
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Cytotherapy 23 (2021) 101�110

Contents lists available at ScienceDirect

CYTOTHERAPY
journal homepage: www.isct-cytotherapy.org
Review
Antibodies at work in the time of severe acute respiratory syndrome
coronavirus 2
Kuttuvan Valappil Sajna*,**, Siya Kamat*
Department of Biochemistry, Indian Institute of Science, Bangalore, India
A R T I C L E I N F O

Article History:
Received 19 June 2020
Accepted 25 August 2020
** Correspondence: Kuttuvan Valappil Sajna, PhD,
Indian Institute of Science, Bangalore 560012, India.

E-mail address: sajnak@iisc.ac.in (K.V. Sajna).
* These authors contributed equally to this work.

https://doi.org/10.1016/j.jcyt.2020.08.009
1465-3249/© 2020 International Society for Cell & Gene
A B S T R A C T

In view of devastating effects of COVID-19 on human life, there is an urgent need for the licened vaccines or
therapeutics for the SARS-CoV-2 infection. Age-old passive immunization with protective antibodies to neu-
tralize the virus is one of the strategies for emergency prophylaxis and therapy for coronavirus disease 2019
(COVID-19). In this review, the authors discuss up-to-date advances in immune-based therapy for COVID-19.
The use of convalescent plasma therapy as the first line of defense to treat severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection has been established, with encouraging results. Monoclonal antibodies
(mAbs) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein or block the interac-
tion between SARS-CoV-2 RBD and the human angiotensin-converting enzyme 2 receptor have been found
to be very promising as a countermeasure for tackling the SARS-CoV-2 infection, and clinical trials are under-
way. Considering the counterproductive antibody-dependent enhancement of the virus, mAbs therapy that
is safe and efficacious, even in people with underlying conditions, will be a significant breakthrough. In addi-
tion, emerging immunotherapeutic interventions using nanobodies and cellular immunotherapy are promis-
ing avenues for tackling the COVID-19 pandemic. The authors also discuss the implication of mAbs as
mediators of cytokine storm syndrome to modify the immune response of COVID-19 patients, thus reducing
the fatality rate of COVID-19 infection.

© 2020 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.
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Introduction

The latest 21st century pandemic, coronavirus disease 2019
(COVID-19), by the etiological agent severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has led to a worldwide disrup-
tion of human activities. Globally, as of August 21, 2020, SARS-CoV-2
has infected 22,536,278 people and led to 789,197 deaths, as
reported by the World Health Organization [1]. The unprecedented
clinical challenges posed by human-to-human transmission of SARS-
CoV-2 begin with a range of clinical manifestations, including fever,
cough and dyspnea, with no or mild pneumonia. Severe cases present
with dyspnea, hypoxia and >50% pulmonary damage, requiring
intensive care for respiratory support, whereas critical cases are char-
acterized by respiratory and multi-organ failure. SARS-CoV is also
known to cause the common complication of acute respiratory dis-
tress syndrome, thus requiring mechanical ventilation [2].

The high morbidity and mortality rates worldwide demonstrate
that there seem to be differential responses in COVID-19 patients.
The global imperative of the current hour is to rapidly develop
immune therapy to prevent COVID-19 [3]. Hence, it is necessary to
understand the immunological basis of this infection, the implica-
tions of which will offer better insight into the development of new
therapies. Extracorporeal membrane oxygenation is one of the evolv-
ing strategies that can be utilized in treating patients with refractory
hypoxemia and altered lung properties despite optimal conventional
treatment, including mechanical ventilation [4]. Combining anti-viral
and anti-inflammatory treatments is also being investigated. Repur-
posing drugs for COVID-19, with the challenge of appropriate dosage,
remains an attractive treatment modality [5]. Many studies have also
tried to investigate the function of glucocorticoids in modulating
inflammation-mediated lung injury, thereby mitigating the progres-
sion of respiratory failure and mortality [6].

SARS-CoV-2: the escape pathogen

The first event in the chronology of SARS-CoV-2 infection is the virus
binding to a host cell. The cytopathic virus utilizes its spike glycoprotein
(S) located on its surface to bind with the angiotensin-converting
enzyme 2 (ACE2) receptor for cell entry. Various research groups have
targeted the receptor-binding domain (RBD) of SARS-CoV, SARS-CoV-2
and Middle East respiratory syndrome CoV (MERS-CoV) with neutraliz-
ing antibodies to combat the infection [7]. The S protein has two func-
tional subunits: the S1 subunit mediates cell attachment, and the S2
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subunit is involved in the fusion of viral and cellular membranes [8].
SARS-CoV-2 principally targets airway, alveolar and vascular epithelial
cells and lung macrophages, all of which express the ACE2 entry recep-
tor. SARS-CoV-2, in combination with ACE2, is endocytosed by cells. As
a result of the inability of ACE2 to regulate the renin-angiotensin sys-
tem, blood pressure and electrolyte imbalances occur [9]. Furthermore,
loss of ACE2 promotes accumulation of angiotensin II, which eventually
activates A disintegrin and metalloproteinase 17 activity, perpetuating
membrane shedding of ACE2, renin-angiotensin system overactivation
and inflammation [10,11].

