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Carcinoids and neuroendocrine tumors (NETs) are a heterogeneous group of tumors 
that arise from the neuroendocrine cells of the GI tract, endocrine pancreas, and the 
respiratory system. NETs remain significantly understudied with respect to molecular 
mechanisms of pathogenesis, particularly the role of cell fate signaling systems such as 
Notch. The abundance of literature on the Notch pathway is a testament to its complexity 
in different cellular environments. Notch receptors can function as oncogenes in some 
contexts and tumor suppressors in others. The genetic heterogeneity of NETs suggests 
that to fully understand the roles and the potential therapeutic implications of Notch 
signaling in NETs, a comprehensive analysis of Notch expression patterns and potential 
roles across all NET subtypes is required.
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iNTRODUCTiON

Notch has been studied for many years in the context of cancer, and over the years, the signaling 
pathways involved have become clearer. However, as these pathways are elucidated, the complexity 
of Notch signaling is revealed as well. It is now known that in addition to canonical Notch signaling 
where the activated Notch receptors can play tumor suppressive roles in some cancer types and 
oncogenic roles in others, non-canonical signaling is also active in some cell types and impacts 
signaling through phosphatidylinositol 3′ kinase (PI3K)/Akt, mTOR, NF-kB, and β-catenin (1–6). 
In neuroendocrine tumors (NETs), these same signaling pathways, as well as hairy enhancer of 
split 1 (Hes-1)/achaete–scute complex-like 1 (ASCL-1), have been shown to impact tumorigenesis 
via Notch signaling (7–14). Translationally, many of these pathways have modulatory or inhibitory 
drugs in development that may be applied to the treatment of NETs, but the role of Notch signaling 
in this diverse set of tumors must be more clearly defined. Here, we outline current knowledge of 
the Notch canonical and non-canonical signaling in NETs as well as highlight understudied areas.

CANONiCAL NOTCH SiGNALiNG

The Notch signaling pathway has long been recognized as a central player in cellular processes, 
such as proliferation, stem cell maintenance, and differentiation during both embryonic and adult 
development. Notch signaling is evolutionarily conserved across species and relies on the presence 
of the Notch receptor binding in trans to ligand present on a neighboring cell. In canonical signaling, 
ligand binding promotes the intracellular cleavage of the receptor by metalloproteases to release 
the active form of Notch, the Notch intracellular domain (NICD), which translocates into the 
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FiGURe 1 | Notch canonical and non-canonical signaling. Notch signaling via the canonical pathway is on the left portion of the figure. Membrane-bound 
Notch receptor is activated by binding with ligand on a neighboring cell, which results in cleavage by ADAM metalloproteases, followed by cleavage with  
γ-secretase. These cleavage events release the NICD, which then enters the nucleus to affect the gene transcription. The non-canonical signaling pathway is on the 
right portion of the figure and illustrates that non-canonical signaling may occur either in the presence or absence of ligand. Further, the signaling may occur via the 
membrane-bound, uncleaved Notch receptor or via the NICD. Non-canonical Notch signaling is independent of CSL and allows for interaction with PI3K/AKT/
mTORC2, Wnt/β-catenin, IKKα/β, NFκB, YY1, and HIF1α pathways at the cytoplasmic and/or nuclear level. Abbreviations: ADAM, a disintegrin and metalloprotease; 
NEXT, Notch extracellular truncation; NICD, Notch intracellular domain; Co-R, corepressor; Co-A, coactivator.
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nucleus and binds to transcription factor CBF-1/Suppressor of 
Hairless/LAG-1 (CSL), also known as RBP-Jκ, to activate expres-
sion of Notch-responsive genes (Figure 1) (15–18).

