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Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in
peripheral tissues located throughout the body, and positioned at the interface between
the host and the environment. Mast cells are found in high concentrations during helminth
infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience
Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the
immune response to infection by the helminth Hymenolepis diminuta. The authors showed
that mast cells play a role in the modulation of Th2 immune response characterized by a
unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion
during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh

deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible
role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal
lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced
H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions
between mast cells and other innate and adaptive immune cells during helminth infections
are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying
mast cell interactions with cells of the innate and adaptive immune system during infection
by helminths can potentially uncover novel therapeutic applications against inflammatory,
autoimmune and neoplastic diseases.

Mast cells (MC) are long-lived, granulated, tissue resident effector cells of hematopoietic origin, rec-
ognized for their role in allergic inflammation and immunity to parasitic infection. They derive from
common myeloid progenitors in the bone marrow, and continue their development through the gran-
ulocyte/monocyte progenitor lineage. Development into MC progenitors in the bone marrow is highly
regulated by transcription factors. Cells committed to the MC lineage leave the bone marrow as MC pro-
genitors, and circulate in the bloodstream before homing to peripheral tissues including the skin, lung,
peritoneum and the intestinal epithelia [1]. Two major subsets have been identified: connective tissue MCs
and mucosal MCs. Mast cell development and survival are dependent on the surface expression of the re-
ceptor tyrosine kinase c-kit, present in the W-locus (chromosome 5) in mice. C-kit is a receptor for the
ligand, stem cell factor (SCF), an important growth factor for MC. Indeed, mutations at the c-kit locus have
been used extensively for the study of MC deficiency in mice. For example, mice with the W-sh mutation
(KitW-sh/W-sh) which possess an inversion mutation in the transcriptional regulatory region of the c-kit
gene [2] results in a significant reduction in c-kit mRNA and subsequently MC deficiency in peripheral
tissues. In addition to mutant Kit-based mast cell deficient mice, (KitW-sh/W-sh and WBB6F1-KitW/Wv),
genetically modified mouse models such as Mcpt5Cre and Cpa3Cre have been shown to be useful in
addressing the function of MC in vivo [3].

MCs are known mediators of anti-helminthic responses such as infections with Heligmosomoides
polygyrus, Trichuris suis, Schistosoma japonicum, Necator americanus, Strongyloides venezuelensis,
Trichinella spiralis and Trichuris muris [4–11] (Table 1). In the context of helminthic infection, the ef-
fector functions of MC are largely mediated by high affinity interactions of the IgE receptor, FcεR1 present
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Table 1 Helminthic infections: role of mast cells and suppression of autoimmune inflammatory diseases

Helminth
MC involvement in helminth

infection Amelioration of inflammatory disease
Disease Model

Hymenolepis diminuta (Rat Tapeworm) MC contributes to helminth expulsion DNBS/DSS colitis [22,23,44–47] Experimental (Mouse)

[24,43] Autism [48] Clinical

Arthritis [49] Experimental (Mouse)

Trichuris suis (Pig Whipworm) MC accumulates during infection [9] DSS colitis [50] Experimental (Rabbit)

EAE [51] Experimental

OVA-sensitization [52] Experimental (Mouse)

Ulcerative colitis [53,54] Clinical trial

Crohn’s disease [54–56] Clinical trial

Multiple sclerosis [57] Clinical trial

Allergic rhinitis [58] Clinical trial

Peanut/Treenut allergy [59] Clinical trial

Plaque psoriasis [60] Clinical trial

Autism [48,61] Clinical trial

Necator americanus (Human Hookworm) MC accumulation and degranulation Crohn’s disease [62] Clinical trial

correlate with protection against helminth Celiac disease [63] Clinical trial

[10] Asthma [64–66] Clinical trial

Multiple sclerosis [67] Clinical trial

Allergic rhinitis [68] Clinical trial

Trichuris trichuria (Human Whipworm) Not studied Ulcerative colitis [69] Clinical trial

Atopic dermatitis [70] Clinical trial

Multiple sclerosis [71] Clinical trial

Schistosoma mansoni Conflicting data; most evidence suggest EAE [76,77] Experimental (Mouse)

that MC accumulation correlates with NOD [78,79] Experimental (Mouse)

susceptibility to infection [72–75] TNBS/DSS colitis [80–82] Experimental (Mouse, Rat)

OVA-sensitization [83,84] Experimental (Mouse)

Anaphylaxis [85] Experimental (Mouse)

TSHR (Graves’ disease) [86] Experimental (Mouse)

CIA [87] Experimental (Mouse)

Trichinella spiralis Apparent involvement of MC in helminth EAE [90–92] Experimental (Rat)

expulsion [88,89] NOD [93] Experimental (Mouse)