Zhu et al. [12] investigated the morphogenetic process and cyto-
pathic effect of SARS-CoV-2 infection in organotropic human airway epi-
thelial cultures. It was observed that the virus infected both ciliated and
secretory cells, because of which the authors suggest the possibility of
the involvement of other receptors in addition to ACE2. This is because
ACE2 is mainly expressed on ciliated epithelial cells of human lungs
[12]. Viral infection and replication in upper respiratory tract epithelial
cells induce pyroptosis. This inflammatory phenomenon of pro-
grammed cell death is commonly observed in SARS-CoV-infected cells
too [13]. The epidemiology working group for novel COVID-19-infected
pneumonia epidemic response reported the differential fatality rate in
males and females, where the percentage of deaths was higher in males
[14]. This correlates with the immunoregulatory functions of estrogen
and testosterone [15]. A cellular serine protease, transmembrane prote-
ase serine 2, is observed to process the S protein and eventually contrib-
ute to host cell entry. Hence, transmembrane protease serine 2 is also a
potential drug target that has attracted a lot of attention in the field of
repurposed drugs for SARS-CoV-2 [14].
The immunity battles

The destruction of pulmonary cells initiates a local immune
response involving macrophages and monocytes, which release an
array of cytokines. This action also primes adaptive immunity by T
and B cells. Mild cases of COVID-19 are primarily resolved at this
stage. However, severe lung destruction is associated with a dysfunc-
tional immune response. Pyroptosis of airway epithelial cells releases
IL-1b, a potential trigger for the eventual inflammatory response
[16]. This wave of local inflammation is sensed by alveolar epithelial
cells and alveolar macrophages and leads to the secretion of pro-
inflammatory cytokines and chemokines like IL-6, interferon gamma,
monocyte chemoattractant protein 1 and interferon gamma-induced
protein 10. This starts the pulmonary recruitment of monocytes and
T lymphocytes into the infected site. Thus, the infiltration of lympho-
cytes into the respiratory airway manifests as T-cell lymphopenia,
which is observed in the majority of COVID-19 patients [13,17]. Like
SARS-CoV, the escape pathogen SARS-CoV-2 can sabotage the innate
response by antagonism of the interferon response and disrupt the
host protein translation process. This could potentially support viral
Table 1
Current therapies recommended for COVID-19 comorbidities.

Sl. no. Comorbidity Current therapy

1. Diabetes (type 1 and 2) ACE inhibitors and ARBs
2 Hypertension, cardiovascular diseases ACE inhibitors, ARBs, ibupr

and thiazolidinediones
3 Inflammatory lung diseases Macrolide or quinolone an

and steroids
4 Cancer Surgery or chemotherapy

5 Liver injury Macrolide or quinolone
antibiotics and steroids

6 Autoimmune diseases:
rheumatoid arthritis

Corticosteroids, NSAIDs,
acetaminophen and TNF

Sl. no., Serial number; ARBs, angiotensin receptor blockers; NSAIDs, non-steroida
replication and eventually manifest as pyroptosis-associated aberrant
inflammation in the lungs [13,18].

In most mild cases, recruited immune cells clear the respiratory air-
way, after which the immune response recedes. But a dysfunctional
immune response is observed in severe cases, which triggers a massive
cytokine storm that mediates extensive lung inflammation. The cyto-
kine storm involves elevated blood plasma levels of macrophage
inflammatory protein 1a (MIP1a), tumor necrosis factor (TNF), IL-2, IL-
7, IL-10, interferon gamma-induced protein 10, monocyte chemoattrac-
tant protein 1 and granulocyte-macrophage colony-stimulating factor.
A high population of CD14+CD16+ inflammatory monocytes, which also
contribute to the cytokine storm, is also observed in severe cases. In
addition, lymphocyte counts in peripheral blood are observed to signif-
icantly decrease [19]. Other observed consequences of T-cell lympho-
penia and cytokine storm are hyaluronan formation and pulmonary
edema. This contributes to severe breathlessness and vulnerability to
secondary infections. The ripple effect of the cytokine storm brings
about myocardial damage and multi-organ failure [3]. Transcriptomic
analysis of three COVID-19 patients has revealed a dynamic early
immune response [20]. After reaching the lowest point in respiratory
function, a peak in most inflammatory and cytokine signaling gene
expression, except expression in the IL-1 pathway, which preceded the
decrease in respiratory function, was observed.

B-cell immune response is concomitantly observed 1 week after
the onset of symptoms. The antibody response is observed against
nucleocapsid and S protein by week 3 of SARS-CoV infection symp-
toms. However, some COVID-19 patients do not develop long-lasting
antibodies [13,21]. Although many studies have made significant
inroads, a clear understanding of the important host immune factors
involved in the development of COVID-19 inflammation remains
incomplete.