The number of Notch receptor genes varies by species, with 
Drosophila containing one Notch receptor, Caenorhabditis 
elegans having two redundant receptors, and mammals contain-
ing four Notch receptors, Notch1–4. The Notch receptors contain 
an extracellular domain that includes multiple epidermal growth 
factor (EGF)-like repeats that are essential for ligand binding 
and vary in length across the four mammalian receptors. The 
intracellular portion of Notch is critical for transmission of cel-
lular signals and contains an RBP-Jκ association module (RAM) 
domain, a nuclear localization signal (NLS), a seven ankyrin 
repeat (ANK) domain, and a transactivation domain that contains 
conserved proline/glutamic acid/serine/threonine-rich (PEST) 
motifs (Figure 2). The ligands for Notch receptors are varied and 
have been extensively reviewed in Ref. (17). In mammals, Notch 
ligands include Delta-like 1 (DLL1) and Delta-like 4 (DLL4), 
homologous to Drosophila Delta, along with Jagged 1 (JAG1) and 
Jagged 2 (JAG2), homologous to Drosophila Serrate. Delta-like 
3 (DLL3) may be an inhibitory ligand that sequesters Notch 
receptors in the cytoplasm (19). These ligands are responsible 
for the majority of known canonical Notch signaling effects and 
like Notch have multiple EGF-like repeats in their extracellular 

domains. These type 1 transmembrane proteins all contain an 
N-terminal sequence that along with the DSL (Delta/Serrate/
Lag2) motif and the first two EGF-like repeats are required for 
ligand-receptor binding. In contrast to the DLL ligands, the 
Jagged ligands have almost twice the number of EGF repeats 
and also contain an additional cysteine-rich region. The intracel-
lular portion of all Notch ligands lacks major homology with the 
exception that some, but not all, ligands contain multiple lysine 
residues and a C-terminal PDZ (PSD-95/Dlg/ZO-1) domain. 
Stimulation of the Notch signaling pathway ultimately results 
in the transcriptional activation of a discrete set of genes by the 
formation of a Notch transcriptional complex at the promoters of 
target genes or within enhancer or superenhancer regions (20). 
This complex includes the NICD, which translocates into the 
nucleus and displaces a corepressor complex to bind to CSL, first 
through interaction with the RAM domain followed by the ANK 
domain. This binding mediates a transcriptional switch to acti-
vate transcription from promoters containing CSL binding sites 
(GTGGGAA) and is dependent on the formation of a ternary 
complex, including one of mastermind-like 1–3 (MAML1–3) 
coactivators (21), and ski-interacting protein (SKIP) (22–24). 
This tertiary complex in turn recruits additional coactivator 
proteins such as the histone acetyltransferases CREB-binding 
protein (CBP)/p300 (25) or p300/CBP-associated factor (PCAF)/
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FiGURe 2 | Notch receptors and ligands. Abbreviations: SP, signal peptide; EGF-LR, epidermal growth factor-like repeats; LNR, Lin-Notch repeat; TMD, 
transmembrane domain; RAM, RBP-Jκ association module 23; NLS, nuclear localization signal; ANK, ankyrin/CDC10 repeat; TAD, transactivation domain; PEST, 
proline/glutamic acid/serine/threonine-rich motif; PDZ, PSD-95/Dlg/ZO-1 domain; CR, cysteine-rich domain; DSL, Delta/Serrate/Lag2 domain; NT, N-terminal 
domain. Posttranslational modifications are indicated by symbols: yellow diamonds, phosphorylation; red diamonds, acetylation/deacetylation sites; green square, 
prolyl isomerization site; blue circle, O-linked glucosylation; red triangle, O-linked fucosylation; orange star, xylosylation; and inverted orange triangle, ubiquitylation.
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GCN5 (26). In the absence of NICD, CSL actively represses 
transcription from Notch target genes, and a large number of 
repressor complex components have been identified, including 
histone deacetylases (27), silencing mediator for retinoid and 
thyroid hormone receptor/nuclear receptor corepressor (SMRT/
NCoR) (28), SMRT/HDAC-1-associated repressor protein/
Msx2-interacting nuclear target (SHARP/MINT)/SPEN (29, 30), 
CSL-interacting corepressor (CIR) (31), hairy and enhancer of 
split 1 (Hes1) (32), hairy-related transcription factor 1 (HRT1) 
(32), c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1) 
(33), and lysine-specific demethylase 5A/retinoblastoma-binding 
protein 2 (KDM5A/RBP2) (34), among others.

