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The generation and differentiation of an appropriate number of neurons, as well as

its distribution in different parts of the brain, is crucial for the proper establishment,

maintenance and plasticity of neural circuitries. Newborn neurons travel along the

brain in a process known as neuronal migration, to finalize their correct position in

the nervous system. Defects in neuronal migration produce abnormalities in the brain

that can generate neurodevelopmental pathologies, such as autism, schizophrenia and

intellectual disability. In this review, we present an overview of the developmental origin of

the different telencephalic subdivisions and a description of migratory pathways taken by

distinct neural populations traveling long distances before reaching their target position

in the brain. In addition, we discuss some of the molecules implicated in the guidance of

these migratory paths and transcription factors that contribute to the correct migration

and integration of these neurons.

Keywords: cortical interneurons, telencephalon, amygdala, olfactory bulb, transcription factors, neuronal

migration, subpallium, pallium

INTRODUCTION

In the nervous system, neurons are generated from progenitors distributed in the ventricular
and subventricular zones (VZ and SVZ), a territory located in the apical part of the neural tube
next to the ventricles, and representing active proliferative germinal zones. During embryonic
development, these progenitors divide symmetrically and asymmetrically to produce more
progenitors and neurons, increasing in this way the pool of cells in the nervous system. Early
postmitotic neurons migrate subsequently to their correct positions to acquire a proper function
and integrate into a distinct brain circuitry. Neurons make use of different mechanisms to travel
along the brain surface and within the nervous tissue: radial and tangential migration. In the radial
migration, neurons follow the radial glia moving from the VZ to the pia perpendicular to the apical
surface, whereas in the tangential migration, newborn neurons move perpendicular to the radial
glia and therefore parallel to the ventricular surface (revised by Valiente andMarín, 2010; Hatanaka
et al., 2016).

We will focus mainly on the telencephalon, which is subdivided into pallial (dorsal
telencephalon) and subpallial (ventral telencephalon) territories. Neurons generated in these
different regions migrate radially and tangentially to distribute along the whole telencephalic
vesicles. While the pallium produces glutamatergic excitatory neurons, the subpallium is the
source of mainly GABAergic inhibitory neurons, but both populations will colonize pallial and
subpallial territories by radial and tangential migration (de Carlos et al., 1996; Anderson et al.,
1997; Marín and Rubenstein, 2001). In most cases, neurons are generated close to their final
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destination and thus migrate only short distances. However,
some neurons need to migrate long distances before reaching
their final position in the brain, adding thus a new dimension
along the rostro-caudal axis. This new aspect includes a
simultaneous combination of radial and tangential migration.
Since several of these migratory paths occur at the same time,
the telencephalon becomes a very busy territory with neurons
moving in all kind of directions.

But how do cells know where to go and when to stop
and ultimately settle down? There is still much work to do to
elucidate the complete mechanisms that guide neurons along
their migratory paths in the developing brain. When neurons are
born, they will express a distinct cell-intrinsic genetic program
that will instruct them about their identity but also about their
final destinations; this molecular program includes a whole series
of receptors, mainly expressed in structures resembling growth
cones at the end of the leading process, that will help them
to find their correct path (Nóbrega-Pereira and Marin, 2009).
Neurons explore their territory by extending novel branches
(Bellion et al., 2005) and continuously changing the angle of these
branches (Martini et al., 2009). Chemomolecules in themigratory
substrate are detected by specific receptors that will endorse
neurons to retract and remodel their leading process (Polleux
et al., 2002; Kalil and Dent, 2005; Martini et al., 2009). Once they
find their correct environment, the nucleus translocates to the
new branch and the trailing process retracts allowing thus proper
cell movement (Morris et al., 1998). Most of the guidance cues
include the same types of molecules implicated in other systems
to guide axonal tracts, and mainly represent members of the
semaphorins, netrins and slit families (Brose and Tessier-lavigne,
2000; Bagri and Tessier-lavigne, 2002; Marín et al., 2010).

In this review, we are going to focus on specific neural
populations that migrate long distances along the rostro-caudal
axis of the telencephalon. At this point, it becomes crucial to
clarify what we mean by “rostro-caudal axis.” According to the
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CAS, caudal amygdaloid stream; CGE, caudal ganglionic eminence; cIN, cortical
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medial migratory steam; MOB, main olfactory bulb; MP, medial pallium; mPOA1,
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olfactory bulb; pPOA2, proliferative area of POA2 region; PSB, pallial-subpallial

boundary; R, rostral; RGCs, radial glia cells; RMS, rostral migratory stream;

Spt, septum; Str, striatum; SvSpM, subventricular subpallial migratory stream;

SVZ, subventricular zone; TE, thalamic eminence; TF, transcription factor; Th,

thalamus; V, ventral; vLGE, ventral LGE; vMGE, ventral MGE; VP, ventral pallium;

vTel, ventral telencephalon; VZ, ventricular zone.

prosomeric model, the neural tube is subdivided into antero-
posterior (A-P) segments, or neuromers, established by genetic
and morphological boundaries (Bulfone et al., 1993; Puelles
et al., 2013). The secondary prosencephalon (that comprise the
hypothalamus and the telencephalon) is located in the most
rostral part of the neural tube. The telencephalon is a huge
expansion of the alar plate of the secondary prosencephalon
and the relations with the topological A-P axis are partially lost.
We take into account that the most topological rostral edge of
the telencephalon is aligned with the preoptic area, however,
to simplify the terminology, we will use the anatomical A-P
axis and locate the rostral/anterior part of the telencephalon in
the olfactory bulbs, while the most caudal/posterior pole would
correspond to the posterior amygdala and entorhinal cortex.

In summary, we will introduce the paths taken by GABAergic
and glutamatergic neurons to migrate either to more rostral
(going “forward”) or more caudal (going “backward”) territories
of the telencephalon. Furthermore, we will discuss some of
the chemoattractive and chemorepulsive signals required in
guiding these populations along their long paths, as well as the
transcription factors (TFs) expressed by these neurons implicated
in distinct migratory steps.

GABAERGIC NEURONS UTILIZE
DIFFERENT MIGRATORY ROUTES
BEFORE REACHING THEIR FINAL
TARGETS

The subpallium is subdivided during development into
ganglionic eminences, preoptic area (POA) and subpallial
septum. The ganglionic eminences (GE) themselves can be
subdivided into three major proliferative regions, called lateral
(LGE), medial (MGE), and caudal ganglionic eminences
(CGE). It is now well accepted that the different subdivisions
of the ventral telencephalon are established according to
discrete combinations of TFs they express during development
(Puelles et al., 2000; Schuurmans and Guillemot, 2002; Flames
et al., 2007). Each subdivision generates distinct GABAergic
subpopulations assigned to different pallial structures, as well
as to basal ganglia and amygdala of the ventral telencephalon.
Once they have reached their destinations, GABAergic neurons
can act as local circuit neurons (interneurons) or principal
projection neurons. The best example of GABAergic migration
during telencephalic development is represented by cortical
interneurons (cINs), which are generated mainly in the MGE
(60%) and CGE (30%), and to a minor degree in the POA (10%).
Specific molecular and temporal codes determine the identity of
cINs and their distribution in the cortex (reviewed in Sultan and
Shi, 2017).

