SS is another complex autoimmune disease that causes exo-

crine gland deficiency along with symptoms of dryness with

unknown etiology. Abnormal miRNA expression patterns
could serve as the potential biomarker for SS [53]. Deep
sequencing of small RNAs from SS patients and healthy con-

trols using the SOLiD 4 platform resulted in the discovery of
six novel miRNAs including hsa-miR-4524b-3p, hsa-miR-
4524b-5p, hsa-miR-5571-3p, hsa-miR-5571-5p, hsa-miR-
5100, and hsa-miR-5572. Among them, hsa-miR-5100 was

found to be significantly correlated with SS [54]. With the
application of NGS-based sequencing, more miRNAs will be
identified, which would potentially facilitate the diagnosis of

SS in future.
Conclusions and perspectives

The rapid development of NGS has contributed significantly
to both basic and clinical studies. The discovery of causative
gene loci has given us the chance to unravel the factors

involved in pathogenesis of diseases. Many disease-associated
genes, which were previously missed due to the limitation of
sequencing technology, have been identified by NGS. Gene

identification is an important step in the discovery of the
pathogenesis of the complicated autoimmune diseases. As
mentioned above, NGS has facilitated validation of the associ-

ation of previously-identified disease-related gene loci with
autoimmune diseases. In addition, NGS enables researchers
to combine previously-identified gene linkage with new

sequencing data, allowing the discovery of previously-
undetected linkage signals or pathways. NGS has also resulted
in the correction of some previously-controversial linkages of
susceptibility genes with diseases. Although WES is currently

the main method for detecting rare variants in systemic
autoimmune diseases, the dropping cost of WGS will allow
for further identification of non-coding variants related to

the risk of diseases. In addition to basic studies, application
of NGS will also significantly improve the genetic diagnosis
of autoimmune diseases, by providing clinicians with more

accurate genetic information of the patients and assisting them
in the formulation of a much more personalized and precise
treatment regimen.

Increasing evidence has demonstrated the role of the gut
microbiota in systemic autoimmunity [52]. Taking into
account the complexity of systemic autoimmune diseases, in
addition to identify the susceptibility genes, investigating the

gut microbiome will help advance our understanding of disease
development as well. Extensive studies need to be performed to
identify the specific bacterial species that are related to host

genetic mutations in systemic autoimmunity. Environment–
gene interaction may affect genetic alleles, indicating that the
gut microbiome is likely to play an important role in the

genetic mutation of genes related to systemic autoimmune
diseases [55]. Traditional technologies primarily rely on
culture-dependent methods, which require different media
types to culture target bacteria from fecal samples that contain
a large number of bacterial species. Nonetheless, such tech-
nologies can only identify approximately 10%–15% of bacte-
rial species, whereas the majority of bacterial species in the

gut microbiota that function in gut microenvironment mainte-
nance cannot be detected due to the difficulties in culturing
such bacteria [56]. Due to the time-consuming and complexity

nature of such methods, the culture-dependent methods have
limited application in microbiome research. On the other hand,
culture-independent approaches, which overcome the afore-

mentioned limitations, are widely applied in today’s micro-
biome studies. For instance, 16S rDNA sequencing based-
NGS can be applied to most microbiome diversity studies.
Moreover, data generated using these methods can be used

to gain further understanding of the disease development. Ter-
minal restriction fragment length polymorphism (T-RFLP) is a
method used to detect the length variation of the terminal

restriction fragments of conserved genes such as 16S rRNA
gene [57] and has shown some potential to generate more accu-
rate data for 16S rDNA. T-RFLP is also sensitive, which

allows for the detection of small amounts of intestinal bacteria
[58]. Future microbiome studies are likely to combine NGS
technology with T-RFLP to allow for more sensitive and reli-

able analyses. This will help scientists unravel the pathogenic-
ity associated with the gut microbiota in relation to the disease
development and ultimately explain the interplay between the
microbiome and host genetic factors.

Epigenetic markers are closely related to the intestinal
homeostasis and can be analyzed by NGS technologies includ-
ing RNA-seq, ChIP sequencing, and DNA methylation

sequencing. Due to limitations of traditional sequencing tech-
nologies, there are barely any reports using integrative analysis
to study the inter-relationship between genomic mutations,

cytokine expression, and the gut microbiome in autoimmune
diseases. With the development of NGS technology, a compre-
hensive analysis that will aid in the understanding of the

pathogenesis of systemic autoimmune diseases involving
genetic factors, microbiome community, and cytokine network
in autoimmunity is now possible. The genetic pedigrees in sys-
temic autoimmune diseases will provide us with ideal candi-

dates to study the correlation between genetic mutations and
the alteration of the gut microbiome using NGS.

Although NGS technology has been widely used in autoim-

mune disease studies, there are some limitations. NGS technol-
ogy is primarily based on short reads and produces large
amounts of sequencing data. This is a big challenge for data

analyses. It is also inevitable that NGS will bring in some
errors, including the lack of detection on low frequency muta-
tions due to the shorter lengths and repeat base sequences.
Roche has developed a new GS FLX+ system, which can

reach up to 1000 bp read length, overcoming short read limita-
tions [59]. Bioinformatic analysis is also a time-consuming
step, which can limit the application of NGS. In addition, bio-

logical databases are expanding due to the increasing number
of genetic variation studies and microbiome studies. This
brings the challenge of interpreting data appropriately. With

the development of computational technology, more powerful
software will reduce the cost and time required for the data
analyses, and help interpret the sequencing data precisely. It

is likely that NGS technology will become the main platform
in the future studies of autoimmune diseases by overcoming
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problems associated with cost, library preparation, reading
error, and extensive bioinformatic analysis.
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