Endogenous NICD is relatively short lived. It is transiently 
present at Notch target promoters in response to ligand and 
degrades rapidly in part due to phosphorylation of the C-terminal 
PEST domain by cyclin C/cyclin-dependent kinase (CDK) 8 
(35). Phosphorylation of the PEST domain is followed by ubiq-
uitinylation and subsequent proteasome degradation (36, 37). 
Furthermore, phosphorylation near the ankyrin repeats of NICD 
has also been reported to negatively regulate Notch transcriptional 
activation by interfering with the formation of the Notch activation 
complex (38). On the contrary, phosphorylation of NICD by gly-
cogen synthase kinase 3β (GSK3β) occurs in a region C-terminal 
to the ANK repeats and increases the stability of NICD (39). 
Fringe enzymes (N-acetylglucosaminyltransferases) influence 

binding affinity between Notch receptors and specific EGF-like 
repeats by glycosylation (40–42). Glycosylation by fringe results 
in elongation of O-linked fucose residues on particular EGF-like 
repeats in Notch and prevents Notch activation by Jagged ligands, 
but not by Delta-like ligands (43, 44). Another form of O-linked 
carbohydrate modification on Notch receptors is O-glucose, 
which is attached to serine residues by the O-glucosyltransferase 
Rumi/POGLUT1 (45). O-glycosylated Notch EGF-like repeats 
can be further modified by the addition of xylose by glucoside 
xylosyltransferase (GXYLT)1 and GXYLT2 and xyloside xylosyl-
transferase, resulting in negative regulation of Notch signaling 
(46–48). Acetylation by CBP/p300 and PCAF/GCN5 enhances 
NICD stability (49, 50), as does prolyl isomerization by Pin1 
(51), whereas deacetylation of NICD and histones by Sirtuin 1 
(SIRT1) inhibits Notch signaling (52, 53). These posttranslational 
modifications may also be Notch paralog specific. For example, 
the Notch4 intracellular domain (Notch4-ICD) is the only Notch 
paralog with sites for AKT phosphorylation. Notch4-ICD that is 
phosphorylated by AKT then binds to 14-3-3ζ and accumulates 
in the cytoplasm, thereby blocking Notch4 gene regulation (54).

NON-CANONiCAL NOTCH SiGNALiNG

Notch signaling can also occur in a non-canonical fashion that is 
independent of CSL and can be ligand dependent or independent 
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(Figure 1) (1, 55). While canonical Notch signaling is well studied 
and crucial in various cellular processes as mentioned above, the 
known mechanisms of non-canonical signaling are limited but 
known to occur in cancer and some immune system cells (1). 
Non-canonical Notch pathways present an interesting new avenue 
of study and may reveal new targets for therapeutic intervention 
in the translational setting.

Notch signaling that occurs in the absence of CSL acts upon 
various cellular pathways that are involved in cancer and immune 
system responses. One such pathway is the Wnt/β-catenin pathway. 
The Wnt/β-catenin pathway is a conserved pathway that regulates 
cell pluripotency and cell fate decisions in development and post-
natal life. Aberrant functions or mutations in β-catenin have been 
associated with a number of cancers and other human diseases. 
Non-canonical Notch signaling converges upon the Wnt/β-
catenin signaling pathway and results in an  antagonistic interac-
tion between Notch signaling and Wnt/β-catenin (6, 55,  56). 
This interaction disrupts the regulation of developmental and 
disease processes in a context (tissue)-dependent manner (55) 
and leads to negative regulation of Wnt signaling by altering the 
level of active β-catenin activity (3). High levels of membrane-
bound Notch are associated with lower levels of active β-catenin, 
suggesting an inverse relationship between the two as well as a 
potential negative regulation of β-catenin by Notch (55). One 
example of this crosstalk is the loss of Notch1 in the epidermis 
of mice, which results in activated Wnt/β-catenin signaling and 
the formation of hyperplasia and cancer – both of which can be 
reversed by the introduction of exogenous NICD (57). In cervical 
cancer cells, Notch1 activates NF-kB via IKKα, which migrates to 
the nucleus in a Notch-dependent fashion (58); similarly, nuclear 
IKKα mediates the effect of Notch1 in ER+ breast cancer cells, 
whereby Notch1 activates ERα-dependent transcription in an 
IKKα-dependent fashion in the absence of estrogen (59).