Interneurons generated in the subpallium migrate first
tangentially to reach the cortex and then radially using a
particular migratory behavior known as “random walk,” to finally
settle in a specific cortical layer (Lopez-Bendito et al., 2008;
Kelsom and Lu, 2013). However, no matter where they are
generated, cINs are distributed in the whole cortex along all axes.
This implies that they must migrate radially and tangentially,
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and along the rostral and caudal directions to colonize the
entire cortical plate. Since several studies are mainly focused on
the mechanisms guiding MGE-derived interneurons toward the
cortex (revised in Marín, 2013), we will give more emphasis on
what is known about the rostro-caudal migratory paths of the
CGE, POA, and dLGE subpopulations. In the next paragraphs,
we will describe these migratory routes and their transcriptional
signature.

From The CGE Rostrally and Caudally
The CGE is the caudal portion of the ganglionic eminences and
mainly generates GABAergic interneurons characterized by the
expression of TFs such as Prox1, Sp8, COUP-TFI (also called
Nr2f1) and COUP-TFII (Nr2f2), in addition to the expression of
the ionotropic serotonin receptor 3a (5HT3aR) (Tripodi et al.,
2004; Yozu et al., 2005; Kanatani et al., 2008; Vucurovic et al.,
2010; Lodato et al., 2011; Rudy et al., 2011; Ma et al., 2012; Cai
et al., 2013; Rubin and Kessaris, 2013). CGE-derived neurons are
distributed in the cerebral cortex, hippocampus, amygdala and
striatum (Nery et al., 2002; Yozu et al., 2005; Lee et al., 2010;
Miyoshi et al., 2010; Vucurovic et al., 2010; Chittajallu et al., 2013;
Muñoz-Manchado et al., 2016; Torigoe et al., 2016; Touzot et al.,
2016). To reach these multiple destinations, CGE interneurons
take different migratory routes during mouse development.
The Caudal Migratory Stream (CMS) was the first described
migratory path for CGE neurons, as demonstrated by focal
CGE electroporations in telencephalic whole-mount cultures in
which a subset of CGE-derived neurons was shown to migrate
caudally toward the hippocampus and caudal cortex (Yozu et al.,
2005) (yellow arrows Figures 1A,B). Recently, two additional
streams have been described for CGE neurons migrating rostrally
(Touzot et al., 2016). Taking advance of the 5HT3aR reporter
mouse line in which the majority of CGE-derived neurons are
labeled thanks to the fluorescent protein GFP, Touzot et al.,
showed that CGE-derived cells also migrate rostrally taking a
lateral path through the pallial-subpallial boundary (PSB), and
a medial path crossing the dorsal MGE (Figures 1A,B, blue
and red arrows, respectively). These two new migratory routes
have been named “Lateral and Medial Migratory Streams (LMS
and MMS)” respectively, and GFP+ cells traveling within each
stream express different proportions of CGE TFs (Figure 1). For
example, neurons in the CMS express mainly COUP-TFI and
COUP-TFII and to a minor degree Sp8 and Prox1 (Kanatani
et al., 2008; Touzot et al., 2016). COUP-TFII plays a key role in
the migration taken by cells within the CMS. Indeed, inhibition
of COUP-TFII using siRNA prevents the neurons generated in
the CGE to migrate caudally and, conversely, overexpression of
COUP-TFII in MGE-derived cells and then transplantation of
these cells into the CGE induces grafted cells to take a caudal
path via the CMS (Kanatani et al., 2008). Thus, COUP-TFII is
necessary and sufficient for driving CGE-derived cells toward
caudal directions.

The LMS contains neurons expressing preferentially Sp8,
Prox1, and COUP-TFII (Touzot et al., 2016). The LMS cross
the PSB at the level of where dLGE interneurons are generated
and destined to the olfactory bulbs and cortical white matter
(Stenman et al., 2003; Inta et al., 2008; Frazer et al., 2017; blue

arrows in Figures 1A,B). Albeit both populations share 5HT3aR-
GFP and Sp8 expression, CGE interneurons can be distinguished
from dLGE-derived interneurons because they express Prox1 and
COUP-TFII, but not Er81 and Meis2, which are instead markers
of migrating olfactory bulb interneurons (Allen et al., 2007; Inta
et al., 2008; Vucurovic et al., 2010; Chen R. et al., 2012; Ma
et al., 2012; Cai et al., 2013; Rubin and Kessaris, 2013; Agoston
et al., 2014; Touzot et al., 2016; Frazer et al., 2017). Moreover,
homotopical CGE transplantations in organotypic cultures and
fate map experiments using cell trackers support the lateral path
taken by CGE neurons to migrate rostrally (Touzot et al., 2016).
Neurons taking the LMS are very likely to migrate to the cortex
since the same combination of TFs (Prox1, Sp8, and COUP-TFII)
is also shared by neocortical CGE interneurons. Additionally, the
LMS is well recognizable between E13.5 and E15.5 corresponding
to the peak of CGE-cIN production (Touzot et al., 2016). Thus,
the LMS could represent a crucial migratory path allowing CGE
interneurons to disperse along the entire cerebral cortex (blue
dashed arrows, Figure 1A).

Finally, the MMS contains 5HT3aR-GFP+ neurons migrating
rostrally and medially from the CGE to the dorsal MGE crossing
the bed nucleus of the stria terminalis (BST) (red arrows in
Figure 1). Regarding the transcriptional signature,MMS neurons
express to a lesser extent COUP-TFII, Sp8 and Prox1 when
compared to the CMS and LMS. The final destination of CGE
neurons taking the MMS is very likely to be the amygdala
complex (red dashed arrows, Figure 1A), as supported by the
high percentage of in utero grafted CGE/GFP+ homochronic
neurons in the adult amygdalar region, particularly in the
basolateral complex andmedial amygdala (Vucurovic et al., 2010;
Touzot et al., 2016).

Besides regulating cell migration, COUP-TFII and its
homolog COUP-TFI are also involved in the generation and final
distribution of both CGE- and MGE-derived cINs. Conditional
deletion of COUP-TFI in the SVZ ganglionic eminence leads
to an over-proliferation of committed progenitors in both
MGE and CGE. As a result, the LMS and MMS exhibit an
increased number of 5HT3aR-GFP+ neurons migrating through
these paths. Interestingly, COUP-TFI not only regulates the
generation of CGE neurons but also the ratio of different
TFs that these neurons express within each migratory stream.
Deletion of COUP-TFI increases the percentage of neurons
expressing COUP-TFII in the MMS and Sp8 in the LMS,
leading thus to altered specification of cIN subtypes, and in line
with their role as cell fate determinant genes (Touzot et al.,
2016). Indeed, COUP-TFI represses rostral MGE and promotes
CGE identity, and in conjunction with COUP-TFII, both
specify Somatostatin (SST) fate in the caudal MGE and repress
Parvalbumin (PV) identity in the rostral MGE (Lodato et al.,
2011; Touzot et al., 2016; Hu et al., 2017). As a result, COUP-TFI
interneuron-specific mutants exhibit an imbalanced proportion
of MGE- and CGE-derived cINs in the adult neocortex
(Lodato et al., 2011). These data uncovered an unexpected
complexity in the migratory paths and transcriptional control of
MGE- and CGE-derived GABAergic cINs necessary to generate
the huge diversity of mature interneuron subtypes in the
brain.
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FIGURE 1 | Migratory streams originating from the caudal ganglionic eminence (CGE) during mouse development. (A) Schematic representation of the telencephalic

vesicles at embryonic (E) stage 15.5. The CGE (in green) generates GABAergic neurons that migrate laterally through the LMS (blue arrow), medially along the MMS

(red arrow) or caudally via the CMS (yellow arrow). Neurons taking the LMS are positive for the serotonin receptor 5HT3aR and a high percentage also express Prox1

and Sp8. The LMS helps CGE neurons to get distributed along the cortex (Cx) (dashed blue arrows). Neurons migrating through the MMS are 5HT3aR-GFP+, but

only a low percentage express Prox1, Sp8 or COUP-TFI and II. The most putative target of neurons migrating along the MMS is the amygdala (AM) (dashed red

arrows). The CMS is composed of neurons expressing 5HT3aR and a high percentage the COUP-TFII. CGE neurons migrate through the CMS toward the

hippocampus (HC) and caudal cortex (yellow arrows) (Yozu et al., 2005; Kanatani et al., 2008, 2015). (B) Illustration of a horizontal section at the level of the plane

indicated in A showing the different CGE-derived migratory streams. The black dashed line represents the boundary between the cortex and the subpallium (PSB).

