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ABSTRACT Researchers in evolutionary genetics recently have recognized an exciting opportunity in decom-
posing beneficial mutations into their proximal, mechanistic determinants. The application of methods and
concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed
them to understand how natural selection sees mutations influencing life history. This work motivated the research
presented here, in which we explored whether, under consistent experimental conditions, small differences in the
genome of bacteriophage fX174 could lead to altered life history phenotypes among a panel of eight genetically
distinct clones. We assessed the clones’ phenotypes by applying a novel statistical framework to the results of a
serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate
host volumes with�1 phage particle. We sequentially plated the volumes over the course of infection and counted
the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a
single volume as a function of time. From repeated assays, we inferred significant, genetically determined hetero-
geneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic
and phenotypic constraints on the single-protein lysis mechanism of fX174. We speculate briefly on the mecha-
nisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution.
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A key opportunity in evolutionary genetics is the decomposition of
beneficial mutations into their proximal, mechanistic determinants. To
date, much of this work has appliedmethods frommolecular biology to
dissect the basis of protein evolution (Harms and Thornton 2013; Dean

and Thornton 2007), but life history theory (Stearns 1992; Roff 2002)
similarly decomposes population growth rate into constituent life his-
tory traits. It can thus predict which mutations influencing life history
will be favored by natural selection (i.e., increase population growth
rate) (Stearns et al. 2000). The simple life history of the lytic bacterio-
phage (phage)makes it particularly well suited to this sort of work. Each
generation begins with a free phage adsorbing to a host cell and inject-
ing its genome. Transcription and translation facilitate the assembly of
progeny phages within the host, and, finally, host cell lysis releases the
next generation of free phages. Assuming the density of host cells is not
limiting,Wang et al. 1996 provided an expression for phage growth rate
in terms ofmean burst size andmean time to lysis. Later, Bull et al. 2006
extended this treatment by incorporating adsorption and phage death
rates. Other studies have further developed this formalism (Rabinovitch
et al. 1999, 2002), with many applying it to explore the mechanistic
basis of beneficial mutations in lytic phages (Pepin et al. 2006; Shao and
Wang 2008; Bull et al. 2011). Several have demonstrated that a muta-
tion’s fixation probability depends critically onwhich component of life
history it affects (Wahl and DeHaan 2004; Hubbarde et al. 2007; Patwa
and Wahl 2008, 2009).
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At steady state (i.e., when host cell infections are at their stable age-
of-infection distribution), population growth rate is entirely deter-
mined by mean life history traits (Bull et al. 2011). But the moment a
novel mutation appears, it establishes a lineage that, by definition, is far
from this equilibrium. In populations deviating from a stable age dis-
tribution, variance in both lysis time and adsorption rate may play a
significant role in determining growth rate (Storms and Sauvageau
2014), since it may affect how long the deviation from stable age dis-
tribution persists (Bull et al. 2011).

These findings motivate interest in the possibility of genetic control
of highermoments in phage life history traits. Previously, Dennehy and
Wang 2011 used a microscopy-based approach to demonstrate herita-
ble variation in lysis time mean and variance among a panel of phage l
holin protein mutants.

To explore heritable variation in phage life history traits, including
lysis time variance, we studied a panel of eight genetically distinct clones
of the lytic bacteriophagefX174.fX174 is an ubiquitous (Afshinnekoo
et al. 2015) and industrially important phage (Labrie et al. 2014). It was
chosen for this research in large part due to its small, well-characterized
genome (Hayashi et al. 1988), the first of its kind ever sequenced
(Sanger et al. 1977). In addition, it infects a well-studied host (Escher-
ichia coli C), has a short generation time, and is robust to a wide range
of temperatures, making it amenable to evolution experiments and
other lab manipulations (Wichman and Brown 2010).

The gold standard formeasuringphage lysis timeandburst size is the
one-stepphage growth assay (Hyman andAbedon 2009). However, this
method affords only limited access to information about lysis time
variance and the relationship between burst size and time for a given
phage. Therefore, the panel of eight clones was assessed using an
updated version of a venerable experimental method first proposed
by Burnet 1929, and later extended by Delbrück 1945. We simulta-
neously inoculated each of a large number of replicate host cell volumes
with, on average, less than one phage particle of identical haplotype.
These volumes were then plated at 15-sec intervals on lawns of host
cells, and the resulting plaques were counted after incubation.

From this assay, we obtained data that could help determine mean
and variance in both lysis time and burst size (Figure 1). However, the
information we wanted was obscured by a suite of hidden variables. In
wells showing lysis events, we did not know when lysis actually oc-
curred. We also did not know the number of phage particles originally
in these wells and, if that number was greater than one, howmany had
lysed their hosts. To infer lysis time and burst size from the two ob-
served metrics (time of sampling and plaque count), we somehow had
to circumvent these hidden variables. We overcame this challenge by
developing a novel inferential apparatus that complemented the exper-
imental framework with a maximum likelihood-based approach.

In this article, we describe our finding that, under the tested con-
ditions, genetic heterogeneity could give rise to significant heterogeneity
in fX174 lysis time and burst size, including lysis time variance. These
findings are interesting in light of the genetic and phenotypic con-
straints on the single-protein lysis mechanism offX174, and they point
to promising avenues for future theoretical and experimental work.

MATERIALS AND METHODS

Media, host cells, and bacteriophages
Difco LB Lenox Broth (Detroit, MI), pH 7.50, and supplemented with
2 mM CaCl2 was used throughout. We studied the performance of
fX174 on E. coli C [DSMZ 13127, kindly provided by Olivier Tenail-
lion, Institut National de la Santé et de la Recherche Médicale
(INSERM), University Denis Diderot Paris 7], the phage’s natural host.

A stock of E. coli C was stored in 40% glycerol at –80�. We used this
primary stock to seed bacterial colonies on agar plates stored at 4�.
Colony plates were created anew every 2–4 wk. To generate experi-
mental bacterial cultures, 10 mL LB was inoculated with a single col-
ony and shaken in a 50-mL flask at 200 rpm and 37� for about 16 hr. The
resulting stationary-phase cells were then diluted somewhere between
33- and 80-fold into 40 mL LB in a 250-mL flask. The diluted culture
was shaken at 37� for about 3 hr until it reached an optical density
ðOD600Þ of 0.6. Exponential-phase cells prepared in this way were used
for each assay.