In the immune system, non-canonical Notch signaling is 
involved in the activation and proliferation of CD4+ T cells as well 
as in the tumor-promoting effects of interleukin-6 (IL-6) (1, 60). 
These events rely on NF-κB and demonstrate crosstalk with other 
cellular pathways in the absence of canonical Notch signaling. 
Studies by the Osborne lab have established that even in the 
absence of CSL, activation and proliferation of CD4+ T cells does 
occur and requires Notch1 playing a major role in the signature 
CBM complex (CARMA1, MALT1, and BCL10) (61) by which 
T cells become activated through NF-κB (62). IL-6 has also 
been demonstrated as a Notch target gene in breast cancer cells, 
with the Notch-dependent activation of IL-6 reliant on IKKα/β 
function, but not on the canonical NF-κB signaling cascade (2). 
Furthermore, the Notch1 intracellular domain was shown to 
activate a non-canonical signaling cascade via mTORC2 and Akt 
as a means of transmitting extracellular nutrient sensing cues to 
promote cell survival (4, 63).

NeUROeNDOCRiNe 
TUMORS – eNTeROPANCReATiC

Carcinoids and NETs are a heterogeneous group of tumors 
that arise from the neuroendocrine cells of the GI tract, 

endocrine pancreas, and the lung (addressed separately below). 
Enteropancreatic NETs are slow growing tumors that can be 
associated with symptoms caused by peptide hormone release 
(“functional” NETs) and pose a significant threat due to high 
metastatic potential. The annual incidence of enteropancreatic 
NETs ranges from 2 to 5 per 100,000 patients in the United 
States and recent analyses suggest that this incidence will rise 
in the coming years (56, 64–66). The median overall survival 
(OS) for metastatic pancreatic and small bowel NETs is 24 and 
56 months, respectively (65). Typically, enteropancreatic NETs 
are classified based on observable factors, such as anatomical 
site, histology, grade, level of differentiation, and hormone secre-
tion, but due to the heterogeneous nature of the disease, this 
classification has led to confusion in both research and clinical 
settings. It is now recognized that NETs must be subdivided into 
pancreatic and non-pancreatic subgroups to reduce heterogene-
ity in clinical trials and patient care management. For a recent 
review on clinical management of NET patients, see Ref. (67). 
Progression-free survival (PFS), instead of OS, has become a 
frequently used endpoint in clinical trial design, and the degree 
of tumor differentiation has been noted as a key indicator of out-
come. Differentiated tumors have a much better prognosis than 
poorly differentiated tumors, which can have a 5-year survival 
of less than 4% (66).

The only curative enteropancreatic NET treatment is surgery, 
and this is only effective if the tumors are removed prior to 
metastasis. Somatostatin analogs (SSAs), VEGF pathway inhibi-
tors, mTOR inhibitors, and peptide receptor radionuclide therapy 
(PRRT) are currently in clinical practice and/or clinical trials, and 
have demonstrated moderate success. SSAs, such as octreotide, 
lanreotide, and pasireotide, have been used to control symptoms 
as a result of hormone hypersecretion (carcinoid syndrome) 
in these patients. More recently, SSAs have been noted to have 
antiproliferative effects on well or moderately differentiated NETs 
(68, 69), as reported for metastatic midgut NETs in the PROMID 
trial (70), and in pancreatic, midgut, or hindgut NETs in the 
CLARINET trial (71). Radiolabeled SSAs are also used in PRRT 
for a localized anticancer therapy in patients with inoperable 
or highly metastatic NETs. The first prospective, randomized 
trial, the NETTER-1 trial, is underway to compare radiolabeled 
[177Lu-DOTA0, Tyr3]octreotate with the standard of care high-
dose octreotide LAR in patients with inoperable, somatostatin 
receptor-positive metastatic midgut NETs (NCT01578239) with 
the primary endpoint of PFS. mTOR inhibitors, specifically 
everolimus or RAD001, showed efficacy the RADIANT-3 trial 
in patients with advanced pancreatic NETs when compared to 
placebo. Median PFS was 11  months compared to 4.6  months 
with placebo (72). The results of the RADIANT-3 trial led to FDA 
approval for everolimus for the treatment of advanced pancreatic 
NETs in 2011. Finally, the oral tyrosine kinase inhibitor sunitinib 
was studied in a prospective trial in patients with advanced, 
well-differentiated pancreatic NETs. PFS was 11.6  months in 
the sunitinib group compared to 5.5 months in the placebo arm 
(73). As with the RADIANT-3 trial, the increase in PFS resulted 
in FDA approval of sunitinib for advanced, well-differentiated 
pancreatic NETs. For a comprehensive review of all carcinoid 
and NET clinical trials, see Ref. (74). Given the heterogeneity 
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of NETs, a better understanding of drug function, mechanism, 
and optimal patient group selection will guide future therapeutic 
strategies and clinical trials.