COVID-19 and comorbidities

The most distinctive comorbidities seen in fatalities or severe
cases of COVID-19 are diabetes, cerebrovascular diseases, hyperten-
sion, coronary heart diseases and cancer. Since cells expressing ACE2
are normally found in the epithelial lining of the lungs, intestines,
kidneys and blood vessels, patients with these comorbidities are
more susceptible to SARS-CoV-2 [22]. Although efforts to develop tar-
geted immune therapies and vaccines are underway, many health
organizations are advocating the practice of yoga and Ayurveda and
maintaining a healthy lifestyle to boost immunity [23,24]. Most ther-
apies routinely prescribed for these comorbidities favor the gateway
of SARS-CoV-2 (Table 1).

Non-vaccine pharmacological swords against SARS-CoV-2

Although some laboratories are involved in repurposing old anti-
viral drugs for use with the novel virus, some are involved in
Risks Reference

Increased expression of ACE2, poor prognosis [25]
ofen Increased expression of ACE2, poor prognosis [26,27]

tibiotics Excess inflammation [26]

Increased severity due to delays in treatment
and low immunity

[28�30]

Excess inflammatory response [31]

inhibitors
Increased risk of secondary infection due

to immunosuppression
[32,33]

l anti-inflammatory drugs.
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designing targeted immune therapy. Remdesivir and lopinavir have
shown a potential anti-viral effect and are being clinically investi-
gated for safety and efficacy [34]. The efficacy of corticosteroid treat-
ment for lung inflammation is also being questioned because of
complications and delayed clearance of the infection [33]. Clinical tri-
als to validate the efficacy of the anti-malarial drug hydroxychloro-
quine, which is also used to treat certain autoimmune diseases (lupus
and rheumatoid arthritis); anti-cytokine therapies like IL-6 inhibitors
and mesenchymal stromal cell-based therapies in COVID-19 patients
are underway [35]. In such a scenario, where the production of an
effective vaccine and anti-viral medicines is underway, convalescent
plasma (CP) therapy and nanobodies have become exciting potential
non-vaccine pharmacological tools for prevention [36].

CP therapy: a pandemic savior?

CP therapy is a typical adaptive immunotherapy that has been
applied successfully to stem outbreaks of SARS, MERS, the H1N1 pan-
demic of 2009, poliomyelitis, measles and mumps [37,38,39]. How-
ever, the application of CP was not able to treat the Ebola virus. Since
SARS, MERS and COVID-19 share some similarities in the immunopa-
thogenesis of their etiological agent, CP is looked upon as a promising
option for treating COVID-19 [39,40]. It has been reported by Walls
et al. [41] that murine SARS-CoV S protein polyclonal antibodies
could inhibit S protein-mediated SARS-CoV-2 entry, shedding light
on the cross-neutralizing antibodies that target the S epitope.

A study by Duan et al. [42] on the feasibility of CP transfusion in
COVID-19 patients reported that a cohort of severely ill adult patients
tolerated the therapy, and it significantly increased the titer of neu-
tralizing antibodies, leading to reduction of clinical symptoms within
3 days and disappearance of viremia in a week. In a trial by China
National Biotec Group Co Ltd (http://www.chictr.org.cn/showprojen.
aspx?proj =49861), it was reported that 10 severely ill COVID-19
patients receiving CP therapy demonstrated significant improvement
in oxygenation and pulmonary injury. Mechanistically, the high-
titer-specific neutralizing antibodies could bring about complement
activation and phagocytosis [42].

The key factors associated with CP therapy are neutralizing anti-
body titer, treatment time point and safety. Earlier studies on CP ther-
apy for MERS-CoV demonstrated that the antibody titer should
exceed 1:80 for full clearance. Hence, finding donors who have high
titers is a prerequisite. It has been observed in SARS-CoV- and MERS-
CoV-infected individuals that IgG titer reaches undetectable levels
3�4 months after recovery. Hence, it can be concluded that neutraliz-
ing antibodies represent a transient humoral immune response, and
plasma from newly recovered patients should be more effective. The
neutralizing antibody titer of recently recovered COVID-19 patients
is above 1:640, which is higher than that seen in MERS patients [42].

SARS patients who were given CP before 14 days post onset of ill-
ness demonstrated a better outcome. Similarly, in the study by Duan
et al. [42], patients who received CP transfusion before 14 days post
onset of illness exhibited a spike in lymphocyte count and reduction
in C-reactive protein, which is a marker of inflammation and cytokine
storm. Patients who received CP after 14 days post onset of illness
showed relatively less improvement, emphasizing the importance of
an optimal transfusion time point. Stony Brook Hospital, New York,
has initiated trials to test CP therapy for COVID-19 patients (https://
clinicaltrials.gov/ct2/show/NCT04344535). Recently, the US Food and
Drug Administration approved access to CP for COVID-19 patients
while emphasizing the use of regulatory measures and clinical trials
before routinely administering this therapy [43]. It has been reported
that worldwide use of this therapy has mushroomed very rapidly
because of encouraging results in patients [44].