To synchronize phage infections, we treated cells using a starvation
protocol adapted from Denhardt and Sinsheimer 1965 and kindly
provided by Darin Rokyta, Florida State University. The treatment
starved cells so that they “shut down,” allowing for phage adsorption
but not entry. (It is likely that the treatment also had the fortunate side
effect of reducing variance in time to cell division compared to an
exponential-phase culture, since it was bound to cause a lag in the cell
cycle. See Discussion for the cell cycle’s relevance.) First, we transferred
1 mL cells to a 1.5-mL centrifuge tube and pelleted themby spinning in
an Eppendorf centrifuge (5417R) for 2 min at 20,800 rcf. After aspi-
rating the supernatant, we resuspended the cells in 1 mL HFB-1 solu-
tion [0.06 MNH4Cl/0.09MNaCl/0.1 MKCl/0.1 M Tris-HCl (pH 7.4)
/1.0 mM MgSO4/1.0 mM CaCl2] by vortexing for 8 sec. Then, we
centrifuged the solution, removed the supernatant, and resuspended
in HFB-1 twice more. After removing the supernatant from the third
and final HFB-1 rinse, we resuspended cells in 1 ml HFB-2 solution
(HFB-1/10 mM MgCl2/5 mM CaCl2). This served as our culture of
starved bacterial cells, ready for phage adsorption.

We studied a panel of eight genetically distinct clones, chosen based
on reports of lysis profiles different from the wild type. These included
three Epos mutants carrying point mutations in the E gene, whose
product is the chief player in fX174 lysis (pos4b, pos5, and pos6, first
described in Bernhardt et al. 2002; kindly provided by Ry Young and
Rohit Kongari, Texas A&M University); four carrying point mutations
in the D-promoter region, which exerts regulatory control over tran-
scription of the E gene (mut319, mut321, mut323, and mut324, pre-
viously described in Brown et al. 2010 and Brown et al. 2013; kindly
provided by Celeste Brown and Amber Stancik, University of Idaho);
and a wild type (also provided by Ry Young and Rohit Kongari) (Table
1 and Figure 2). Clones are available fromD.M.W. on request. Presence
of the mutations of interest was verified by Sanger sequencing of the
65–730 base region of each clone’s genome (nucleotides numbered as in
Sanger et al. 1977). The clones’ sequences in this region (GenBank
accession KU646482–KU646588) were identical to the wild-type se-
quence (GenBank accession J02482.1) apart from the noted mutations.
The wild type employed was the ancestor of the Epos mutants, which
differed from the wild-type ancestor of the D-promoter mutants (Gen-
Bank accession AF176034) at five sites: G833A (nonsynonymous),
G1650A (nonsynonymous), T2811C (synonymous), A4518G (non-
synonymous), and T4784C (synonymous) (Pearson et al. 1997). The
G833A difference entailed an amino acid change in the E (but not
the D) gene, though it fell well outside the region coding for the E
protein’s essential transmembrane region (Figure 2) (Tanaka and
Clemons Jr 2012).

Phage titers were determined by combining a known volume of
phage stock with 200 mL exponentially growing host cells (described
above), and plating in top agar held at 42�, consisting of 7.0 g/L Difco
BactoAgar (Detroit, MI) added to LB medium (as described above).
After several minutes on the bench at room temperature, we incubated
plates agar-side-up at 37�. Preliminary results (not shown) demon-
strated that accurate plaque counts required at least 4 hr of incubation.
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Occasionally, for logistical reasons, we interrupted incubation with
overnight refrigeration at 4�.

Serially sampled parallel infection assay
We began by adding 90 mL starved cells to each well of a TempPlate
nonskirted 96-well PCR plate (USA Scientific item no. 1402-9598) at
15�. The PCR plate was mounted on a thermocycler to control its
temperature precisely. Using a 12-channel pipettor, we then added
10 ml 30-PFUs/mL phage dilution to each well in each row of 12 wells,
allowing for a 30-sec interval between rows. PCR plates were held at 15�
for at least 20 min, during which time phages could adsorb to the
starved cells. We estimate that 10–20% of phage particles adsorbed to
hosts during this incubation period (Celeste Brown, personal commu-
nication; Newbold and Sinsheimer 1970).

Then, infections were initiated by raising the PCR plate temperature
to 37� and adding 100 mL warm LB (incubated at 37� for at least
45min) to eachwell in a rowwith a 12-channel pipettor, again allowing
30-sec intervals between rows. Consequently, the infective process in
each row was staggered by half a minute, allowing ample time for the
sampling procedure that followed. Note that the temperature increase
alone did not trigger infection. The addition of rich medium, such as
LB, was required for infection to advance (Newbold and Sinsheimer
1970). Based on past reports of fX174 attachment kinetics under con-
ditions similar to our assay (Brown et al. 2013), unattached phage
particles likely adsorbed to hosts very quickly at this time, with an
average adsorption time of less than 30 sec [assuming adsorption fol-
lowed an exponential decay process (Abedon et al. 2001)].

It is important to note that, based on our knowledge of the mutated
genes’ functions (Fane et al. 2006) and past results (Brown et al. 2013),
the studied mutations likely had little or no effect on phage adsorption
rate. This includes the nonsynonymous difference (G1650A) between

the D-promoter mutants and other clones in coat protein F. While a
change in the F protein could theoretically have affected adsorption
(Bernal et al. 2004), it is unlikely to have done so here, because the
difference was merely between one basic polar residue (His) and an-
other (Arg).