The genetics of NETs may also play a role in treatment 
 development and selection. Genetic syndromes account for 
15–20% of NETs, including multiple endocrine neoplasia type 1 
and type 2 (MEN1 and MEN2), von Hippel–Lindau syndrome 
(VHL), neurofibromatosis type 1 (NF1), and tuberous sclerosis 
complex (TSC), but the remaining 80–85% of NET are consid-
ered sporadic. In an attempt to understand driving genetic muta-
tions that result in pancreatic NETs, Jiao et  al. (75) performed 
exome sequencing of 10 pancreatic NETs to identify mutated 
genes. This resulted in the identification of somatic mutations 
in a number of cancer genes, including MEN1, DAXX, ATRX, 
a number of genes involved in the mTOR pathway, and to a 
lesser extent TP53. A subsequent study by Banck et  al. of 48 
well-differentiated, small intestinal NETs (carcinoids) were ana-
lyzed by whole exome sequencing, and somatic mutations were 
identified in many cancer-associated genes, including FGFR2, 
MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, SMAD 
1, FANCD2, and BRAF (76). Analysis of 55 well-differentiated 
small intestinal NETs in a separate study identified 1230 genes 
with somatic variants (77), only 21 of which were in common 
with the Banck study. Further, upon comparison with the Jiao 
et al. study (75), only 17 genes with somatic mutations were in 
common with pancreatic NETs (77). These studies highlight the 
heterogeneity of NET tumors and reinforce that this group of 
tumors needs to be carefully studied, subgrouped, and analyzed 
to account for heterogeneity in terms of site of origin, level of 
differentiation, and underlying driver mutations. Interestingly 
enough and despite the somewhat disparate results, all of these 
studies have highlighted the putative role of chromatin remod-
eling, perhaps in concert with Notch signaling, in the etiology of 
enteropancreatic NETs.

NeUROeNDOCRiNe 
TUMORS – PULMONARY

Pulmonary NETs comprise a separate, diverse set of NETs that 
are classically described as falling on a continuum from well-
differentiated typical carcinoid (TC), to less differentiated atypi-
cal carcinoid (AC), to highly malignant and poorly differentiated 
small-cell lung carcinoma (SCLC), and large cell neuroendocrine 
carcinoma (LCNECs) (78). The distinction between these differ-
ent tumor types is based on the WHO clinicopathological criteria 
of the mitotic index (number of mitoses per 2 mm2, usually equal 
to 10 high power fields). The mitotic index of TC is <2, AC is 
2–10, whereas SCLC and LCNECs have mitotic indices >10 (78). 
Immunohistochemistry using neuroendocrine markers, such 
as synaptophysin, chromogranin A, and neural cell adhesion 
molecule (NCAM), are used to confirm neuroendocrine origin 
and define SCLC from non-SCLC. Although present at a much 
lower incidence than other pulmonary NETs, mixed pulmonary 
NETs can also form as a heterogeneous, combination of tumors 
consisting of mixtures of SCLC and LCNEC, or SCLC and non-
SCLC with neuroendocrine differentiation (78).