In a study by Joyner et al. [43], early implications of CP therapy in
500 individuals of diverse races and a median age of 62 years who
had severe or life-threatening COVID-19 were studied. The
researchers observed <1% severe adverse events, including 0.3% mor-
tality, within the first 4 h of transfusion. The 7-day mortality rate was
14.9%, which could also be due to underlying multi-organ failure,
sepsis and other significant comorbidities. The researchers discussed
the possibility of developing transfusion-related acute lung injury
(TRALI) and transfusion-associated circulatory overload (TACO),
which are often difficult to identify, as associated pulmonary compli-
cations post therapy. TACO results in pulmonary edema and hyper-
tension. TRALI is characterized by bilateral pulmonary edema with or
without acute respiratory distress syndrome. In certain cases, it has
been observed that an underlying lung injury or comorbidities in
COVID-19 patients further complicate the diagnosis of TACO and
TRALI, which could exacerbate transfusion-related risks in severe
patients [43]. Transmission of pathogens is also a major risk associ-
ated with CP therapy [40].

To maintain the activity of antibodies and inactivate the virus in
donated plasma, Duan et al. [42] applied Methylene Blue photochem-
istry, which is reported to be better than UV-C light. Earlier studies
on CP therapy for Ebola have reported transfusion-related acute lung
injury [42]. Antibody-dependent infection enhancement is an
uncommon risk that can suppress innate anti-viral immunity and
thus support intracellular growth of the virus. However, it may be
assumed that because of the high titer of neutralizing antibodies,
optimal time of infusion and transfusion volume, the risk of anti-
body-dependent infection can be avoided. Thus, the use of CP therapy
may be beneficial for COVID-19 patients [45].

Hyperimmune globulin treatment: a safe option?

Nguyen et al. [46] define hyperimmune globulin as a product that
is manufactured from the CP of thousands of donors with high anti-
body titers to a specific pathogen. It consists of an immune globulin
fraction with well-defined properties. Plasmapheresis-derived
plasma from recovered COVID-19 patients has been proposed to con-
tain polyclonal hyperimmune globulin. This approach has already
been explored for patients with SARS and severe influenza. It has
been routinely used to treat patients infected with hepatitis B and
rabies, proving its precedence and sound therapeutic plausibility.
Díez et al. [47] tested the hypothesized cross-reactivity using cur-
rently available intravenous immunoglobulin (IVIg) products Gamu-
nex-C and Flebogamma DIF with SARS-CoV-2, SARS-CoV and MERS-
CoV. The researchers observed noteworthy cross-reactivity to anti-
genic components, including the S protein. It has been anticipated
that vaccine administration may not be able to elicit an immune
response of high magnitude in acutely ill COVID-19 patients. Hyper-
immune globulin treatment could treat the viral infection and reduce
the cytokine storm in severely ill COVID-19 patients. To date, a num-
ber of mechanisms behind the anti-inflammatory effects of IVIg ther-
apy have been discussed, including anti-complement mechanisms,
anti-idiotypic neutralization of pathogenic auto-antibodies, regula-
tion via Fc receptors, enhanced production of regulatory T cells and
inhibition of Th17 differentiation [47]. Hence, there have been sug-
gestions for intravenous immunoglobulin therapy [48]. Although this
needs to be confirmed through clinical trials, Takeda is advocating
with regulatory agencies in the USA, Asia and Europe to expedite the
use of anti-SARS-CoV-2 polyclonal hyperimmune globulin in high-
risk patients with COVID-19 [49]. This could be a life-saving medicine
for thousands of patients near death because of SARS-CoV-2.

Therapeutic monoclonal antibodies against SARS-CoV-2: current
scenario and challenges

Many companies and academic laboratories across the world are
striving to develop therapeutic antibodies against SARS-CoV-2 for the
emergency prophylaxis and treatment of COVID-19. Regeneron,
AstraZeneca, GlaxoSmithKline, AbCellera, Eli Lilly and Company,

http://www.chictr.org.cn/showprojen.aspx?proj
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ImmunoPrecise, Mount Sinai Health System, Harbour BioMed and Vir
Biotechnology, Inc, are some of the companies actively involved in
developing functional therapeutic antibodies against SARS-COV-2
[50]. Regeneron’s double mAbs combination (REGN-COV-2) and a
therapeutic antibody (LY-CoV555) developed by Eli Lilly in collabora-
tion with Abcellera are in Phase 3 and Phase 2 clinical trials, respec-
tively. [https://clinicaltrials.gov/ct2/show/NCT04452318;https://
clinicaltrials.gov/ct2/show/NCT04427501].