(C) Immunostaining of a horizontal section showing the distribution of 5HT3aR-GFP+ cells in the CGE, the LMS (blue arrowhead), MMS (red arrowhead) and CMS

(yellow arrowhead) during embryonic development. Image taken from Touzot et al. (2016).

The serotonin receptor 5HT3aR expressed in migrating CGE
cINs plays instead a key role in controlling their migratory speed
during invasion to the cortical plate (CP) and at late phases of
migration. Loss of 5HT3aR produces a defect in the integration
of reelin (RLN)-expressing cells in the superficial layer 1 of the
neocortex, and as a consequence, a laminar mis-positioning of
RLN+ cINs derived from the CGE (Murthy et al., 2014). More
than during early specification, Prox1 is mainly involved in
the maturation of CGE cINs. During CGE cortical migration,
Prox1 controls the integration of CGE-derived interneurons in
superficial layers, as well as the morphology and properties
of these cells (Miyoshi et al., 2015). All these studies show
that cell fate determination and migratory decisions are strictly
linked and tightly controlled during interneuron development.
Thus, committed interneuron progenitors must express a distinct
combination of transcriptional regulators that cell-intrinsically
control their migratory choice and contribute to their distinct
laminar position in the adult brain. We are just starting to
untangle the complex molecular network regulating the different
properties of GABAergic interneurons in the cerebral cortex.

From the Preoptic Area (POA) to the Medial
Amygdala and Caudal Cortex
The POA is a region situated in the ventral part of the
telencephalon. Although some authors consider this region as
part of the diencephalon (Kanatani et al., 2015), the POA
is located at the border of the subpallium with the alar
hypothalamus, and expresses the telencephalic marker Foxg1
(Tao and Lai, 1992; Hirata et al., 2009; Medina et al., 2011;
Bupesh et al., 2011b; Ferran et al., 2015). The POA is subdivided

into two different regions (POA1 and POA2) depending on the
expression profile of different TFs (Flames et al., 2007; Figure 2).
The POA2 domain is characterized by the expression of Dbx1
and generates GABAergic neurons destined to the cerebral cortex
and amygdala (Gelman et al., 2009, 2011; Hirata et al., 2009;
Kanatani et al., 2015; Figures 2A–C′ dark red region Figure 2C).
These Dbx1-expressing derivatives from the POA2 region are
cINs and projecting amygdalar neurons. In the cerebral cortex,
POA-Dbx1 derivatives mature into PV+ and SST+ interneurons
of lower cortical layers (Gelman et al., 2011), whereas in the
amygdala, they are situated mainly in the medial amygdala
(MeA), where the majority express nNOS as a marker of medial
nuclei projection neurons (Hirata et al., 2009; Carney et al., 2010).
The way these cells reach caudal regions of the telencephalon
or the cerebral cortex was nicely illustrated by Hirata et al.
(2009) and Kanatani et al. (2015). Using theDbx1 reporter mouse
line, Hirata et al. showed that GABAergic neurons generated
from Dbx1+ progenitors in the POA2 region migrate towards
the caudal part of the telencephalon. This migratory stream
was called Preoptic Amygdala Stream (PAS) (Figure 2B). Focal
electroporation in the POA2 region confirmed the existence of
this path (Kanatani et al., 2015), even if the authors included
it as part of the CMS. Electroporated cells could reach the
MeA (at the level of the CGE), while other cells continued
to migrate farther to the caudal cortex and hippocampus or
laterally toward the neocortex. Neurons generated in the POA2
express the MGE marker Lhx6, but also COUP-TFII, which
controls the expression of the Semaphorin Sema3F receptor
Neuropilin 2 (Nrp2) and allows cells to migrate through the PAS-
CMS toward the medial amygdala and caudal cortex (red arrows
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FIGURE 2 | GABAergic neurons generated from the POA2 region migrate caudally through the posterior amygdala stream (PAS). (A) Illustration of a whole embryonic

brain at E13.5 showing the migratory paths (red and blue arrows) taken by the GABAergic neurons generated from the POA2 region, represented in dark red color. (B)

Schematic of a horizontal section at the level of the plane shown in A. Neurons generated from the POA2 region express COUP-TFII and Nrp2 and migrate toward the

HC, MeA, and caudal Cx via the PAS and CMS (red arrows). The red area represents the PAS. Neurons that downregulate COUP-TFII and therefore Nrp2 (blue

arrows) detach from PAS and migrate across the striatum (Str, green color area) toward the cerebral cortex. (C) Schematic of a coronal section showing the different

areas from which newly-generated GABAergic neurons migrate caudally. The POA is subdivided into POA1 and POA2 subregions while the Dg (also called AEP,

cvMGE or pMGE by different authors) corresponds to the ventral region of the MGE. The POA2 progenitor domain (pPOA2) contains Dbx1+ progenitors, which

produce GABAergic neurons migrating through the PAS (Hirata et al., 2009; Kanatani et al., 2015). The POA1 mantle (POA1m) is Nkx5.1+ but fail to generate neurons

migrating caudally (Gelman et al., 2009; Kanatani et al., 2015). The Dg generates somatostatin (SST)-expressing neurons probably by also taking a migratory stream

toward the caudal telencephalon (Puelles et al., 2016b). (C′) In situ hibridization showing Dbx1 expression in the POA2 region at E12.5.

Figures 2B,C). The population that downregulates COUP-TFII
and thus Nrp2 expression, can cross the Sema3F-expressing
striatum and migrate laterally to the cerebral cortex (Marin et al.,
2001; Lin et al., 2010; Tang et al., 2012; Kanatani et al., 2015)
(blue arrows in Figures 2A,B).Moreover, knocking downCOUP-
TFII or Nrp2 by shRNA resulted in an increased number of
cells reaching the cortex rostrally, and conversely, overexpressing
these two factors produced an accumulation of neurons in the
medial amygdala. This molecular switch between COUP-TFII
and Nrp2 allows thus neurons generated in the POA2 to be
differently distributed. The CGE interneurons destined to the
caudal cortex and hippocampus take the same path as POA2
GABAergic neurons through the CMS (Yozu et al., 2005). The
role of COUP-TFII thus seems to be similar in both populations
(Kanatani et al., 2008, 2015) and allows interneurons via Nrp2 to
properly respond to their environment.