The incidence of pulmonary NETs is low, roughly 1.57/100,000 
individuals. TCs comprise 1–2%, and ACs make up only 
0.1–0.2% of pulmonary tumors, whereas SCLC and LCNET 
make up 20 and 1.6–3%, respectively. The OS is 92–100% for 
TCs and 61–88% for ACs, whereas the higher grade SCLC and 
LCNET have a much poorer prognosis with OS as low as 5% 
(79). Treatment options for pulmonary NETs are limited. The 
only curative therapeutic option for TC and AC is surgery. These 
tumors do not respond well to chemotherapy and exhibit a 
response rate as low as 22% (80). SCLC and LCNEC are rarely 
treated with surgery because patients often present initially with 
advanced stage disease. The first-line treatment is chemotherapy 
(typically etoposide combined with carboplatin), with initial 
response rates as high as 90%, but the majority of tumors recur 
and are resistant to further treatment (80). Studies in SCLC have 
evaluated the mTORC1 inhibitor everolimus in combination 
with standard of care chemotherapies cisplatin and etoposide, 
but dose-limiting toxicities and modest clinical efficacy suggest 
that this therapeutic combination is unlikely to be pursued 
(81). SSAs have been studied in a small number of clinical tri-
als on pulmonary NETs, and the efficacy of these drugs on TC 
and AC is still under debate. The RADIANT-2 trial included 
enteropancreatic NETs as well as pulmonary TC and ACs treated 
with placebo plus octreotide LAR or everolimus plus octreotide 
LAR. Subgroup analyses from this study found a median PFS of 
5.6 months for the few TC and AC patients who received only the 
octreotide LAR (82). A further trial is now open in Europe, called 
the LUNA trial which is a prospective, randomized, open-label, 
and three-arm design to study advanced lung (TC and AC) and 
thymic NET response to pasireotide LAR, everolimus, or both 
in combination (NCT01563354). In a phase II study in patients 
with relapsed or refractory SCLC, treatment with sunitinib was 
poorly tolerated and resulted in minimal gain in PFS (83). In 
addition to mTOR inhibitors, tyrosine kinase inhibitors, such as 
imatinib, have been studied in pulmonary NETs with disappoint-
ing results (84).

As with enteropancreatic NETs, the genetics of pulmonary 
NETs have also been explored in recent years. Genome-wide 
studies have been performed (85–88) to identify copy number 
alterations, point mutations, and changes in the transcriptome 
of SCLC. These studies identified copy number changes in the 
Myc family of oncogenes as well as potential driver mutations in 
genes such as TP53, RB1, CREBBP, EP300, MLL, and the SOX 
family. A separate study conducted whole-genome sequencing 
of 110 SCLC and identified biallelic inactivation of TP53, RB1, 
CREBBP, EP300, TP73, and RBL1/2, as well as inactivating 
mutations in Notch family genes in 25% of cases (88, 89). Exome 
sequencing of pancreatic and lung NET cell lines was reported 
earlier this year by Boora et al. (90). This study demonstrated 
a similar spectrum of mutant genes as those found in primary 
tumors, including TP53, RB1, EP300, and Notch, but also TSC2, 
GNAS, KDR, STK11, and APC. Interestingly enough, this analy-
sis of lung and pancreatic NET cell lines did not identify DAXX, 
ATRX, or MEN1, and the authors suggested that the genetic 
signatures of these cell lines were not consistent with primary 
tumors and data from these cell lines should be interpreted with 
caution (90).
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NOTCH SiGNALiNG AND NeTs

The NICDs of all Notch proteins are potentially oncogenic, 
and deregulated Notch signaling has been shown in many solid 
tumors, including breast (18, 91, 92), cervical (93), endometrial 
(94), esophageal (95), gastric carcinoma (96), glioma (97), head 
and neck (98), hepatocellular (99), lung (100), medulloblastoma 
(101), melanoma (102), mesothelioma (7), ovarian (103), pan-
creatic (104), prostate (105), renal (106), and rhabdomyosarcoma 
(107). Additionally, Notch signaling is deregulated in hemato-
logical malignancies as well, including T-cell acute lymphoblastic 
leukemia (T-ALL) (108, 109), Hodgkin lymphomas (110), some 
acute myeloid leukemias (111), B-cell chronic lymphoid leukemia 
(112), and multiple myeloma (113). These observations suggest 
that dysregulated Notch signaling prevents differentiation and 
leads to malignancies in some of these cancers, while in others, 
the oncogenic role of Notch is likely due to inhibition of apoptosis.

The abundance of literature on the Notch signaling pathway is a 
testament to the complexity of this process in different cellular envi-
ronments. This is especially true with a heterogeneous tumor group 
such as NETs. NETs remain significantly understudied with respect 
to molecular mechanisms of pathogenesis, and particularly Notch 
signaling. Mechanistically, Notch may contribute to carcinogen-
esis by inhibiting differentiation, promoting cellular proliferation, 
and/or inhibiting apoptosis, yet few studies have examined these 
endpoints in NETs. The relatively few studies published to date 
have focused primarily on the expression and function of Notch1. 
Contrary to the many tissue types discussed above, these studies 
suggest a tumor suppressive function for Notch1 in neuroendocrine 
lineage cells. This is consistent with role of Notch in Drosophila 
neurogenesis, where it prevents neuroectodermal cell differentia-
tion toward the neuronal lineage. In Drosophila embryos, loss of 
Notch results in a “neurogenic” phenotype, where differentiation 
toward the neuronal lineage is uncontrolled (114, 115).