Fiveminutes after infectionwas initiated, we began samplingwells at
15-sec intervals. Sampling was performed by transferring the entire
200 mL contents of a well to a sterile 96-well PCR plate, held at 4� to halt
the infective process. We assume that this sampling procedure did not
artificially induce lysis in sampled infections. We staggered sampling
between rows such that, factoring in the 30-sec gaps in infection be-
tween each row, we sampled one well every 15 sec between t = 5 min
and t = 28.75 min. The endpoint of 28.75 min was chosen on the
basis of preliminary experiments that showedmost infections ending in
lysis by that time. Even though not all phages would lyse their hosts by
28.75 min, we found no evidence that fX174 undergoes T4-like lysis
inhibition (Abedon 1992), so we believed that samples taken between
5 min and 28.75 min would give us a reasonably complete picture of
the clones’ lysis phenotypes.

At the conclusionof thisprocess, the contentsof eachsampledwell—
now at 4�—were plated and incubated, as described, and then counted.
Typical results are shown in Figure 1. Four to six replicate assays were
performed for each clone.

Statistical methods

The model: We began with an overview of the model that we assumed
generated the data. We then developed methods of estimation from the
model and applied them to real experimental data.

Each time an assay was performed, we assumed a small, Poisson-
distributed number of phage particles had been added to each well. The

Figure 1 Typical serially sampled parallel infection assay data (pos5, ba = 0.71). Here, sampling was performed at 15-sec intervals between 5 min
and 28.75 min. At each time point, three outcomes were possible: zero plaques, a “few” plaques (here, fewer than eight; see section Statistical
methods), and more than a few. Assuming 100% plating efficiency, these outcomes implied respectively that no phage particles were added to
the corresponding host cell volume; that the visible number of phage particles was added, but none lysed its host by the time of sampling; and
that at least one infected cell had been lysed by the time of sampling. In these data, the first sample with more than a few plaques occurred at
15.5 min, giving an upper bound for the time to lysis (t0). Inset illustrates plaque counts prior to the first observed lysis event. The absence of
corresponding stratification among plaque counts after 15.5 min implied high variance in burst size. Similarly, the two plaques observed at
23.5 min (arrow) corresponded to two phage particles that had not yet lysed their hosts by that time, implying high variance in lysis time. Thus,
these data contain information about higher moments in both burst size and lysis time.
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mean of the Poissonwas allowed to vary between assays, which is to say,
we assumed that phage concentrations in the stocks differed by clone
and could change over time.

Within the wells, we assumed phage particles adsorbed instanta-
neously to starved cells upon the initiation of infection. (We discuss the
rationale underlying this assumption in the Results section). We as-
sumed that each phage particle infected and then lysed a cell Tminutes
after the addition of warm media, where T could not be less than a
biologically imposed minimum (the latent period), and lysis was
equally probable every moment thereafter (though we also considered
a model in which lysis probability changed with time, as described
below). We assumed that burst size grew linearly with lysis time, a
relationship generally assumed and supported by past work (Hutchison
and Sinsheimer 1966; Abedon 1989; Wang et al. 1996; Abedon et al.
2001; Chao et al. 2002; Bull et al. 2004; Wang 2006; but see Hutchison
and Sinsheimer 1963 and Storms et al. 2014). The fate of each infecting
phage particle within a well was assumed to be independent of other
particles in that well. Wells were sampled and plated at 15-sec intervals
from t = 5 min through t = 28.75 min, and we assumed 100% plat-
ing efficiency, implying that the plaque count on a plate revealed the
true number of phage particles in a well at the time of sampling. A
plaque count of zeromeant no particles were in the well, a count of one
to a few implied that asmany particles as visible plaqueswere added but
that no host cells had been lysed yet, and a count of more than a few
represented the sum of the burst sizes of lysis events prior to the sample
time, plus any infected yet unlysed cells. Note that, in the third case, we
did not know howmany phage particles were in the well to begin with,
we did not know how many lysis events had occurred by the time of
sampling, and, of the lysis event(s) that had occurred, we did not know
when they occurred, except that they must have occurred prior to the
moment of sampling. From a statistical perspective, this suite of hidden
variables made the problem both interesting and challenging.

Notation: Developing estimators under thismodel required substantial
notation. Table 2 summarizes this notation for the reader’s reference.

Number of phage particles per well: Our first task was to estimate ba,
the Poisson parameter that governs the probability of having 0; 1; 2;⋯
phage particles in eachwell for assay a. This was somewhat complicated
by the fact that, before the latent period ended and lysis began, we
observed the actual Poisson counts, but after this period, we only ob-
served the true Poisson counts for “zero” wells and wells that do not
show lysis events. In wells showing lysis events, we knew only that the

Poisson countmust have been greater than zero. To derive an estimator
tailored to the situation, we ignored the time element of the data and
defined p as the probability that a randomly selected phage particle
from a randomly selectedwell would not have lysed its host.We let n be
the Poisson number of phage particles initially in a well (i.e., before lysis
occurs). Then, we noted that each sampled well fell into one of three
categories: samples with zero phage particles, samples with phage par-
ticles but no lysis events, and samples showing lysis events. The prob-
ability of a well belonging to each category was, respectively, e2ba ,
ðpbaÞne2ba=n!, and 12 e2ð12pÞba .

We defined wells not showing lysis events as those having plaque
counts greater than zero, and less than or equal to seven. When the
Poisson parameter b is less than or equal to one, counts greater than
seven are highly improbable in wells where lysis has not occurred
(P, 0:001). Of course, it is possible that wells showing fewer than eight
plaques could in fact be the results of infections. But, ultimately, we had
to set the threshold for distinguishing lysis events from nonlysis events
somewhere. This threshold-setting exercise was not straightforward.
Complicating factors included the following:

1. Poisson average numbers of particles per well varied for each assay,
so setting the threshold based purely on the Poisson probabilities
was not trivial.

2. There was a nonzero chance of slight inaccuracies in some plaque
counts. Rare errors could have occurred in the counting of plaques
that would have increased counts on average (e.g., plaque-like air
bubbles). In addition, certain experimental manipulations (e.g.,
mechanical stress from pipetting) could feasibly have induced very
premature lysis of some cells, resulting in plates with extremely low
plaque counts that otherwise would have had just one plaque.