Memory B cells of convalescent COVID-19 patient are the most
used source for the identification of high-affinity neutralizing anti-
bodies against SARS-CoV-2 (Figure 1). Another potential source is
human trial testing for vaccines since an early immune response to
the antigen is enough to release specific neutralizing antibodies with
a high binding affinity [51]. S-RBD is an effective candidate for use in
screening antibody-producing memory B cells for the development
of therapeutics and diagnostics for SARS-CoV-2.
Figure 1. SARS-CoV-2-neutralizing mAb production using single B-cell repertoire from
recovered COVID-19 patient [53]. Created with BioRender.com. PBMCs, peripheral
blood mononuclear cells. (Color version of figure is available online).
SARS-CoV-2 has a genome sequence that is 79.6% identical to that
of SARS-CoV and 96% identical to the bat coronavirus [52]. The RBD
sequences of SARS-COV-2 share 73.8�74.9% amino acid identity with
SARS-CoV [53]. Both SARS-CoV and SARS-CoV-2 possess a conserved
epitope in RBD that makes them cross-reactive [54]. S glycoprotein of
SARS-CoV-2 has 10 times higher affinity to ACE2 than that seen with
SARS-CoV. Much of this affinity is attributed to RBD’s structural fea-
tures, such as a more compacted ACE2 binding ridge and well-stabi-
lized hotspots [55,56]. CR3022, a neutralizing antibody obtained
from a convalescent SARS-CoV-infected patient, cross-reacted with
SARS-CoV-2 S but could not cross-neutralize SARS-CoV-2 in vitro
[54]. A cross-reactive mAb that neutralizes both SARS-CoV and SARS-
CoV-2 pseudoviruses and authentic viruses has been generated using
transgenic H2L2 mice immunized with a combination of Secto from
different coronaviruses, such as human CoV-OC43, SARS-CoV and
MERS-CoV (Figure 2), though the identified mAb exhibited higher
binding affinity toward SARS-CoV S [8].

Past research on the development of therapeutic antibodies for
SARS-CoV serves as a backbone for the development of feasible thera-
peutic antibodies for SARS-CoV-2. In 2004, Sui et al. [57] reported
high-affinity humanized mAbs based on single-chain variable region
fragment antibody 80R against the S1 domain of the S protein of
SARS-CoV. These could effectively neutralize SARS-CoV and block the
S1 protein binding with ACE2. However, 80R was not effective
against the GD03 strain of SARS CoV, which caused the second
Figure 2. SARS-CoV-2-neutralizing mAb production using transgenic H2L2 mice [8].
Created with BioRender.com. ELISA, enzyme-linked immunosorbent assay. (Color ver-
sion of figure is available online).
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outbreak in 2003/2004. Zhu et al. [58] reported that humanized mAbs
m396 and S230 successfully cross-react with the GD03 strain, Urbani
and Tor2 isolates (first SARS outbreak) and SZ3 and SZ16 (pseudo-
typed viruses bearing spikes from palm civet), except bat-derived
strains. Both antibodies block the SARS-CoV�ACE2 interaction by
binding to the RBD of the SARS-CoV S protein. When 80R, m396 and
S230 were tested against SARS-CoV-2 RBD, none of them showed sig-
nificant binding regardless of the degree of structural homology
between SARS-CoV S RBD and SARS-CoV-2 S RBD. Hence, the SARS-
CoV-2 S protein would be the ideal target for designing therapeutic
mAbs against SARS-CoV-2 [55]. Yi et al. [59] provided some interest-
ing insight into the critical amino acid differences between the SARS-
CoV and SARS-CoV-2 RBDs that result in their distinct immunogenic-
ity and limit the cross-neutralizing activity of therapeutic antibodies.

Table 2 summarizes the neutralizing mAbs with therapeutic
potential against SARS-CoV-2 reported thus far. Cao et al. [62] identi-
fied some potent SARS-CoV-2 mAbs based on the CDR3H structural
similarity to SARS-CoV-neutralizing mAbs (m396 and 80R) from the
large antigen-binding clonotype library produced by high-through-
put single-cell 50 mRNA and VDJ sequencing. The mAbs derived from
memory B cells of a SARS survivor were cross-reactive to SARS-CoV
and SARS-CoV-2 but not to OC43 and MERS-CoV [61]. Similarly, sar-
becovirus cross-neutralizing antibodies were identified frommemory
B cells of a SARS survivor [64]. However, SARS-CoV-2-generated
mAbs showed no cross-reactivity to SARS-CoV and MERS-CoV RBDs
[63]. The mechanism of action for SARS-CoV-2 neutralizing mAbs is
either by blocking the interaction between RBD and human ACE2
(hACE2) or by binding to the conserved epitope of S-RBD without
competing for receptor binding. Neutralizing human mAbs exhibiting
intense competition with the hACE receptor for RBD binding are
quite potent against SARS-CoV-2 [62,63]. Yi et al. [59] reported that
the RBD binding affinity and neutralizing ability of SARS-CoV-2-tar-
geted mAbs generated by phage display were much weaker for
SARS-CoV, which strengthens the species-specific nature of anti-RBD
antibodies. A cocktail of mAbs binding to the different epitopes on
RBD will be more efficacious in neutralizing SARS-CoV-2 and pre-
venting immune escape mutants than monotherapy with a candidate
therapeutic mAb [53,62].