DNBS colitis [94–97] Experimental (Mouse)

Heligmosomoides polygyrus MC play a major role in clearance of EAE [100] Experimental (Mouse)

infection [98,99] NOD [93] Experimental (Mouse)

IBD [101–103] Experimental (Mouse)

OVA-sensitization [100,104,105] Experimental (Mouse)

Arthritis [106] Experimental (Mouse)

Peanut allergy [107] Experimental (Mouse)

TNBS colitis [108,109] Experimental (Mouse)

Trichinella pseudospiralis MC accumulates during infection [110] EAE [111] Experimental (Mouse)

Taenia crassiceps MC accumulates during infection [112] MLDS [113] Experimental (Mouse)

EAE [114] Experimental (Mouse)

DSS colitis [115] Experimental (Mouse)

Litomosoides sigmodontis MC degranulation promotes helminth NOD [118,119] Experimental (Mouse)

invasion and survival in host [116,117] OVA-sensitization [120] Experimental (Mouse)

DIO [121] Experimental (Mouse)

Ancylostoma caninum MC accumulates during infection [122] DSS colitis [123] Experimental (Mouse)

Strongyloides venezuelensis MC play a major role in clearance of
infection [124,125]

MLDS [126] Experimental (Mouse)

Continued over
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Table 1 Helminthic infections: role of mast cells and suppression of autoimmune inflammatory diseases (Continued)

Helminth
MC involvement in helminth

infection Amelioration of inflammatory disease
Disease Model

Nippostrongylus brasiliensis MC contributes to helminth expulsion OVA-sensitization [128] Experimental (Mouse)

[127] Arthritis [106] Experimental (Mouse)

Schistosoma japonicum MC accumulates during infection [11] OVA-sensitization [129,130] Experimental (Mouse)

TNBS colitis [131] Experimental (Mouse)

EAE [132] Experimental (Mouse)

Trichuris muris MC accumulates but not required for DSS colitis [136] Experimental (Mouse)

protection against infection [133–135] AAI [137] Experimental (Mouse)

on MC. Interaction between IgE and FcεR1 results in the activation and subsequent release of cytosolic granules by
MC. These granules contain a number of cytokines, growth factors, and proteases including interleukin (IL)-4, IL-5,
vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF) and mast cell protease 1 (MCPT-1), which
can be detected as free MCPT-1 in the serum or tissues as an indicator for the presence of MC in vivo [12]. Helminthic
infections trigger a number of host responses, largely characterized by a Th2 polarized immune response. In response
to helminth infection, innate immune cells and intestinal epithelial cells secrete Th2 cytokines including IL-4, IL-5,
IL-9, IL-13, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) [13]. IL-33, a cytokine released during helminth
infection, causes the activation and proliferation of MC through interaction with the ST2 receptor [14,15]. Activation
of MC results in their degranulation and release of pre-formed mediators known to modulate cells of the innate and
adaptive immune system. Among these are IL-4 and IL-13 resulting in the alternative activation of macrophages [16],
prostaglandin D2, which cleaves IL-33 resulting in increased type 2 innate lymphoid cell induction through CRTH2
receptor interaction [17], and TNF-α, CXCL1 and CXCL2 leading to the recruitment and proliferation of neutrophils
at the site of infection [18,19]. TNF-α mediated neutrophil recruitment by MC has further been shown to be at least
partially dependent MC activation by IL-33 [19]. In addition to the activation and recruitment of cells of the innate
and adaptive immune system, MC degranulation induces effector mechanisms involved in worm expulsion such as
goblet cell hyperplasia, increased mucin production, mitigation of tissue damage, intestinal smooth muscle contrac-
tion associated with heightened peristalsis, and the creation of an environment toxic to helminths [20]. Although
MCs are known mediators of the helminth associated Th2 response, it is evident that their roles vary, depending on
the host, parasite dose, parasite life cycle stage, and duration of infection [21].

Infection of the rat tapeworm Hymenolepis diminuta in mice is an established model system used to eluci-
date the complex immune response mechanisms to chronic intestinal helminthic infections in humans. Because
these tapeworms possess potent immunosuppressive properties during concomitant inflammatory disease states
(such as colitis), and are known to cause minimal to no tissue damage within the host they are ideal models
for the study of helminth-associated immunological responses [22]. Not surprisingly, the immunomodulatory and
anti-inflammatory properties of H. diminuta are potentially being exploited in the treatment of gut-associated in-
flammatory diseases – an area currently known as ‘helminth therapy’ which is currently under active investigation
[23].