The Controversial Origin of Somatostatin
(SST) Interneurons
There are however also other GABAergic neuron populations
taking the same caudal migratory path through the PAS-CMS.
This is the case of SST+ neurons generated in the diagonal
area (Dg) of the telencephalon. The Dg, previously called
anterior endopeduncular area (AEP), caudal or caudo-ventral
MGE (cMGE, cvMGE), is the region situated between the POA

and the pallidum in the pMGE5 subdomain, according to the
characterization of Flames et al. (2007; dark yellow region in
Figure 2C). The Dg is the most likely origin of the SST+
neurons in the telencephalon (Garcia-Lopez et al., 2008; Real
et al., 2009; Bupesh et al., 2011a; Puelles et al., 2016b; Hu et al.,
2017), although this population was previously proposed to be
generated in the dorsal part of the MGE (Xu et al., 2004; Butt
et al., 2005; Flames et al., 2007; Fogarty et al., 2007; Ghanem
et al., 2007; Wonders et al., 2008; Sousa et al., 2009). The final
targets of SST+ neurons include pallial and subpallial structures,
such as the neocortex, claustrum, pallidum, and striatum, as
well as the caudal telencephalon, such as the entorhinal cortex,
medial and cortical amygdala and hippocampus. Based on the
SST expression profile at early stages of mouse development,
it was suggested that SST+ neurons destined to the posterior
telencephalon migrate caudally through the amygdala along a
ventral stream named by L. Puelles, Subventricular Subpallial
Migratory stream (SvSpM) (Puelles et al., 2016b). This SST+
migratory path is probably the same described by Medina and
colleagues in horizontal organotypic cultures (Bupesh et al.,
2011a,b). In these experiments, they showed that cells labeled in
the Dg (or cvMGE) with a cell tracker are calbindin+ neurons
migrating caudally to the posterior medial amygdala. Although
no co-labeling with SST was shown, this stream of cells most
probably corresponds to the SST+ neurons previously shown
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in horizontal sections (Bupesh et al., 2011a). In addition, the
same authors noticed that some of the cells generated in the Dg
leave the main stream and start to migrate laterally toward the
striatum, dorsal pallidum, globus pallidum and piriform cortex;
however, due to the technical limitations of horizontal sections,
they could not conclude whether these cells can also reach the
cortex.

These studies describing neurons originating from a ventral
MGE region and traveling caudally make us wonder whether
they all refer to the same population or, on the contrary, they
represent different GABAergic subpopulations undertaking the
same path, before reaching the posterior telencephalon. In the
neocortex, some of the cINs generated from Dbx1-expressing
progenitors are co-labeled with SST (Gelman et al., 2011),
suggesting a partial origin of this population from the POA.
However, in the case of the postero-medial amygdala (MeP),
Dbx1-derivatives and SST+ neurons represent most probably
two distinct populations distributed in different subnuclei.
Differently, nNOS projecting neurons generated in the POA2 are
localizedmainly in the postero-ventral medial amygdala (MePV),
whereas SST+ neurons are localized primordially in the dorsal
part (MePD) (Hirata et al., 2009; Carney et al., 2010; Puelles et al.,
2016a,b). It is anyway remarkable that both populations take the
samemigratory pathway to arrive at the posterior amygdala, even
if it is still unclear whether they use the same cues and strategy to
reach their final targets.

From the dLGE-SVZ to the Olfactory Bulb
(OB)
Olfactory bulb interneurons (OBi) are a peculiar subset of
local connection neurons that modulate the olfactory circuitry,
which depends on activity from late postnatal to adult stages
(revised in Lledo and Valley, 2016). Since this population
represents one of the two neurogenic niches generated during
adult stages in mammals, several studies have focused on
understanding how the different steps of adult neurogenesis
are molecularly controlled, and how these stem cells migrate
and integrate into the OB. Interestingly, OBi are not only
composed of GABAergic neurons, but also of dopaminergic
tyrosine hydroxylase (TH) cells and of a small subpopulation of
glutamatergic juxtaglomerular interneurons (Halász et al., 1982;
Baker et al., 1983; McLean and Shipley, 1988; Brill et al., 2008).
In general, OBi can be classified into periglomerular (PGCs) and
granule cells (GCs), each group receiving distinct inputs and
controlling the OB circuitry in different ways (revised in Kosaka
and Kosaka, 2016; Lledo and Valley, 2016). PGCs surround
the glomeruli and are subdivided into three different non-
overlapping subtypes depending on the expression of calretinin,
calbindin, and TH (Kosaka and Kosaka, 2005; De Marchis et al.,
2007; Kohwi et al., 2007). GCs instead are primarily calretinin-
expressing cells located in the mitral and granular cell layers
(MCL and GCL, respectively). Although several studies have
mainly focused on OBi neurogenesis during adult life, it is
noteworthy to point out that OBi are also generated during
development from a restricted dorsal portion of the LGE (dLGE)
located at the PSB (Bulfone et al., 1998; Goldman and Luskin,

1998; Wichterle et al., 1999; Stenman et al., 2003), and from the
prospective OB (pOB) (Vergaño-Vera et al., 2006). As previously
mentioned, OBi precursors of the dLGE express Er81, Sp8, Meis2
and the serotonin receptor 5HT3aR (Figure 3A), in contrast to
progenitors located in the ventral LGE (vLGE) and expressing
the TF Islet 1 (ISL1). These cells will give rise to striatal neurons
instead of interneurons (Yun et al., 2001, 2003; Stenman et al.,
2003; Allen et al., 2007; Inta et al., 2008;Waclaw et al., 2009; Chen
Y. et al., 2012; Agoston et al., 2014; Touzot et al., 2016).

The first OBi are generated around E12.5 and reach the
OB around E14.5 in the mouse (Kaplan et al., 1985; Wichterle
et al., 2001; Pencea and Luskin, 2003; Stenman et al., 2003;
Yoshihara et al., 2005; Tucker et al., 2006; Batista-Brito et al.,
2008). However, while the peak of production of OBi is perinatal,
during the first week of postnatal life in rodents, neurogenesis
decline gradually through adulthood (Hinds, 1968; Lledo et al.,
2008; Batista-Brito and Fishell, 2009; Díaz-Guerra et al., 2013).
The inducible Dlx1/2-Cre mouse combined with a reporter line
showed that the first generated OBi are dopaminergic TH-
and calbindin-expressing cells, both contributing to the PGC
population (Batista-Brito and Fishell, 2009). Other studies have
instead shown that the majority of dopaminergic OBi, also called
small periglomerular cells (PG), are generated during adult life
from progenitors located in the VZ-SVZ of the subpallium and
cortex (Hack et al., 2005; Kohwi et al., 2005, 2007; De Marchis
et al., 2007; Young et al., 2007). During adult neurogenesis, most
of the newborn OBi are GCs reinforcing the idea that in general
PGCs are born earlier that GCs.

Although OBi are generated in specific neurogenic regions,
such as the dLGE and prospective OB, adult neurogenesis occurs
in different neurogenic niches. Progenitors located in the VZ and
SVZ facing the lateral ventricles of the pallium, striatum, and
septum can generate different subclasses of OBi (Corbin et al.,
2000; Waclaw et al., 2006, 2009; Fogarty et al., 2007; Inoue et al.,
2007; Kelsch et al., 2007; Kohwi et al., 2007; Merkle et al., 2007;
Young et al., 2007; Fernández et al., 2011; Weinandy et al., 2011;
Figure 3B). It should be emphasized that the primary progenitors
of OBi during adult neurogenesis are stem cells, called B1 cells,
and contain brain astrocyte-like features, as confirmed by their
expression of GFAP and GLAST (Doetsch et al., 1997; Ninkovic
et al., 2007). B1 cells can be quiescent or turn into an active state,
which is characterized by the expression of Nestin and EGFR
(Doetsch et al., 1997, 1999; Codega et al., 2014; Mich et al., 2014).
When B1 cells become active, they generate transit-amplifying
precursors, also called C cells, which produce at the same time,
other C cells and/or neuroblasts (type A cells). Neuroblasts
generated in each neurogenic niche differ in their expression of
distinct molecular markers (Baker et al., 2001; Saino-Saito et al.,
2004; Hack et al., 2005; Kohwi et al., 2005).