3. The few plaque counts of six and seven, a couple of which were
sampled at unusually early time points, could have exerted dispro-
portionate influence on estimates of clones’ lysis phenotypes if
included as lysis events. This is because, as discussed below, an
artificially early lysis event would force the value of the t0 param-
eter to shift to some time before that event.

Therefore, given these intermediate plaque counts’ rarity, their po-
tential origins in experimental error, and their potential to distort our
estimates of clones’ lysis phenotypes, we chose to set the threshold for
lysis events at greater than or equal to eight. It is worth noting, however,
that when our data instead were analyzed using a threshold of greater
than or equal to five, our results did not change qualitatively (analysis
not shown).

n Table 1 Characteristics of fX174 D-promoter and EPOS mutants

Type Clone
Base

Change(s)
Amino Acid
Change(s)

Lysis Kinetics Compared to Ancestral WT

Lysis Time on
E. coli C (37�)

Via Transfected
Plasmid

D-Promoter mut319 G319Ta V63F +2 min N/A
mut321 T321C None +2 min N/A
mut323 A323G N64G +0–2 min N/A
mut324 C324T None +0–2 min N/A

Epos pos5 G624T L19F +10 min Slightly faster
pos6 G575A R3H Same Much faster
pos4B G575A, G624T R3H, L19F Same Much faster

All nonsynonymous D-promoter changes are within the C gene (Brown et al. 2010, 2013). L19F is an amino acid change in the transmembrane region of the E protein,
while R3H is a change in E’s periplasmic N-terminus. The same mutation that changes leucine to phenylalanine in E confers a A79S change in the D protein. The five
background nucleotide differences between the D-promoter and Epos mutants are not included in this table (see Materials and methods). The rightmost column
refers to the bulk lysis kinetics of the mutated E genes after they had been cloned onto plasmids and inserted into E. coli K-12 slyDþ cells (Bernhardt et al. 2002).
Relevant accession numbers are provided in Materials and methods.
a

A change adjacent to the D promoter’s sigma factor binding site. The three other D promoter changes are within the binding site.
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We let the number of wells in assay a be La and the number of wells
that showed lysis events be Ra. The likelihood of the data, then, was

L
�
Na1;Na2;⋯;NaMa ;Ra

� ¼YMa

i¼1

�
pba

�Nar e2ba

Nar!

�
�
La
Ra

��
12e2 ð12 pÞba

�Ra

(1)

We then took the log of the likelihood, the partial derivatives with respect to
ba and p, set each equal to zero, and did a considerable amount of algebra
(see Appendix 1 for details). This resulted in the following estimator:

b̂a ¼ �Na þ lnðMa þ RaÞ2 lnðMaÞ (2)

We validated this estimator by simulating data under ba ¼
0:5; 1; 1:5;   and  2, and we compared it to two reasonable alterna-
tives: the “zero-class” estimator [b̂ ¼ 2 logeðpzeroÞ, where pzero is the
proportion of sampled wells that had plaque counts of zero], and the
“mean-count” estimator (b̂ ¼ �X, where X is the mean among ob-
served plaque counts, applied only to wells sampled before we wit-
nessed any lysis events). The results (which we will not cover in detail)
revealed that Equation 2 had a very slightly positive bias (� 3:5%
when ba ¼ 0:5, falling to � 1:5% at ba ¼ 2) but a lower mean
squared error than the other estimators across conditions. Valuing
the nearness of the estimate to the truth above all else, we adopted the
new estimator of ba throughout.

Time to lysis:Weconsidered twonestedmodels describing time to lysis.
Both assumed that phages do not lyse cells until the latent period of t0
ends. The exponential model assumed that lysis occurred with equal
probability each moment after t0, while the Weibull model allowed the
probability of lysis to change with time. Under the Weibull, the time to
lysis, T, had the following distribution:

PðT, tÞ ¼ wt ¼ 12 e2ððt2 t0Þ=lÞa (3)

where a was a hazard parameter that dictated how lysis probability
changed with time. When a ¼ 1, the Weibull model simplified to the

exponential model. Because they are nested, we employed a likelihood
ratio test to determine if the improved fit under the Weibull justified
the additional parameter. To do so, we analyzed each genetically
distinct clone separately. We fitted the data to each model using
maximum likelihood (as described below), estimated parameters,
obtained the log-likelihood, and took the difference: LRobs. We then
simulated 100 datasets under the null (exponential) parameter esti-
mates. For each simulated dataset, we fitted the data to both models
and calculated the difference in their log-likelihoods: LRboot. We
then approximated the P-value by the proportion of LRboot greater
than or equal to LRobs. Large P-values (i.e., P. 0:05) would indicate
the simpler exponential model described the data sufficiently well.
This test returned P-values greater than 0.3 for all clones, and we
therefore assumed the exponential model for the duration of the
study. One important implication of this assumption was that, under
the exponential model, the lysis time variance was equivalent to l2.

Defining Btar as the number of phages in well r, assay a that had
lysed their hosts by time t, Btar followed the Poisson distribution with
rate bawt . If we let Ytar be an indicator function that is one when Btar is
greater than or equal to one, and zero when Btar is zero, and we let Utar

be the number of phages that had not lysed their hosts in well r, assay a
at time t, we show inAppendix 2 that the log-likelihood of the data were
proportional to

ln Lðl; t0Þ �
X
a

X
t

X
r

2
�
12Ytar

�
bdwt þ Ytar ln

�
12 e2bdwt

�
þ�12Ytar

��
Utar ln

�ð12wtÞbd

�
2bdð12wtÞ

�
:

(4)

Note that
P

a directed us to sum over all assays of a particular clone.
We analyzed each clone separately. We have omitted a clone subscript
throughout to avoid further complicating notation. In practice, we
obtained joint maximum likelihood estimates of l and t0 by establish-
ing a grid of joint values at narrow intervals, calculating the log-like-
lihood of each using Equation 3, and selecting those values that
together give the best likelihood. Confidence intervals on l and t0
were obtained by parametric bootstrap. To do this, we used ba, l̂, and
t̂0 to simulate one suite of datasets to match (in number and well