It is plausible that loss of Notch1 signaling would allow NET 
cells to acquire or maintain a partially differentiated neuroen-
docrine phenotype while retaining the ability to proliferate. For 
example, recent studies (11, 12, 116–119) report that Notch1 
signaling is minimal or absent in pulmonary TC and AC and gut 
carcinoids. Yet these same cancers express high levels of human 
achaete–scute homolog 1 (hASH1), a basic helix-loop-helix tran-
scription factor regulated by Notch signaling. Shida et al. propose 
that the aberrant expression of hASH1 may reflect the decreased 
differentiation and maturation of gastrointestinal NETs, sug-
gesting that since hASH1 is not degraded temporospatially as 
it should be by Notch1-activated Hes1 and Hes5, the cells are 
arrested at an early stage of differentiation (119).

Studies in BON1 cells transiently overexpressing Notch1 NICD 
resulted in growth suppression, dose-dependent increases in Hes1, 
and a decrease in NET markers, confirming the tumor-suppressor 
function of Notch1 signaling in pancreatic NETs. In contrast, 
immunohistochemistry for Notch1, Hes1, Hey1, pIGF1R, and 
FGF2 antibodies on a tissue microarray of 120 well-differentiated 
NETs arising from the pancreas (n = 74), ilium (n = 31), and rec-
tum (n = 15) demonstrated elevated Notch1 expression in 100% 
rectal, 34% of pancreatic, and 0% of ileal NETs, and Hes1 expres-
sion in 64% of rectal, 10% of pancreatic, and 0% of ileal NETs 

(120), exhibiting significant variability in Notch1 signaling across 
different tissue types. Furthermore, in the lung, Notch signaling 
can either promote or inhibit lung cancer, depending on tumor 
types. For example, Notch1  activation is thought to promote the 
growth of NSCLC but inhibit that of SCLC (121, 122). Studies on 
the expression of other Notch receptors and ligands in NETs are 
few. Notch3 is known to play a tumor suppressive role in medullary 
thyroid carcinoma (123), but the role of Notch signaling in other 
NETs is understudied. Notch3 expression is decreased in SCLC 
compared to non-tumor lung tissue by immunohistochemistry, 
suggesting that Notch3 is involved in tumor suppression in SCLC 
(124). This may be the result of deregulated Notch functions in cell 
fate decisions that determine differentiation toward the epithelial 
Clara, ciliated, and pulmonary neuroendocrine cell lineages (125). 
In mouse models with allelic series deletion of Notch1–3, all three 
Notch receptors are required in an additive manner to regulate the 
abundance of neuroendocrine cells, whereas only contribution 
from Notch2 is required for Clara/ciliated cell development in the 
lung (126). There is limited information on Notch4 or the ligands 
involved in canonical Notch signaling in NETs. A comprehensive 
analysis of Notch expression patterns across all NET subtypes is 
required to fully understand the variability and redundant func-
tions of Notch receptors and ligands.

Additional complexities arise in the form of transcriptional 
coactivators and corepressors that bind to NICD to regulate gene 
expression, as a growing body of evidence suggests that Notch 
behaves as an oncogene or a tumor suppressor depending on 
cellular context. For example, Notch1 is an oncogene in most 
systems, but in skin (127), some squamous epithelia (128), vas-
culature (129, 130), and potentially NETs, it behaves as a tumor 
suppressor (15). It is well established that the NICD binds to 
CSL, MAML, SKIP, and p300 to activate transcription of Notch-
responsive genes via canonical Notch signaling. Similarly, the 
presence of varied corepressors in the absence of NICD also regu-
lates transcription in specific ways that may be underappreciated. 
SMRT (28), SIRT (53), and histone lysine demethylase (LSD1) 
(131), among others [reviewed in Ref. (132)] have all been identi-
fied as corepressors of Notch/CSL signaling. Notch activator and 
repressor complexes have also been implicated in the epigenetic 
regulation of Notch signaling. Many Notch coactivators and 
corepressors are histone acetyltransferases, histone demethylases, 
histone methyltransferases, etc. and as a part of a complex with 
CSL, actively remodel the chromatin at Notch-responsive target 
genes, providing an additional layer of reversible regulation (34). 
Chromatin sites accessible to Notch NICDs are also influenced by 
other transcriptional regulators that can act as cofactors or inhibi-
tors (133–135). A recent report by Liefke et al. (34) demonstrates 
that the histone demethylase KDM5A/RBP2 is a key component 
of the CSL repressor complex.