A major concern that should be addressed before implementation
of antibody-based drug therapy or vaccination is antibody-depen-
dent enhancement (ADE) of viral infection, in which virus-specific
antibodies facilitate viral entry to immune cells by cross-linking the
viral antibody or virus-activated complement complex to the cell sur-
face Fc receptor or complement receptor, leading to viral replication
and subsequently high viral load [75,76]. ADE has been reported for
other coronaviruses [77�79]. Antibody-dependent infection with
SARS-CoV-1 could allow the virus to widen the tropism by providing
additional entry routes and contribute to pathogenicity. In ADE of
SARS-CoV-1 infection, anti-S antibodies mediate viral entry to
immune cells by cross-linking the virus-antibody complexes to the
Fcg receptor II, followed by internalization through a pH- and cyste-
ine protease-independent pathway, which is distinct from the
hACE2-mediated endosomal/lysosomal pathway [78]. Wan et al. [79]
demonstrated cell surface IgG Fc receptor-mediated viral entry of
MERS-CoV into Fc receptor-expressing cells through canonical viral
receptor-dependent pathways.

It has been suggested that low concentration of neutralizing anti-
bodies could cause ADE of SARS-CoV-2, as reported in the case of
SARS-CoV-1 [80�82]. Specificity, concentration, affinity and isotope
of the antibody are factors that influence the infection enhancing ten-
dency of an antibody. Designer antibodies with higher affinity to RBD
are less likely to induce ADE [81]. Engineering the Fc region of mAbs
to abolish its affinity for the Fcg receptor is a feasible solution to miti-
gate the risk of ADE [80]. To abrogate the risk of ADE of SARS-CoV-2,
LALA mutations were introduced to the Fc region of CB6, a potent
SARS-CoV-2-neutralizing antibody. CB6 (LALA) effectively reduced
viral load and infection-related lung damage associated with SARS-
CoV-2 infection in rhesus macaques [68]. The possibility of ADE can
also be minimized by maintaining a high concentration of circulating
therapeutic antibodies, which is more easily achieved by improving
the half-life of mAbs [83]. Lurie et al. [84] suggested that rigorous ani-
mal testing and pre-clinical trials should be conducted for therapeu-
tic candidates against SARS-CoV-2, considering the adverse effects
caused by ADE. The current uncertainty regarding the duration of
functional protection by antibodies against SARS-CoV-2 RBD until the
second wave of infection must be addressed to enhance the thera-
peutic efficacy of mAb products [85].

The ability of a virus to generate escape mutants because of
immune pressure is a major challenge for successful vaccine and
therapeutic antibody development. A pandemic scenario influenced
by a highly diverse infected population also facilitates the generation
of escape mutants [86]. RNA viruses such as SARS-CoV-2 exhibit a
high mutation rate—up to a million times higher than the host—
which drives viral evolution and adaptability [87,88]. High viral load
of SARS-CoV-2 at the early stage of the disease might also contribute
to anti-viral resistance [89]. Molecular modeling simulation studies
of the antigen-antibody complex predict mutation of antigens that
could disrupt the binding of antibodies and reduce the efficacy of
mAb therapy [90]. It has been reported that escape mutants attenuate
SARS-CoV infection. Formulation of more than one therapeutic anti-
body that binds to non-overlapping epitopes and/or parts of S other
than RBD has been proposed to neutralize resistant variants [91,92].
A cocktail of mAbs S227.14 and S230.15 has effectively cross-reacted
with a broad range of human and zoonotic SARS-CoV isolates, includ-
ing escape mutants [93]. The mAb combination targeting the N-ter-
minal domain as well as RBD of SARS-CoV-2 could be effective
against viral escape [69]. Single antibody treatment against SARS-
CoV-2 has induced escape mutants. Regeneron’s mAbs cocktail,
REGN10933 and REGN10987, each binds to the distinct epitopes of
RBD prevented generation of escape mutants [94].

An effective passive immune therapy, along with stimulation of
the endogenous humoral and cellular immune response, may provide
durable protective immunity. Combining mAbs with immunostimu-
latory agents and altering antibody effector function through Fc-engi-
neered mAbs are possible options to improve the long-lasting
protective vaccine-like effects of mAbs [95]. Half-life and effector
functions of S309, a mAb with neutralizing activity against SARS-
CoV-2, were improved with FC engineering [61].

The prospect of highly potent super-antibodies that can neutralize
multiple viruses of a single family looks quite promising in terms of
developing broadly active therapeutic agents against Coronaviridae
viruses. Large-scale screening for a donor with broadly neutralizing
serum and high-throughput B-cell isolation are critical steps in the
discovery of super-antibodies [96]. Defining the immunodominant
regions of the S protein of SARS-CoV-2 is critical, as it can reveal
potential targets for immune response. Development of mAbs target-
ing conserved epitopes of RBD and the highly similar S2 subdomain
is likely to give cross-protection across betacoronaviruses [71,97].