To reach the OB, neuroblasts migrate long distances,
tangentially and parallel to the cerebral ventricles; this peculiar
migratory behavior is known as the Rostral Migratory Stream
(RMS) (Altman andDas, 1969; Kishi, 1987; Doetsch and Alvarez-
Buylla, 1996; Lois et al., 1996; Figure 3C). While they are
migrating, neuroblasts can divide one, probably two more times
(Ponti et al., 2013). In the RMS, neuroblasts elongate their
cellular aggregates and establish homophilic interactions helping
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thus other neuroblasts to migrate. This type of behavior called
chain migration, is favored by GFAP+ astrocytes covering the
neuroblast chains and thus forming a glial tube that neuroblasts
use as a scaffold to migrate (reviewed by Gengatharan et al.,
2016). The proper formation of glial tubes and the contact
between neuroblast and astrocytes with blood vessel are essential
for neuroblast migration during adult stages (Soria et al., 2004;
Belvindrah et al., 2007; Snapyan et al., 2009; Whitman et al.,
2009; Eom et al., 2010; Kaneko et al., 2010). This differs however
from embryonic and early postnatal stages, where neuroblasts
move without the help of glial tubes or vascularized cells, and
indicates that mechanisms involved in regulating migration
within the RMS are different depending on the time it occurs
(Sun et al., 2010). Another factor that seems to be determinant
in neuroblast migration is the neural cell adhesion molecule
(PSA-NCAM), essential for the maintenance of neuroblasts in
chains (Tomasiewicz et al., 1993; Cremer et al., 1994; Ono

et al., 1994; Hu et al., 1996; Chazal et al., 2000; Battista and
Rutishauser, 2010). Other cell-cell adhesion and extracellular
matrix (ECM) proteins are also implicated in neuroblast chain
migration along the RMS. For instance, integrins expressed by
neuroblasts guide their migration by interacting with laminins
at the ECM. Neuroblasts also avail of chemomolecules expressed
by their final target (the OB) and locally within the RMS. The
presence of netrin-1 in the OB will assign the migratory direction
of neuroblasts expressing the netrin receptor DCC (Murase and
Horwitz, 2002). On the contrary, Slit proteins in the septum will
act as chemorepulsive for neuroblast expressing Robo receptors
(Nguyen-Ba-Charvet, 2004).

Once neuroblasts reach the OB, they migrate radially and
integrate into the different OB layers where they will differentiate
into interneurons (Figure 3C). The glycoprotein RLN plays a
double key role in OBi migration during the last steps of their
long journey toward the OB. On the one hand, RLN is primordial

FIGURE 3 | Olfactory bulb interneuron (OBi) generation and migration during development and adulthood. (A) Schematic of a coronal section at E14.5 showing the

origin of OBi in the dLGE. The VZ of the dLGE (green area), situated at the border of the PSB, generates OBi precursors expressing Er81, Sp8, Meis2 and the receptor

5HT3aR. (B) Schematic of a coronal section showing the neurogenic niche of OBi during adult stages. The VZ-SVZ in the dorsal wall facing the pallium and corpus

callosum (represented in blue color) generates OBi from Emx1+ and Pax6+ progenitors (Hack et al., 2005; Kohwi et al., 2005, 2007; Seri et al., 2006;

Willaime-Morawek et al., 2006; Merkle et al., 2007; Ventura and Goldman, 2007; Young et al., 2007). The VZ-SVZ in the medial wall facing the septum (represented in

pink color) express Sp8 and Zic1/3 (Morshead et al., 1994; Waclaw et al., 2006; Inoue et al., 2007; Merkle et al., 2007). The VZ-SVZ in the lateral wall facing the

striatum (represented in green color) express Ascl1 (also known as Mash1), Er81 and Gsx2 (Casarosa et al., 1999; Stenman et al., 2003; Parras et al., 2004; Allen

et al., 2007; Berninger et al., 2007; Young et al., 2007; Waclaw et al., 2009). (C) Schematic of a sagittal section of an adult mouse brain showing the different steps in

the generation, migration, and integration of OBi. Proliferation (in green): stem cells located in the VZ-SVZ of the lateral ventricles (B1 cells) can divide asymmetrically

for self-renewal and produce transit-amplifying precursors (type C cells). Finally, type C cells give rise to neuroblasts (type A cells) that can also undergo divisions while

they are migrating through the RMS to finally differentiate into OBi once they reach the OB. Chain migration (in yellow): neuroblasts migrate forming chains among

them and with the help of glial tubes, along the RMS before reaching the OB. Radial migration (in red): once OBi neuroblasts reach the OB, they detach from the RMS

and migrate radially to integrate into the different OB layers.
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for the correct organization of OB layers (Ogawa et al., 1995), and
on the other hand, RLN secretion by the mitral and tufted cells
is crucial for the radial migration of neuroblasts within the OB
(Hack et al., 2002). Other factors implicated in the detachment of
neuroblasts from the RMS and in driving them to their correct
OB location by radial migration are tenascin-R (Saghatelyan
et al., 2004) and prokineticin-2 (Ng et al., 2005).

The RMS is a special migratory path for several reasons. First,
because it occurs during adult stages in which the environment is
normally not very suitable for neural migration. Second, because
migrating cells are proliferative and still able to divide one or
two more times while migrating. Another important aspect to
mention is that the RMS is one of the longest migratory paths in
the CNS, and neuroblasts migrate in chains with a considerable
speed when compared to other migratory streams (Wichterle
et al., 1997; Nam et al., 2007). However, there are still several open
questions in the field, such as whether newborn OBi are involved
in olfactory information processing or behavior, and how they
become integrated into a mature system without disassemble it
(Lledo and Valley, 2016).

GLUTAMATERGIC NEURON MIGRATION
IN THE TELENCEPHALON

Glutamatergic neurons in the telencephalon are generated in the
dorsal telencephalon (dTel) or pallium. The pallium is subdivided
into medial, dorsal, lateral and ventral pallium (MP, DP, LP, and
VP respectively; Puelles et al., 1999, 2000, 2013; Medina et al.,
2004). The DP gives rise to the neocortex, while theMP generates
the hippocampal formation. The VP and LP pallia also generate
neurons that migrate to the claustrum, piriform and entorhinal
cortex, as well as to the amygdalar complex (Puelles, 2014; Puelles
et al., 2016a). The majority of glutamatergic neurons generated
in the VZ and SVZ of the embryonic pallium migrate radially
to reach their correct laminar positions. This general mechanism
applies to pyramidal neurons in the cerebral cortex, hippocampus
and cortical amygdala, as well as to mitral and tufted cells in
the OB. All these pallial structures are organized into layers
composed of different neurons. The proper radial migration of
glutamatergic neurons and therefore, the organization of the
cortical layers depends on secreted extracellular molecules, such
as RLN (D’Arcangelo et al., 1995; de Rouvroit and Goffinet, 2001;
Rice and Curran, 2001), and cell adhesion molecules, such as
integrins (Edmondson et al., 1988; Stitt and Hatten, 1990; Fishell
and Hatten, 1991; Anton et al., 1997; Adams et al., 2002; Franco
et al., 2011; Gil-Sanz et al., 2013).