Given our limited understanding of the specific roles of MC during infection with H. diminuta, the study by
González et al. [24] begins to define the immunomodulatory function of MC against this helminth in vivo. Mice
are known to generate a strong Th2 polarized immune response against H. diminuta and clear infection in 8–10
days [25]. Using C57BL/6 mice with KitW-sh/W-sh mutations, which depletes MC [26], a revealing picture is beginning
to emerge suggesting a role for MC in effective elimination of H. diminuta from infected hosts. Previous studies
involving infection by H. diminuta have followed MC activity using rat models, which generate a wide array of
MC activation profiles dependent upon helminth dose and rat species, making the elucidation of MC effects on
elimination of helminths from the gut lumen challenging [27]. In mice, activation of MC in response to H. diminuta
infection has been demonstrated as indicated by the detection of MCPT-1, a MC biomarker detectable in serum [28].
KitW-sh/W-sh mice lacking in a MC response as shown through the non-detectable levels of serum MCPT-1 have been
used previously to demonstrate the wide ranging effects that MC can have in mediating an effective Th2 polarized
anti-helminthic immune response in vivo [29]. During H. diminuta infection, KitW-sh/W-sh mice produced an altered
Th2 cytokine immune response profile, which differed in kinetics compared with infected WT mice. Interestingly,
infected KitW-sh/W-sh mice produced higher quantities of IL-4 and IL-13 at day 4, but lower levels at day 8 compared
with infected WT controls. Levels of these cytokines are again reversed at day 12, with an apparent rebound in IL-4
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and IL-13 production in infected KitW-sh/W-sh mice. While this altered Th2 cytokine profile in infected KitW-sh/W-sh

mice appears to be MC dependent, additional studies are needed to determine the mechanisms underlying the unique
kinetics of Th2 cytokine production during H. diminuta infection of KitW-sh/W-sh mice. Nevertheless, these results
suggest a role for activated MC in modulating Th2 cytokine production during H. diminuta infection, [30]. It must be
noted, however, that while non-detectable levels of MCPT-1 are strongly indicative of complete absence of MC (which
was used as a surrogate for MC in the study by Gonzalez et al. [24]), there have been demonstrated instances of a MC
presence occurring in Kit-deficient animals [31,32]. Nevertheless, the delayed worm expulsion seen experimentally
does demonstrate an as yet unknown role for MC in the optimal generation of an effective immune response against
H. diminuta.

In addition to the aforementioned cytokines (IL-4, IL-5 and IL-13), González et al. [24] found that basal expression
of epithelia derived cytokines IL-25, IL-33, and TSLP in uninfected KitW-sh/W-sh deficient mice was lower compared
with uninfected WT controls. This suggests a role for MC maintaining homeostatic basal expression for these cy-
tokines. Previous research performed using different helminth models demonstrates a role for MC in the production
of IL-25, IL-33, and TSLP, suggesting the possibility of MC priming of these cytokines during early infection [4]. In
H. diminuta infected mice, expression values were similar for these cytokines, indicating that while MC may assist
in the maintenance of their basal expression, these cytokines can still be induced independent of MC during this
helminth infection. While a clearer picture of the regulation of these epithelium derived cytokines is beginning to
emerge, the precise immunologic mechanisms that underlie their production and regulation are still incompletely
understood [33]. Increased expression of these cytokines has been linked to the allergic and asthma response [34],
and a mechanism decreasing basal IL-25, IL-33 and TSLP expression may be of interest in potential therapy develop-
ment. Importantly, these cytokines have each recently been attributed to having an important initial role in inducing a
microenvironment suitable for Th2 polarization [35]. This correlation between reductions in these epithelial derived
cytokines and the delayed Th2 response seen experimentally is further evidence in support of the Th2 polarizing
effect of IL-25, IL-33 and TSLP in certain helminthic infections. Further research into the immunomodulatory roles
and regulatory mechanisms of these epithelial derived cytokines, as well as their cross-talk with MCs during inflam-
mation will provide insights into therapeutic approaches in the management of helminthic, gut-inflammatory and
allergic diseases.

A clear understanding of the interaction between MCs and other innate and adaptive immune cells during
helminthic infection is vitally important in order to clarify the nature of an effective anti-helminthic immune re-
sponse. For example, the proportion of neutrophils was observed to be increased in the spleens of MC deficient H.
diminuta infected mice. However, contrary to the notion that neutrophils could compensate for the lack of MC to
confer protection against H. diminuta infection, Gonzalez et al. [24] found that depletion of neutrophils by intraperi-
toneal administration of anti-Gr-1 antibodies resulted in enhanced clearance of the worm at a rate comparable to
infected WT mice. Furthermore, neutrophil depletion in MC deficient H. diminuta infected mice was accompanied
by increased splenomegaly. These data present very interesting observations that warrant further study. While it has
been previously shown that in vivo depletion of neutrophils can result in a more strongly polarized Th2 response in
the context of helminth infection, the mechanisms that underlie this immunological response are not completely un-
derstood [36]. Further, in contrast with the data presented by Gonzalez et al. [24], neutrophil depletion in mice during
Nippostrongylus brasiliensis helminth infection resulted in a decreased Th2 response and an increased susceptibil-
ity to infection [37]. These observations further support the wide variety and complexity of cellular interactions and
immunological responses elicited by different helminth infections in vivo. As is the case with other parasitic diseases,
infections with helminths require a consideration of pathogen and host associated factors in order to fully explain
mechanisms of action and host immune response pathways. In the context of MC inhibition, it would be of interest
to determine the impact of neutrophil depletion on immune response to other helminth infections.