Figure 2 Positions of mutations in fX174 genome. The figure shows a 832-bp region of interest, including genes C, D, E, and J. Gene C is involved in
DNA replication, geneD is an external scaffolding protein required for procapsid morphogenesis, gene E is responsible for lysis of the host, and gene J is
required for DNA packaging (Fane et al. 2006). Gene E is shown in three sections, corresponding to three domains of the protein. The transmembrane
domain binds the E protein’s substrate, MraY (Mendel et al. 2006; Zheng et al. 2009). Mutations are indicated with pins at the position, and the site and
nucleotide change are indicated to the right of the pin head. The clone(s) carrying each mutation is indicated in parentheses. Note that one of the five
background nucleotide differences between the Epos and D-promoter mutants (G833A) is included in this figure.
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count) the real datasets for the clone under analysis. We analyzed
the simulated suite of datasets using Equation 4 and a grid of potential
values to obtain l̂boot and t̂0;boot . The one condition we imposed
in this estimation step was that t̂0;boot must be less than or equal to
the minimum observed lysis time from the real data. If we did not do
this, the bootstrap would have returned values and hence confidence
bounds for t0 greater than this minimum lysis time, and we knew such
values would not be valid confidence bounds when the probability of
the real data under them is zero. We repeated 500 bootstrap repli-
cates. We then sorted the l̂boot values, and defined the 95% confidence
interval as the central 95% of the values. We independently sorted the
t̂0;boot values and used the central 95% of these. Thus, the confidence
intervals on l̂ and t̂0 were not joint. We did not validate that these
intervals capture the truth greater than or equal to 95% of the time,
but we did confirm that the means of l̂boot and t̂0;boot were close to
l̂ and t̂0, respectively, suggesting that the parametric bootstrap was a
valid technique.

We also were interested in inferring mean lysis times from our data.
Given the unique properties of exponential distributions, we could
derive each clone’s mean lysis time simply by summing its estimated
t0 and l. A confidence interval for this estimate could be obtained by
repeating this procedure using the upper and lower bounds on the
individual parameter estimates.

We now turn our attention to how to determine whether lysis time
parameters l and t0 are different for different clones. We conducted
several formal tests for differences between clones using a likelihood
ratio framework. To test whether both l and t0 clones differ, we note
that, under the null hypothesis, a single shifted exponential function
would describe the data from both clones being compared; the alter-
native hypothesis asserted the data for each clone came from a distinct
function. We calculated the log-likelihood of the data under the null
(LNull) by pooling both clones’ data, fitting as just described to obtain
l̂Null and t̂0ðNullÞ, and then using Equation 4. We calculated the log-
likelihood under the alternative (LAlt) by doing the same thing, except

we fitted each clone’s datasets separately, calculated their log-likelihoods
separately, and then summed. We define LObs ¼ LNull 2 LAlt . To
determine whether LObs is significantly large, we needed the distri-
bution of L under the null. We obtained this by simulation. We
simulated data analogous in size and sample times to the pooled
data using l̂Null and t̂0ðNullÞ, repeated the fitting process, and calculated
log-likelihoods and their difference to yield LSim. We repeated this pro-
cess 500 times, and took the approximate P-value of LObs as the pro-
portion of bootstrap simulations where LSim was greater than LObs.

To test whether just l differed between pairs of clones, we used a
similar likelihood ratio test. Under the null, both clones shared a com-
mon value of l but could have different values of t0; under the alter-
native, both l and t0 could differ between clones. Note that the null did
not fix l at a single specific value; rather, it merely stipulated that l,
whatever value that may be, be shared by the clones being compared.
We fitted the data to the null by finding the maximum likelihood
estimates for each clone under the constraint of a shared value of l
and unconstrained values of t0 and then summing their log likelihoods
(LNull). We fitted the alternative by imposing no constraints, and sum-
ming the two log-likelihoods (LAlt).We definedLObs ¼ LAlt 2 LNull . To
obtain the distribution of L under the null, we simulated 500 datasets
using the null parameter estimates, repeated the model-fitting exercise
for each, and took the difference in the log-likelihood: LBoot . The pro-
portion of the bootstrap replicates where LBoot was greater than LNull

was the approximate P-value for this comparison. To test for significant
differences in t0, we repeated this procedure, except t0 was constrained
and l was allowed to vary.

To test whether the distribution ofP-values calculated for each set of
pairwise parameter comparisons diverged from the null expectation
(i.e., a uniform distribution), we binned the P-values into four categories
[0.00,0.25), [0.25,0.50), [0.50,0.75), and [0.75,1.00] and conducted an
exact multinomial test against expected frequencies in each bin under
the null. The null bin frequencies were equal across the four categories
(i.e., 25% in each bin).

n Table 2 Summary of notation used in statistical modeling

Symbol Meaning

ba The number of phages in a well from assay a is Poisson with mean ba
p Probability a random phage in a randomly selected well in the experiment has not lysed its host
La # of wells examined in assay a
Ra # of wells examined in assay a that show lysis events
Ma # of wells examined in assay a that do not show lysis events but have counts $1
Za # of wells examined in assay a that have zero phages in them
Nar # of phages in well r from assay a. We reorder wells such that r ¼ 1;2;⋯;Za have 0

phages, wells r ¼ Za þ 1; Za þ 2;⋯; Za þMa do not show lysis events (but are nonzero),
and r ¼ Za þMa þ 1; Za þMa þ 2;⋯; La are wells showing lysis events

�Na Mean count in wells not showing lysis events;
PMa

r¼Zaþ1Nar=Ma

Tiar Time to lysis of phage i in well r from assay a
DT Burst size of a phage that lysed its host at time T
Ctar Observed count in well r sampled in assay a at time t
Btar The number of phages in well r, assay a, that have lysed their hosts by time t when

well is sampled; Btar ¼
PNar

i¼1IfTiar # tg
Ytar An indicator function that is 1 when Btar .0 and 0 when Btar ¼ 0
Utar The number of phages in well r, assay a, yet to lyse their hosts when sampling occurs

at time t; Utar ¼ Nar 2Btar

Xtdr Sum of lysis times for all phages in well r, assay a, that have lysed their hosts prior
to sampling at time t; Xtar ¼