There are however other glutamatergic populations that
migrate tangentially to reach their target structures, such as
(1) transitory glutamatergic neurons generated from Dbx1-
expressing progenitors at the VP that migrate tangentially to the
CP (Teissier et al., 2010, 2012); (2) subplate neurons generated
from the rostro-medial telencephalic wall (RMTW) that also
migrate caudally (García-Moreno et al., 2008; Pedraza et al.,
2014); (3) granule cell precursors that will form the dentate gyrus
of the hippocampus (Altman and Bayer, 1990; Nakahira and
Yuasa, 2005; Li et al., 2009; Li and Pleasure, 2014; Seki et al.,

2014) and (4) glutamatergic neurons generated in the septum
that migrate tangentially and caudally through the olfactory
tuberculum, olfactory cortex and POA (García-Moreno et al.,
2008; Ceci et al., 2012).

The Dorsal Pallium (DP) Not Only
Generates Neocortical Pyramidal Neurons
The DP is the subdivision of the pallium that will give rise
to the future neocortex. The neurons generated from the DP
migrate radially in an inside-outside gradient to form the 6-layer
neocortical structure. There are different molecules implicated in
each step during radial migration of these neurons. The cyclin-
dependent kinase 5 (cdK5) and its activators p35 and p39, for
example, play key roles in radial-glia guided migration, mainly
during nucleokinesis. In Cdk5 mutant mice, neocortical cells
from layers 4 to 2 fail to reach their correct positions, resulting
in an inverted cortical layer organization (Ohshima et al., 1996;
Gilmore et al., 1998).

The DP also generates glutamatergic neurons that will reach
the amygdala. For example, the nucleus of the lateral olfactory
tract (nLOT) is a 3-layer amygdalar structure originating from
different regions. Electroporation experiments have shown that
layers 2/3 cells of the LOT nucleus (nLOT2/3) are generated
from the most caudal pole of the DP (Remedios et al., 2007).
This territory expresses the TF Emx1 and is negative for
Sfrp2 and Wnt2b, markers of the VP and MP, respectively,
excluding these territories as the possible origin of nLOT2/3
cells (Figures 4A,B). However, nLOT2/3 neurons fail to be
generated in mutant mice in which the DP is highly affected,
providing thus strong support of a neocortical origin of this
population (Hevner et al., 2001; Shinozaki et al., 2002; Remedios
et al., 2007). Furthermore, nLOT2/3 neurons are characterized
by the expression of characteristic pallial markers, such as Tbr1
(Puelles et al., 2000; Medina et al., 2004; Remedios et al., 2004,
Figure 4C), NeuroD (D1, D2, D6), Neurogenin2 (Neurog2),
Lmo (1,2,3,4), and SCIP (Remedios et al., 2004, 2007). These
neurons are normally generated around E11.5-12.5 (Mcconnell
and Angevine, 1983; Remedios et al., 2007; Soma et al., 2009) and
then migrate rostrally via the Caudal Amygdaloid Stream (CAS)
to settle into layers 2/3 of the nLOT (green arrow Figure 4B).
RLN controls nLOT2/3 migration similarly to pyramidal cells
in the CP; however, in this case, RLN is expressed around the
CAS and not within the cell stream itself, forming in this way
a RLN-negative corridor. To respond to RLN, nLOT2/3 cells
express the cytosolic component Disabled homolog 1 (Dab1), and
in reeler mice (mice that are null for RLN or RLN cannot be
secreted), the CAS fails to form the characteristic V shape, has
an aberrant position and nLOT2/3 cells are located more dorsally
than expected (Remedios et al., 2007).

Notably, CAS neurons seem to migrate in two distinct phases,
tangentially and radially. In a first phase, neurons migrate
parallel to the VZ and therefore orthogonal to the radial glia.
In a later phase, cells turn and locate themselves along the
radial glia, forming the characteristic V-shaped path. But do
nLOT2/3 cells use radial glia to migrate during the late phase?
As previously mentioned, radial glia-dependent migration is
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FIGURE 4 | The dorsal pallium (DP) generates glutamatergic nLOT2/3

neurons. (A) Schematic of a whole embryonic brain at E15.5 showing the

plane for illustrations in (B,C). (B) Sagittal section representing the nLOT2/3

cells migration through the caudal amygdaloid stream (CAS). nLOT2/3 cells

are generated from the DP characterized by Emx1 expression in the VZ (yellow

region). The VZ of the VP (red region and Sfrp2+) and the VZ of the MP (blue

region and Wnt2b+) are adjacent territories that do not generate nLOT2/3

neurons. While they are migrating across the CAS, nLOT2/3 cells express

NeuroD, Tbr1, Zic2, and Dab1. The glycoprotein reelin (RLN) is expressed

around the CAS (orange region) and plays a key role in the guidance of

nLOT2/3 cell migration. (C) Imunostaining of a region boxed in B illustrating

the expression of Zic2 (in green) and Tbr1 (in red) in nLOT2/3 neurons along

the CAS.

controlled by the protein kinase Cdk5. In Cdk5 mutant mice,
CAS neurons stop at the level of the second phase migration,
but other amygdaloid nuclei are formed at appropriate locations
(Remedios et al., 2007), implying that CAS neurons can migrate
parallel to the ventricular surface, but are not able to form the
second phase migration. This, together with the requirement
of RLN for proper migration, strongly suggests that nLOT2/3
cells use similar migratory mechanisms as other DP derivatives.
However, these mechanisms are not required in the migration
of other components of the pallial amygdala, supporting the
different origin of this population.

Another key factor implicated in the correct migration of
nLOT2/3 neurons is a member of the ZIC family, Zic2, which
is implicated in axonal guidance of retinal ganglion cells,
thalamocortical axons, and midline crossing of dorsal spinal
cord neurons (Herrera et al., 2003; García-Frigola et al., 2008;
Escalante et al., 2013). A recent study has shown that Zic2 is
also required in cell migration in the telencephalon (Murillo
et al., 2015). Zic2 is expressed in Cajal-Retzius cells of the cortical

surface and in migrating nLOT2/3 cells along the CAS (Murillo
et al., 2015) (Figure 4C). CAS cells migrate aberrantly without
forming the typical V-shaped stream in Zic2 hypomorphic mice
and occupy a much wider area (Murillo et al., 2015). Therefore,
nLOT2/3 cells use several migratory mechanisms before reaching
their final destination.

Tangential Migration of Cajal-Retzius Cells
(CRCs) along the Cortical Surface
The migration of CRCs exhibits special characteristics that
are worth mentioning. CRCs represent a transitory population
playing key roles in the formation of cortical layers and neural
circuitries by secreting RLN (D’Arcangelo et al., 1995; Ogawa
et al., 1995; Rice and Curran, 2001). For a long time, it was
thought that CRCs were generated in the DP, however nowadays
there is a real consensus on their origin at the edges of the
pallium. The cortical hem, the VP and the pallial septum generate
molecular, morphological and electrophysiological different
subpopulations of CRCs that will migrate tangentially to be
distributed along the entire cortical surface (Yoshida et al., 2006;
Tissir et al., 2009; Griveau et al., 2010; Sava et al., 2010; Zimmer
et al., 2010; Dixit et al., 2011). This implies that CRCs generated
in the pallial septum, next to the anterior neural ridge, will
migrate from rostral to caudal, whereas cortical-hem derived
CRCswill migrate from caudal to rostral andVP ones from lateral
to dorso-medial cortex (Takiguchi-Hayashi et al., 2004; Bielle
et al., 2005; García-Moreno et al., 2007; Gu et al., 2009; Griveau
et al., 2010; Barber et al., 2015). But unlike other cell populations
described in this review, CRCs do not follow signaling cues
to any specific direction. Indeed, they are distributed along
the cortical surface by contact repulsion mediated by ephrin
interactions (Villar-Cerviño et al., 2013). Nevertheless, some
environmental factors can influence their migration (Ceci et al.,
2010). For example, CXCL12 expressed by meninges control
CRC dispersion in the cortical primordium via the CXCR4
receptor (Borrell and Marín, 2006; Paredes et al., 2006). On the
other hand, Sema3D\PlexinD1 signaling controls the motility
of CRCs modulating CXCL12/CXCR4 signaling (Bribián et al.,
2014). Radial glia cells in the cortex are also important for
their localization in the MZ (Kwon et al., 2011), and intrinsic
mechanisms, such as expression of the TFs Ebf2 and Zic2,
influence CRC motility, and therefore the final distribution of
hem- and septal-derived CRCs (Chiara et al., 2012; Murillo et al.,
2015)