As mentioned at the outset, the concept of helminth-based therapy exploits the immunosuppressive properties
of helminth species to reduce the severity of gut associated inflammatory diseases. A summary of pre-clinical and
clinical studies utilizing helminth parasites to mitigate inflammatory associated diseases is shown in Table 1. In the
context of helminth infection by H. diminuta, a protective effect has been demonstrated against colitis in the af-
fected host [23]. However, the relative contribution of immune cells in mitigating the Th1-dominated inflammatory
response during helminth-mediated suppression of gut inflammatory diseases is unclear. Given that MCs modulate
Th2 responses during H. diminuta infection, it was of interest to determine whether these cells contribute to pro-
tection against dinitrobenzene sulfonic acid (DNBS) induced colitis in H. diminuta infected mice. DNBS has been
used as an effective agent to recapitulate colitis in vivo [38]. Using this DNBS-induced colitis model, it was observed
that both MC deficient and WT mice infected with H. diminuta maintained similar heightened levels of protection
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Figure 1. Proposed mechanism for the action of mast cells during the immunological response to helminth infection by

Hymenolepis diminuta

Mast cells stimulate intestinal epithelial cells causing a constitutive expression of basal IL-25, IL-33 and TSLP. The presence of these

cytokines in the intestinal lumen is crucial to an efficient immune response required for timely expulsion of helminths. Detection

of helminths by the epithelial cells cause an increased release of cytokines IL-25, IL-33 and TSLP, resulting in the activation of

mast cells and other Th2 lymphoid and myeloid progenitors. Mast cells secrete a wide variety of cytokines and growth factors

including IL-4, IL-5, IL-13, IL-25, IL-33, TNF-α, CXCL1, CXCL2, and TSLP, MCPT-1, prostaglandin D2, and lysozyme. CXCL1,

CXCL2 and TNF-α activates neutrophils, prostaglandin D2 production activates type 2 innate lymphoid cells, while IL-4, IL-5 and

IL-13 activates alternatively activated macrophages. Mast cell derived IL-25 stimulates the Th2 immune response. Further, mast

cell degranulation results in anti-helminthic effector mechanisms including goblet cell hyperplasia, increased mucin production,

smooth muscle contraction and increased peristalsis, leading to helminth expulsion.

against colitis compared with uninfected mice, suggesting that MCs do not play any major role in this protection.
Other studies have demonstrated that the epithelial-derived cytokine IL-25 mediates the anti-inflammatory protec-
tion by H. diminuta in DNBS-induced colitis [39]. However, it is likely that the protection against colitis exhibited by
H. diminuta and partly mediated by IL-25 occurs independent of MC. Other factors might include an involvement
of regulatory T cells and/or other myeloid cells involved in promoting a Th2 response caused by the presence of the
worm. These and other possibilities provide exciting areas for additional research.

In conclusion, the study by González et al. [24] has increased our understanding of the host cellular factors involved
in immune responses against H. diminuta. Results from the present study demonstrate that MCs do contribute to
the timely expulsion of H. diminuta. Further, MC-deficient animals display an altered cytokine expression kinetic
profile resulting in a delayed expulsion of intestinal helminths. The authors also suggest that MCs are involved in the
basal expression of IL-25, IL-33 and TSLP by epithelial cells (Figure 1). A key question remains regarding the degree
of MC depletion in KitW-sh/W-sh mice during H. diminuta infection and what subset of MCs (mucosal MCs and/or
connective tissue MCs) are depleted in this model. Nevertheless, it is clear that MC mediated immunoregulation dur-
ing helminth infection is of great interest, given that the strong Th2 immune response generated during infection by
helminths has been linked to a positive prognosis or shown to have a beneficial effect in many autoimmune and neo-
plastic diseases [40–42]. Consequently, therapeutic applications developed as a result of an increased understanding
of helminth-associated immunomodulation, as well as the involvement of MCs in response to helminth infection,
remains an appealing and worthwhile goal.
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