An additional layer of complexity is produced by paralog-
specific effects. While in theory, all Notch receptors signal through 
CSL, they are not completely redundant, and there are instances in 
which their functions are not only independent but opposite. In 
NSCLC, Notch1 and Notch2 have opposite effects on Akt (136). 
Notch2 has been described as a tumor suppressor in breast cancer 
cell lines (137), while Notch1, 3, and 4 are uniformly oncogenic 
in the breast. The mechanism of these paralog-specific effects is 
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unclear. They may involve “private” non-canonical signals, such as 
the inhibitory role of Notch4 on SMAD (138) or the stimulatory 
role of Notch1 on NF-κB (139). The oncogenic activity of Notch4 in 
the mouse mammary gland does not require CSL and is therefore 
completely or at least partially non-canonical (140). Alternatively, 
paralog-specific effects may be explained by quantitative differ-
ences in signal intensity. For instance, constitutively activating 
mutations in Notch1 and Notch2 are equally oncogenic in a subset 
of triple negative breast cancer (TNBC) (141), despite the fact that 
Notch2 has been described as a tumor suppressor in TNBC cell 
lines (137). In other words, variable signal intensity (the number of 
NICD molecules available as a result of overproduction or reduced 
degradation) may dictate different phenotypic consequences. This 
may be achieved perhaps by selective activation of chromatin sites 
with different affinity for Notch NICDs, similar to the well-known 
dose-dependent effects of p53, or by a combination of canonical 
and non-canonical effects that depend on NICD abundance. The 
role of paralog-specific effects has not been well characterized in 
NETs and is an area in need of further study.

Targeted therapies to modulate the Notch signaling pathway 
have been under development for several years, including neu-
tralizing antibodies, decoy ligands, blocking peptides, natural 
compounds, and γ-secretase inhibitors [reviewed in Ref. (18)]. 
The Notch 2/3 neutralizing antibody tarextumab inhibits tumor 
growth in mice not only in a variety of epithelial tumors but 
also in SCLC xenograft tumors (142). This suggests that either 
Notch2 or Notch3 inhibition can have therapeutic activity in 
SCLC cells or that non-cell autonomous effects on tumor stroma 
mediated by Notch2/3 inhibition are responsible for this effect. 
An interesting way of exploiting decreased Notch signaling thera-
peutically consists of targeting Notch ligands that are frequently 
overexpressed even in tumors with low canonical Notch signal-
ing. An especially effective strategy for NETs was pioneered in 
SCLC, which frequently expresses high levels of DLL3. DLL3 can 
function as a Notch inhibitor, by retaining Notch receptors into 
the cytoplasm or by cis-inhibition. A DLL3 mAb conjugated with 

a toxic chemotherapeutic agent was highly effective in preclinical 
models of SCLC. However, the naked mAb had no therapeutic 
activity, suggesting that DLL3 inhibition alone is not a viable 
therapeutic strategy in SCLC (14).

CONCLUSiON

The role of Notch signaling in NETs remains incompletely under-
stood, but the careful and systematic study of Notch signaling 
in these tumors may reveal unique therapeutic possibilities by 
leveraging drugs in development or approved for other indica-
tions. Paralog-specific effects may be prominent in these tumors, 
and there is some preliminary evidence that Notch1 and perhaps 
Notch3 act as a tumor suppressors in some of NETs but not 
in others. Further, expression data suggest that there may be 
significant heterogeneity among NETs in terms of expression of 
Notch receptors and target genes. The roles of Notch2, Notch4, 
and Notch ligands, if any, are understudied and remain unclear. 
It is known that DLL3 is expressed in some SCLC and is a useful 
targeting antigen for therapeutic immunotoxins, but the role of 
other ligands is unknown. The significant genetic heterogeneity 
of NETs suggests that individual molecular subtypes may have 
to be studied separately to dissect the roles of Notch signaling 
components and their potential therapeutic implications.
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