Immunomodulation of cytokine storm syndrome using mAb
therapy: need of the hour

Targeted drug development is a time-consuming process. Repur-
posed drugs and therapeutic mAbs that modulate the immune
response and improve the prognosis of COVID-19 patients should be
considered at this critical time until a successful drug for viral clear-
ance is on the market. An anti-IL6 mAb, tocilizumab, routinely used
in the treatment of rheumatoid arthritis, has been found to mitigate
cytokine storm syndrome and improve the outcome of COVID-19
patients. Apart from the anti-inflammatory action of tocilizumab, its
role in halting coagulation activation greatly benefits COVID-19
patients with severe coagulopathy, which makes this therapy a more



Table 2
Neutralizing antibodies with therapeutic potential against SARS-CoV-2.

mAbs Source Mechanism of neutralization IC50 In vivo study References

47D11 Transgenic H2L2 mice Binding to conserved epitope of spike RBD 0.061mg/mL (SARS-CoV-2 pseudotyped virus)
0.57mg/mL (SARS-CoV-2 virus)

[8]

311mAb-31B5
311mAB-32D4

RBD-specific single B-cell repertoire from
recovered COVID-19 patient

Blocking binding of SARS-CoV-2 RBD to hACE2 311 mAb-31B5 = 0.0338mg/mL
311 mAb-32D4 = 0.0698mg/mL (SARS-CoV-2

pseudotyped virus)

NI [60]

B38
H4

RBD-specific single B-cell repertoire from
COVID-19 patient

Blocking binding of SARS-CoV-2 RBD to hACE2 B38 = 0.177mg/mL
H4 = 0.896 mg/mL
(SARS-CoV-2 virus)

hACE2 transgenic mice
model

[53]

HA001 Phage display Blocking binding of SARS-CoV-2 RBD to hACE2 0.016 mg/mL (SARS-CoV-2 pseudotyped virus) NI [59]
S309 Memory B cells of person previously

infected with SARS-CoV
Binding to conserved epitope of spike RBD 79 ng/mL (SARS-CoV-2 virus) NI [61]

BD-368-2 High-throughput scRNA/VDJ sequencing
of COVID-19 convalescent patient’s B
cells

Blocking binding of SARS-CoV-2 RBD to hACE2 1.2 ng/mL (SARS-CoV-2 pseudotyped virus)
15 ng/mL (SARS-CoV-2 virus)

hACE2 transgenic mice
model

[62]

PC2-1F11
P2B-2F6
P2C-1A3

RBD-specific single B-cell repertoire from
COVID-19 patient

Blocking binding of SARS-CoV-2 RBD to hACE2 PC2-1F11 = 0.03mg/mL
P2B-2F6 = 0.05mg/mL
P2C-1A3 = 0.62mg/mL
(SARS-CoV-2 pseudotyped virus)
PC2-1F11 = 0.03mg/mL
P2B-2F6 = 0.41mg/mL
P2C-1A3 = 0.28mg/mL
(SARS-CoV-2 virus)

NI [63]

ADI-56046 RBD-specific single B-cell repertoire from
SARS-CoV survivor

Binding to conserved epitopes in RBD and com-
peting with hACE2 binding

�0.05mg/mL
(SARS-CoV-2 pseudotyped virus)
<0.1mg/mL
(SARS-CoV-2 virus)

NI [64]

COV2-2196, COV2-2130,
COV2-2381

SARS-CoV-2 S2Pecto or RBD�mFc-reac-
tive single B cells from convalescent
COVID-19 patients

Blocking binding of SARS-CoV-2 RBD to hACE2 COV2-2196 = 0.7 ng/mL
COV2-2130 = 1.6 ng/mL
(SARS-CoV-2 pseudotyped virus)
COV2-2196 = 15 ng/mL
COV2-2130 = 107 ng/mL
(SARS-CoV-2 virus)

Ad-hACE2 mouse model
and rhesus macaque
model

[65]

CC12.1 SARS-CoV-2 RBD and S antigen-specific
single memory B cells from conva-
lescent COVID-19 patients

Targeting RBD-A epitope by competing with
hACE2 and blocking its binding to SARS-CoV-2
RBD

0.019 mg/mL (SARS-CoV-2 pseudotyped virus)
0.022mg/mL (SARS-CoV-2 virus)

Syrian hamster model [66]

REGN10933
REGN10987

Anti SARS-CoV-2 antibodies from immu-
nized VI mouse and RBD-specific single
B cells from convalescent COVID-19
patients

Blocking binding of SARS-CoV-2 RBD to hACE2 REGN10933-42 pM
REGN10987- 40 pM
(SARS-CoV-2 pseudotyped virus)
REGN10933-37 pM
REGN10987- 42 pM
(SARS-CoV-2 pseudotyped virus)

Rhesus macaque model
and golden hamster
model

[67]

CB6 RBD-specific memory B cells from conva-
lescing COVID-19 patients

Blocking binding of SARS-CoV-2 RBD to hACE2 ND50� 0.036 mg/mL (SARS-CoV-2 pseudotyped
virus)

ND50� 0.036mg/mL (SARS-CoV-2 virus)

Rhesus macaque model [68]

(continued on next page)
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effective treatment than general anti-inflammatory interventions
[98]. Tocilizumab has been recommended for critical COVID-19
patients in China and India who have significantly high levels of IL-6
[99,100]. A clinical trial is underway to investigate the use of mAbs
targeting GM-CSF for the intervention of inflammatory cytokine
storm caused by SARS-CoV-2 (https://clinicaltrials.gov/ct2/show/
NCT04341116). Moreover, since TNF is a major player in the inflam-
matory response, targeting it with an anti-TNF antibody is a feasible
strategy to reduce COVID-19-induced lung inflammation and related
inflammatory markers [101]. In addition, administration of anti-C5a
mAbs is presumed to have a role in the mitigation of COVID-19-asso-
ciated lung injury [50].
Nanobodies as a promising therapeutic agent against SARS-COV-2