Although CRCs migrate randomly along the cortical surface,
they maintain a certain gradient distribution. The higher density
of septal CRCs is localized mainly in the rostral cortical region,
hem-derived CRCs are preferably in medial and caudal cortex,
and VP ones are distributed mainly in the lateral cortex
(revised in Barber and Pierani, 2016). The gradual distribution
of the different CRC populations seems to play a role in
cortical arealization. Ablation of one of the these subpopulations
or changes in their migration speed partially affects cortical
arealization, suggesting that CRCs can act as mobile patterning
units during area mapping (Borello and Pierani, 2010; Griveau
et al., 2010; Barber et al., 2015; Barber and Pierani, 2016).
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FIGURE 5 | The long route of the mGluR1/Lot cells toward the olfactory bulb (OB) and cortex. (A) Schematic of a coronal section at E12.5 showing the different

structures around the TE. (B–F) Coronal sections illustrating the expression of Wnt3a, Tbr2, Tbr1, Pax6, Emx2, Wnt8b, and mGluR1 (Grm1) in the LTE, caudal hem

(C-hem) and TE mantle at E12.5. Images taken from Ruiz-Reig et al. (2017). (G) Schematic of a whole embryonic brain at E12.5 showing the migratory path taken by

the mGluR1/Lot cells along the prospective LOT territory (LOTt), and indication of the planes used for G1 and G2 illustrations. The dashed line represents the PSB.

(G1,G2) mGluR1/Lot cells are generated from the LTE (yellow region) and then migrate to the mTE crossing the diencephalon-telencephalon boundary (DTB) to reach

the posterior tier of the LOTt. Once they reach the LOTt, mGluR1/Lot cells migrate rostrally through this territory along the PSB. The mGluR1/Lot cell population is

composed mainly of cells expressing mGluR1 and Tbr2 (the prospective pAOB mitral cells, orange dots) and of a small population expressing mGluR1 and 1Np73

(Cajal-Retzius cells, violet dots). Netrin 1 (represented in light blue color) is expressed in the VZ of the ganglionic eminences and in the olfactory tubercle and acts as

an attractant cue for mGluR1/Lot cells. The semaphorin Sema3F (represented in orange/red color) is a repulsive cue for migrating mGluR1/Lot cells and it helps in

confining this population to the LOTt. (H) Schematic of a whole embryonic brain between E15.5 and E18.5. At E15.5, the prospective pAOB mitral cells have reached

the posterior tier of the AOB and the lot-Cajal-Retzius cells are located around the AOB and in the piriform cortex (pink area). A secondary migration of lot-Cajal-Retzius

occurs when they switch off mGluR1 expression (empty violet dots), and then migrate dorsally from the piriform cortex to the neocortical surface (violet arrows).

Finally, there is also a special CRC subpopulation that
migrates from caudal to rostral following a specific migratory
path controlled by several chemomolecules. These are the CRCs
generated in the thalamic eminences and described below in the
next paragraph.

The Lateral Thalamic Eminence (LTE)
Generates Glutamatergic Neurons
Migrating to the Olfactory System and
Cortex
The dorsal part of the telencephalon, the pallium, is very
expanded in mammals with a highly sophisticated cerebral
cortex. The cortical hem, located in the roof of the telencephalon,

is continuous with the lateral part of the thalamic eminence
(TE) in its most caudal edge (Ruiz-Reig et al., 2017; Figure 5A).
Although the TE is located in prosomere 3 of the diencephalon,
the lateral subdomain of the TE can be considered a transitory
zone between the telencephalon and the diencephalon.Moreover,
the TE and in particular the lateral TE (LTE), has pallial
characteristics, as confirmed by the expression of the pallial
markers Pax6, Emx2, Wnt8b, Ngn2, Tbr2, and Tbr1, and
hence, with features more of telencephalic structures than of
diencephalic ones (Ruiz-Reig et al., 2017; Figures 5A–E). The
TE is a source of cells positive for the metabotropic glutamate
receptor mGluR1 destined to the piriform cortex and olfactory
bulbs (Huilgol et al., 2013; Ruiz-Reig et al., 2017; Figure 5F). This
population can act as guidepost cells for the lateral olfactory tract
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(LOT) and are therefore called lot cells (Sato et al., 1998). The
lot cells were visualized for the first time using the monoclonal
antibody (mAb) lot1 that recognizes the glutamate metabotropic
receptor mGluR1 (Sato et al., 1998; Hirata et al., 2012), and
for this reason they are also named mGluR1/Lot cells. They
were believed to originate from the DP (Tomioka et al., 2000;
Kawasaki et al., 2006; Ito et al., 2008), but a recent study
showed strong evidence that their main origin is the TE (Ruiz-
Reig et al., 2017). These cells are generated specifically from
the LTE and then migrate ventrally through the diencephalic-
telencephalic boundary (DTB) to the posterior part of the
prospective LOT territory (pLOTt), the area where the LOT
will develop (green region in Figure 5G). Once they reach this
region, mGluR1/Lot cells migrate rostrally along the external
PSB (Figures 5G,G1,G2). These cells represent a heterogeneous
neural population composed of precursors of the posterior
accessory olfactory bulb (pAOB) mitral cells and of a small
portion of 1Np73+/mGluR1+ cells, most likely CRCs (Huilgol
et al., 2013; de Frutos et al., 2016; Ruiz-Reig et al., 2017).
Besides mGluR1, the two populations share the expression of the
glycoprotein RLN and the TFs Tbr1 and Lhx5 (Ruiz-Reig et al.,
2017).

From around E13.5, precursors of the pAOB cells continue
to migrate rostrally to populate the pAOB, where they will
integrate as mitral cells. During this migration, they express
some general mitral cell markers, such as Tbr2, Tbr1, and RLN,
and specific markers of the pAOB, such as Lhx5, AP-2α and
COUP-TFI. In fact, AP-2α and COUP-TFI expressions define two
waves of migrating neurons. While the first neurons reach the
pAOB (E13.5) and are characterized by AP-2α expression, the
second migration of COUP-TFI-positive/AP-2α-negative cells
will colonize the pAOB two days later (E15.5) (Ruiz-Reig et al.,
2017). Nevertheless, a small fraction of mGluR1+ cells situated
in the piriform cortex at E12.5 express the TF 1Np73, but is
negative for Tbr2. This discrete population (around 15–18% of
the mGluR1+ population located in the LOT region at E12.5) is
likely to represent CRCs migrating through the piriform cortex.
The mGluR1+p73+ cells in the LOT territory are also generated
from the LTE and migrate through the LOTt to disperse between
the MZ of the piriform cortex and the external region of the
AOB (Ruiz-Reig et al., 2017). A recent work shows a secondary
tangential migration of this population toward the neocortex at
around E14.5-E15.5, at a time when they downregulate mGluR1
expression (violet arrows in Figure 5H). This late migration
supplies a subpopulation of CRCs to the cortex essential for the
correct wiring of neocortical circuitry (de Frutos et al., 2016).