PNar
i¼1IfTiar # tg

a, m, s Parameters describing the assumed linear relationship between burst size
and time CT ¼ mþ aT þ e where e � Nð0;s2Þ

t0 Latent period. For t, t0, the lysis rate = 0; for t. t0 it is constant per unit time
wt The probability a phage will have lysed its host by time t
l Parameter relating lysis probability to time; wt ¼ 12 e2ðt2t0Þ=l
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Burst size as a function of time: We modeled the potential for burst
size to change with time as a linear function,DT ¼ mþ aT þ e, where
DT was the expected burst size when Tminutes had elapsed since t0, m
was the burst size at t0, a was the rate of increase in burst size (i.e., the
slope parameter), and e captured the normally distributed variation
from expectation (mean 0, variance s2). Note that none of the terms
in this model was observable. If a well sampled at time t showed a lysis
event, we knew that lysis occurred before t, but we did not know exactly
when. In addition, we did not know how many phage particles initially
were in the well. Thus, both lysis time and burst size were hidden
variables. In Appendix 3, we show that the observed count (rather than
the burst size) could, like burst size, be expressed as a linear function:

Ctar ¼ aXtar þ mBtar þ d (5)

where Ctar was the count observed in well r sampled at time t from
assay a, Btar was the number of phage particles in well r (assay a) that
had lysed their hosts by time t, Xtar was the sum of their lysis times,
and d was normally distributed with mean zero and variance Btars

2.
Our goal was to estimate the parameters m, a, and s, but because
Equation 5 depended on the unobservable Xtar and Btar , we could not
use standard regression. Instead, we employed an expectation maxi-
mization (EM) algorithm, through which the problem was circum-
vented by replacing Xtar and Btar with their expected values before
doing regression, and then iterating (Meng and Rubin 1993). More
specifically, our EM algorithm involved the following steps: (1) guess
values for Xtar and Btar ; (2) estimate the parameters m, a, and s by
least-squares regression (equivalent to maximum likelihood) assum-
ing the guesses ofXtar and Btar are correct; (3) assuming the parameter
estimates are correct, calculate the expected values of Xtar and Btar ,
and update the guesses to these values; and (4) repeat steps 2 and 3
until convergence occurs. It turns out that both parameter estimation
(step 2) and calculating expectations (step 3) involved a fair amount
of math; we present this in Appendix 3.

To obtain confidence intervals and test for differences between
clones in the regression parameters, we used a parametric bootstrap
approach. For eachgenetically distinct clone,we simulated 1000datasets
using the estimated parameters and, each time, estimated a, m and s.
We then sorted the bootstrap set of parameter values individually, using
the 25th and the 975th values (i.e., the central 95%) to define the
confidence intervals. To keep our analysis simpler, we did not conduct
formal likelihood ratio tests for significant differences between clones
for these parameters. Instead, we compared confidence intervals and
applied the conservative criteria that when confidence intervals were
nonoverlapping, the two clones were significantly different.

Data and code required to repeat this analysis can be found in the
Supplemental Material File S1.

Data availability
Strains are available from D.M.W. upon request. File S1 contains a
description of all supplemental material, including raw experimental
data and the R code that was used to analyze them. Sequences of the
WT (Epos mutant ancestor) and D-promoter ancestor are given by
GenBank accession numbers J02482.1 and AF176034, respectively. Re-
gions of the mutants’ genomes were sequenced, and these sequences also
were archived in GenBank (accession numbers KU646482 to KU646588).

RESULTS
Thirty-seven assays were conducted for the eight clones (four to six
each). (Raw data from the assays are available in SupplementalMaterial,
File S1.) The estimated Poisson parameter ba ranged from 0.20 to 0.91,
with a mean of 0.46. It follows that approximately 63% of all wells had
no phage particles, 29% had one particle, 6.5% had two particles, 1%
had three, and 0.1% had four. Observed plaque counts ranged from
zero to 1270, with eight being the smallest plaque count classified as
representing a lysis event (see section Statistical methods).

Across theclones, theearliest timesatwhich lysiswasobservedranged
from11.0 min (pos6) to 14.5 min (mut321,mut323). Estimates of t0 are
shown in Table 3. This range of latent periods was consistent with past
results, as reported in Bernhardt et al. 2002 (one-step growth assays in
figure 2A in Bernhardt et al. 2002, about 12 min for wild type, pos6, and
pos4B infections, though about 22min for pos5) and Brown et al. 2010
(about 12–14 min for the D-promoter mutants and wild type).

The smallest observed value of l among the clones was 4.8 min
(mut321), meaning that the cumulative probability of lysis after t0 rose
most rapidly for this clone under the experimental conditions. The wild
type was found to have the largest l (11.2 min). Values of l for other
clones, along with confidence intervals, can be found in Table 3.

Figure 3 illustrates how the observed increase over time in the pro-
portion of wells showing lysis events was used to estimate the cumu-
lative lysis probability function for each clone. The figure also includes
pairwise comparisons of each clone with the wild type, demonstrating
clear differences between them. Note that Figure 3 does not visualize
the b parameter, which, in addition to the lysis events shown, was
important in the estimation of lysis time phenotypes. Taken together,
the curves form three rough clusters: (1) pos6, (2) wild type and pos4B,
and (3) the remaining clones. This clustering can be observed clearly
when the parameters composing those functions, l and t0, are plotted
against each other (Figure 4).