Llama-based nanobodies have been implicated in designing anti-
viral therapy against HIV, rotavirus and respiratory syncytial virus
[102�104]. Nanobodies are fully functional single-domain antibodies
obtained from the camelid family, comprising a single variable domain
(VHH) instead of two variable domains, as in the case of human antibod-
ies. Their small size (�14 kDa), good solubility and excellent stability,
along with high antigen specificity, make them a superior candidate
over conventional antibodies [105]. Nanobodies can be easily produced
in yeast or a bacterial host by recombinant technology [106]. The
potency of nanobodies can be enhanced by engineering monovalent
VHH into multivalent VHH [102]. SARS-CoV S-directed VHH (SARS
VHH-72) generated in immunized llama cross-react with the SARS-
CoV-2 S protein. Though the binding of SARS VHH-72 to SARS-CoV-2
RBD-SD1 is weaker, an engineered bivalent VHH Fc construct results in
successful neutralization of SARS-CoV-2 pseudoviruses in vitro. Upon
binding of VHH, RBD undergoes a dynamic conformational change that
prevents its binding to the host cell receptor. Antibody panning with
SARS-CoV-2 S can yield VHH with more stable binding and affinity
toward SARS-CoV-2 RBD [107]. Further investigation is warranted to
determine the feasibility of nanobodies as anti-viral therapy. Two nano-
bodies (H11-D4 and H11-H4) that neutralize SARS-CoV-2 by blocking
the RBD and hACE2 interaction were identified by Huo et al. [108]. Fully
human single-domain antibodies against SARS-CoV-2 were constructed
using the human single-domain antibody phage display library [109].
An engineered trivalent nanobody with remarkable potency and stabil-
ity was made into an inhalable formulation that could give protection
against SARS-CoV-2, though effectiveness is yet to be proven by clinical
trials [110].
Cellular immune therapy for SARS-CoV-2 infection: a field worth
exploring?

T cells play an important role in the viral clearance of SARS-CoV.
Reduction in viral titer and improvement in survival were observed
in SARS-CoV-infected SCID and BALB/c mice on adoptive transfer of
in vitro-generated SARS-CoV-specific effector CD4+ and CD8+ T cells
[111]. Channappanavar et al. [112] suggested that boosting virus-spe-
cific memory T-cell responses of the host may be a good therapeutic
strategy against SARS-CoV infection. A drastic reduction in total T
cells was reported in COVID-19 patients [113]. Sekine et al. [114]
demonstrated T-cell phenotypes associated with acute and conva-
lescent COVID-19 patients [114]. Strong memory T-cell responses
were elicited in mild and asymptomatic COVID-19 patients, implicat-
ing the potential role of T cells in immunity against SARS-CoV-2. A
clinical trial is ongoing for the treatment of severe COVID-19 patients
using clinical-grade SARS-CoV-2-specific T cells from the blood of
convalescent donors (https://www.clinicaltrials.gov/ct2/show/
NCT04351659). However, serious concerns, such as donor matching
and induction of cytokine storm, should be addressed before the
implication of adoptively transferred T cells for viral infection [115].

https://clinicaltrials.gov/ct2/show/NCT04341116
https://clinicaltrials.gov/ct2/show/NCT04341116
https://www.clinicaltrials.gov/ct2/show/NCT04351659
https://www.clinicaltrials.gov/ct2/show/NCT04351659
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Discussion

Unlike a newly emerged virion, the distance to successful immuno-
therapy against SARS-CoV-2 is not long, as there have been some advan-
ces in the therapeutic management of infections caused by previously
emerged coronaviruses (SARS-CoV and MERS-CoV). CP therapy and the
more refined IVIg approach are the currently available effective treat-
ment options for SARS-CoV-2 infection. Human mAbs that prevent viral
entry into the host by inhibiting viral attachment to the receptor show
efficient SARS-CoV-2 neutralization in vitro and in vivo. The protective
ability of a developed therapeutic antibody can be challenged by viral
mutation under selection pressure. The use of combination mAbs has
been a promising approach to overcoming the emergence of escape
mutants. Treatment benefits of these promising candidates can only be
assessed through randomized controlled trials. Further, if therapeutic
candidates are proven safe and efficacious in the treatment of SARS-
CoV-2 infection, policy makers should be well equipped for the mass
production and distribution of anti-viral therapeutics in response to the
pandemic threat. Apart from the lack of a successful therapy, the high
mortality rate associated with COVID-19 has been attributed to the pau-
city of understanding regarding the immunopathology of SARS-CoV-2
infection and underlying comorbidities. Triggering immunomodulation
using mAbs targeting inflammatory cytokines can be used to treat the
life-threatening cytokine storm syndrome. Though developing therapeu-
tic antibodies targeting SARS-CoV-2 is the primary need of the current
scenario, designing super-antibodies that neutralize multiple coronavi-
ruses canmake the world ready to tackle a future coronavirus outbreak.
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