The exact location of themGluR1/Lot cells is controlled during
development by multiple guidance molecules. They express the
receptor Nrp2, whereas Sema3F is present in the mantle zone of
the GE and avoids mGluR1/Lot cells to enter these territories,
thus confining them to the LOTt (red region in Figure 5G1).
In Nrp2- or Sema3F-deficient mice (Nrp2−/−, Sema3F−/−),
mGluR1/Lot cells aremore spread and abnormally invade the GE;
however, even if they are in aberrant positions, the formation
of the LOT seems to be normal (Ito et al., 2008). Netrin1-DCC
signaling is also implicated in the correct positioning of the
mGluR1/Lot population. Netrin1 is distributed in the VZ of the

GE and in the olfactory tubercle (blue region in Figure 5G1),
whereas its receptor DCC is expressed in mGluR1/Lot cells.
However, in Netrin1- and DCC-deficient mice (Netrin−/−,
DCC−/−), the location of mGluR1/Lot cells is only weakly
affected in the LOTt, and LOT axons have modest deficits in their
trajectories (Kawasaki et al., 2006).

Posterior AOB mitral cells andmGluR1+ CRCs are generated
from the LTE and use the same migratory path to reach the
piriform cortex and the AOB. It is interesting to note that the
LTE, similarly to other CRC origins, is situated at the edge of the
pallium and is proposed to act as a signaling center for forebrain
patterning (Adutwum-Ofosu et al., 2016). Therefore, the TE can
be considered part of the hem system together with the VP, the
cortical hem and the septum (Roy et al., 2014).

CONCLUSIONS AND PERSPECTIVES

In this review, we have discussed different populations that
migrate long distances during mouse brain development before
being incorporated into distinct neuronal circuitries. However,
an obvious question that comes up is: why are these neurons
not generated locally? The answer most probably lies within
the complexity of the nervous system. Different regions of the
telencephalon are specialized in generating distinct classes of
neurons, and conversely, the nervous system needs several types
of cells to properly work; thus, neurons will migrate short or
long distances depending on where they are needed. The most
representative case comes from the OB, which is an evagination
of the rostralmost part of the cortex. The OB receives at least
three neural populations not generated locally: CRCs, OBi, and
pAOB mitral cells. OBi are generated in the subpallium far away
from the OB, and therefore they must migrate tangentially and
rostrally to reach the OB through the RMS.

But why are the mitral cells of the posterior tier of the
AOB generated in the LTE? One hypothesis could be that this
population retains specific features essential for the information
processing implicated in aggressive/defensive behaviors, whereas
mitral cells located in the anterior AOB are required for
processing information related to mating behaviors (Halpern and
Martínez-Marcos, 2003). Another feasible hypothesis would lie in
the fact that both, the TE and the AOB, are very evolutionary
conserved structures. For instance, the TE is already present
in non-amniotic vertebrates (fish and frog), whereas other
structures more related to the neocortex, such as the cortical hem,
is absent (Roy et al., 2014). In mammals, the pallium is the most
complex and, in terms of evolution, the most recent structure,
which hugely increases in size by anatomically keeping the TE
away from theOB (Medina andAbellán, 2009). However, in other
vertebrates such as the lizard, the OB is very large and the TE
seems to form a continuum with the pallial septum making the
migration from the TE to the AOB more feasible (Desfilis et al.,
2017). Indeed, the migratory pathway from the TE toward the
AOB is conserved in non-amniotic vertebrates, as observed in the
frog Xenopus laevis (Huilgol et al., 2013).

The amygdaloid complex is also an evolutionary conserved
structure related to the olfactory system (Medina et al., 2011). We
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have discussed how different GABAergic populations, generated
in the ventral MGE and POA, migrate caudally to colonize
the postero-medial amygdala besides other caudal structures.
On the other hand, glutamatergic neurons generated from the
DP migrate in opposite directions to integrate into nLOT2/3
neurons. The medial amygdala receives information from the
AOB and is thus considered to be part of the vomeronasal
amygdala, whereas nLOT cells receive inputs from the
main OB.

Finally, there are other neuronal populations with extra-
telencephalic origins that cross the telencephalon along their
migratory trajectories. For instance, the Gonadotropin-releasing
hormone (GnRH) neurons are generated in the olfactory
placode/vomeronasal organ and then migrate along the caudal
branch of the vomeronasal nerve to reach the hypothalamus
(Schwanzel-Fukada and Pfaff, 1989; Wray et al., 1989). On
the contrary, OTP-expressing neurons generated in the lateral
hypothalamus migrate rostrally and then caudally to finally settle
in the medial and postero-medial cortical amygdala (García-
Moreno et al., 2010).

All these migratory paths have in common that they need to
travel long distances during development or during adult life,
as is the case of OBi. Longer distances in cell migration imply
that neurons in these streams will cross several environments
and, therefore will need to continuously change their strategies
in order to reach their appropriate targets. We just start to
understand what are the factors implicated in each step of
their migratory routes. Mutations of one of these cues could
lead to defective assembly of neural circuitries, and thus be
involved in neurodevelopmental diseases and/or psychiatric
disorders, whose symptoms usually appears at later stages.
For instance, recent studies have shown that cIN dysfunction
is directly related to psychiatric disorders and depression
(Marín, 2012; Fee et al., 2017). Defects in cIN generation and
migration will lead to altered number, ratio or integration
of these neurons in the cortical network producing thus
an imbalance between excitatory and inhibitory activity. For
example, COUP-TFI and COUP-TFII are implicated in the
generation of different cINs by promoting either SST identity
for COUP-TFII, or specifying VIP+ and CR+ cINs (i.e.,
CGE identity) for COUP-TFI (Lodato et al., 2011; Hu et al.,
2017). In addition, both TFs control the tangential migration
of ventral telencephalic cells (Tripodi et al., 2004) and guide
CGE neurons to their different migratory streams (Touzot
et al., 2016). COUP-TFI and COUP-TFII expression profiles
in interneurons are comparable between fetal human brains
and embryonic mice (Alzu’bi et al., 2017a,b), making these
nuclear receptors very good candidates directly implicated in

the integration of inhibitory interneurons in the human cerebral
network.

An important psychiatric condition, which has a high
prevalence in human patients, is the Autism spectrum disorder
(ASD). Individuals with ASD present neuroanatomical
alterations due to the vast heterogeneity of developmental
defects; one of them is the diminution of PV+ interneurons in
the prefrontal cortex (Ariza et al., 2016; Hashemi et al., 2017).
These interneurons, represented by chandelier and basket cells,

are generated in the MGE and then migrate to the neocortex by
tangential migration. Decreased number of PV+ interneurons
produces an imbalance between excitation and inhibition in the
cortical network, responsible for some of the ASD symptoms
(revised by Rubenstein and Merzenich, 2003; Varghese et al.,
2017). Interestingly, another structure affected in ASD patients
is the amygdala, which has fewer neurons compared to normal
individuals (Schumann and Amaral, 2006) and could explain
some of the cognitive and social deficits characterized by ASD.
In particular, the medial amygdala plays a fundamental role
in social-aggressive behaviors. This part of the amygdala is
composed by GABAergic and glutamatergic neurons generated
in several regions during development, such as the POA,
the cvMGE and the lateral hypothalamus, before converging
into the different MeA subnuclei via migration. Similarly
to the neocortex, alterations in the generation, migration
and integration of one population could lead to imbalanced
excitatory and inhibitory activity in the amygdala circuitries,
causing potential social behavior deficits, one of the major
symptoms observed in patients affected with ASD.
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