These visual comparisons were formalized into pairwise statisti-
cal tests. Along with parameter estimates, Table 3 shows the pairwise
P-values associated with the null hypothesis that the clones being com-
pared came from the same function (i.e., that jointly, both l and t0 are
the same for the clones). If either parameter differed, this test would

n Table 3 Estimates of l and t0 for each clone

Clone

Clone l (min) t0 (min) WT 319 321 323 324 5 6

WT 11.2 (7.5, 15.2) 12.2 (11.0, 13.2)
319 5.8 (4.0, 7.8) 12.7 (12.0, 13.0) 0.028�

321 4.8 (3.5, 6.2) 14.5 (14.0, 14.8) 0.002� 0.006�

323 6.2 (4.5, 8.5) 13.9 (13.2, 14.2) 0.062�� 0.132�� 0.448���

324 6.0 (4.2, 8.2) 13.4 (12.5, 13.5) 0.028� 0.548��� 0.134�� 0.698���

5 5.7 (4.0, 7.5) 13.2 (12.5, 13.5) 0.010� 0.768��� 0.082�� 0.438��� 0.778���

6 8.9 (6.2, 12.2) 10.0 ( 9.0, 10.8) 0.012� 0.008� , 0.002� , 0.002� , 0.002� 0.008�

4B 9.5 (7.0, 12.5) 12.7 (11.8, 13.0) 0.800��� 0.058�� 0.010� 0.192��� 0.140�� 0.076�� , 0.002�

95% confidence intervals are in parentheses. The diagonal matrix to the right gives the P-values (based on 500 bootstrap replicates) of tests of the null hypothesis,
which holds that the clones being compared have the same joint l and t0 values. � P , 0.05, �� P = 0.051–0.150, ��� P . 0.151.
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Figure 3 Estimated cumulative lysis probability by time functions, pairwise comparisons of each clone with the wild type. The wild type panel (top
left) provides an example of fitting a cumulative lysis probability by time function to wild-type data. The gray line is the best-fit curve. Dotted lines
represent 100 of the 500 bootstrap replicates. Each bubble’s position shows the proportion of wells sampled at a given time in which we observe
a lysis event; the size of each bubble shows the number of samples on which the proportion is based. In all other panels, the wild type is
represented with a gray line and gray bubbles.
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reject the null. By contrast, Table 4 shows the results of two different
sets of tests: the set of pairwise tests of the null in which lwas held to be
the same between clones, but t0 was allowed to differ, and a similar test
in which t0 was held to be the same, but lwas allowed to differ. In other
words, the first of these two sets of tests gauged differences between
clones’ values of l, whereas the second set of tests gauged differences
between clones’ values of t0.

Notice that we have not corrected for multiple tests. Our P-values
are based on 500–1000 bootstrap replicates, whereas the amount of
replication needed to achieve significance under a Bonferroni correc-
tion would be in the 5000–10,000 range and computationally infea-
sible. We note, however, that if the joint null hypothesis were
universally true (i.e., all clones followed the same function), we
would expect the P-values of the 28 pairwise tests to follow a uni-
form distribution, and we would expect just one or two false posi-
tives (28 · 0.05 = 1.4). Indeed, we would be unlikely to have
more than three false positives, since the binomial probability of
greater than three false rejections is 0.0491. Instead, the distribution
of P-values for the joint l-t0 comparisons skewed strongly from a
uniform distribution [exact multinomial test, P , 0.0001 (McDonald
2014)], and we observed 13 pairwise results less than or equal to 0.05
(Table 3). [The binomial probability of 13 or more false rejections isX28

i¼13

�
28
i

�
0:05ið120:05Þ282i ¼ 2:24· 10210.] We suggest, there-

fore, that most, though perhaps not all, of the differences that appeared
as significant were truly significant. Similarly, the tests for pairwise
differences in only l and only t0 yielded 10 and 13 values less than
or equal to 0.05, respectively, which is far more than expected under the
null of a uniform distribution (exact multinomial test, P = 0.0068 and
P , 0.0001, respectively). (The probability of 10 or more false rejec-
tions is 5:56· 1027, and the probability of 13 or more is 2:24· 10210;
Table 4.)

Wealsonote thatouromissionof adsorption timefromourstatistical
model (seeMaterials andMethods) had little effect on these findings. By
ignoring adsorption time, we treated the time to lysis as a single expo-

nential process, when in reality it involves the sum of two exponential
waiting times (Abedon et al. 2001). However, additional analysis (not
shown) demonstrated that, because adsorption happens at least an
order ofmagnitude faster than lysis (Brown et al. 2013), the distribution
of lysis time under the one-exponential model is very similar to that
generated by amore complex two-exponentialmodel. Furthermore, the
variance of our one-exponential model is slightly larger than that of the
two-exponential model, which implies that tests underlying the pair-
wise phenotypic comparisons were conservative. To see why, recall that
the variance of an exponential with mean l is l2. The variance of
the sum of two independent exponentials with means llysis and
ladsorb is the sum of their individual variances: l2lysis þ l2adsorb. But
the variance of a single exponential with mean l ¼ llysis þ ladsorb is
ðllysis þ ladsorbÞ2 ¼ l2lysis þ l2adsorb þ 2llysisladsorb. Therefore, although
we might have gained marginally more power in our phenotypic esti-
mates by adopting a more complex two-exponential statistical model
(supplemented with data on adsorption) or following the preattach-
ment protocols described in Brown et al. 2013 and Cherwa Jr et al.
2009, the methods we employed were adequate.

The regression analysis of burst size by time revealed that burst size
increasedwith time for all clones (Figure 5). The parameter estimates for
each clone are provided in Table 5 along with confidence intervals.
Figure 5 illustrates these regression parameter estimates graphically,
showing that clones fell into four clusters of decreasing slope: (1)
pos6, (2) pos4B and pos5, (3) wild type and mut319, and (4) mut321,
mut323, and mut324. Formal testing of parameter differences was not
conducted. However, where confidence intervals were nonoverlapping,
there was good evidence for a significant difference. For slope, the
confidence intervals within the four clusters were generally overlapping
while intervals between clusters were not.

Table 6 summarizes the calculated mean and variance in lysis time
for each clone.

DISCUSSION
In recent years, it has been found that the probability that a beneficial
mutation will fix in a lytic phage population depends sensitively on the
life history parameter it affects (Wahl and DeHaan 2004; Hubbarde

Figure 4 Estimates of parameters l and t0 that define the lysis prob-
ability function for wildtype and each mutant. Bars represent the ap-
proximate 95% confidence intervals for each parameter independent
of the other (based on 500 bootstrap replicates).

Figure 5 Estimated burst size by time relationships for wild type and
each mutant.
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et al. 2007; Patwa and Wahl 2008, 2009). Furthermore, analytical
work has demonstrated that variance in life history traits, not just
the trait means, can influence growth rate predictions, particularly in
iteroparous populations far from a stable age distribution (Bull et al.
2011). Inspired by this body of work, we wished to learn more about
whether bacteriophage life history traits, including higher moments
(e.g., lysis time variance), could be subject to the phage’s genetic
control.

To this end, we used a serially sampled parallel infection assay to
interrogate the lysis time and burst size phenotypes of a panel of eight
genetically distinct fX174 clones. Among these clones were four with
mutations in the D promoter that have been reported to downregulate
the transcription of several genes, including the lysis gene (E); three
Epos clones with mutations in E that have been found to upregulate its
expression; and the wild-type ancestor of the Epos mutants. (As noted
in the Materials and Methods, these mutations were introduced on
slightly different genetic backgrounds.)

Using a novel statistical approach that allowed us to overcome the
challenge of hiddenvariables,we found significant variation inboth lysis
time and burst size among these clones, including evidence that fX174
exerts genetic control over lysis time variance under our experimental
conditions.

The inferred differences among the clones’ burst size phenotypes are
generally consistent with our limited understanding of the mutations’
biological effects (Table 5 and Figure 5). In accordance with their de-
pressed rates of transcription at the D promoter (Brown et al. 2010),
burst size increased more slowly than the wild type in three of the four
D-promoter mutants. (Burst size increased with lysis time at about the
same rate as the wild type in the fourth D-promoter mutant, mut319.)
By contrast, burst size increased more quickly than the wild type in the
three Epos mutants. This may be related to the findings of Bernhardt
et al. 2002 that the R3H and L19F mutations lead to markedly faster E
protein synthesis than the wild type, perhaps by increasing mRNA
translatability. Given the compact genome of fX174 and the location
of E within the D gene (Figure 2), it is possible that these mutations
somehow upregulate gene expression more globally, thereby precipitat-
ing more rapid accumulation of progeny virions and larger burst sizes.

As with burst size, we inferred significant variation in lysis time
phenotypes among the eight clones under the tested experimental
conditions. The clones seem to differ in their overall cumulative
lysis probability functions (Table 3) and in both t0 and l individ-
ually (Table 4).

Within these differences, we observe an inverse relationship between
t0 and l (Figure 4): under the tested conditions, the mutations appear
to delay the onset of lysis while causing the cumulative lysis probability

to rise more quickly compared to the wild type (Figure 3). (The most
noteworthy exception is pos6, the only clone with a value of t0 less than
that of the wild type.) A consequence of this trend is that, despite
substantial differences in t0 and l, the clones’ mean lysis times (com-
puted as the sum of t0 and l) are rather similar (Table 6). Amechanistic
investigation of the apparent maintenance of mean lysis time is beyond
the scope of this study, but we speculate that it may reflect constraints
on lysis timing imposed by the host’s cell cycle (for fX174: Witte et al.
1998; Young et al. 2000; and other phages as well: Hadas et al. 1997;
Storms et al. 2014). While mutations in E and related genes could
potentially bias lysis timing earlier or later, or make the process more
or less noisy, the host’s physiology and cell cycle may prevent extreme
divergence from a common mean.

In fact, given the genetic and phenotypic constraints on fX174
life history, it is notable that burst size and lysis time phenotypes
appear to diverge as much as they do. A primary genetic constraint
is the phage’s compact genomic architecture. The E gene is entirely
embedded within the structurally essential D gene (Barrell et al.
1976; Figure 2), and the D promoter simultaneously regulates the
transcription of E, D, and four other structural genes downstream
(i.e., J, F, G, and H) (Fane et al. 2006). The work presented here stands
with and expands upon previous studies (e.g., Brown et al. 2010,
2013; Bernhardt et al. 2002) in demonstrating that, despite the rel-
atively limited genotype space accessible to the organism, the geno-
mic architecture of fX174 permits a significant degree of flexibility
in lysis time and burst size phenotypes. Still, the genetic constraints
on these phenotypes are clearly visible in the form of pleiotropic
effects on burst size and lysis time in our data.

The inferred disparity among our clones’ lysis time parameters is
also interesting given the aforementioned phenotypic constraints im-
posed by the host’s cell cycle and physiology. Whereas l and many
other larger DNA phages effect lysis via a tightly regulated, two-protein
lysis strategy,fX174 and otherMicroviridae lyse their hosts by way of a
single protein (Young et al. 2000; Young and Wang 2006). The lysis
timing of fX174 is thought to be dictated largely by the timing of host
cell division and, therefore, compared with phages like l, even less
subject to the phage’s genetic control (Witte et al. 1998; Young et al.
2000; Zheng et al. 2008; Dennehy andWang 2011; Singh and Dennehy
2014; Storms et al. 2014). But our demonstration of genetic control of
both lysis time mean and variance hints at the possibility of as-yet-
unknown mechanisms exerting some control over phage lysis timing.
Indeed, researchers have long speculated that protein E may mediate
lysis timing not just through its interactions with MraY, but also
through interactions with the host protein SlyD (Young and Wang
2006). SlyD plays an important role in cell division and cell cycle

n Table 4 Approximate P-values of pairwise comparisons of individual parameters in lysis probability by time functions

Clone

Clone WT 319 321 323 324 5 6 4B

WT 0.010� , 0.002� 0.028� 0.018� 0.006� 0.322��� 0.506���

319 0.478��� 0.404��� 0.888��� 0.870��� 0.844��� 0.082�� 0.028�

321 , 0.002� 0.006� 0.260��� 0.314��� 0.464��� 0.010� , 0.002�

323 0.050� 0.132�� 0.246��� 0.836��� 0.702��� 0.136�� 0.092��

324 0.084�� 0.334��� 0.044� 0.486��� 0.752��� 0.078�� 0.042�

5 0.210��� 0.478��� 0.014� 0.364��� 0.698��� 0.068�� 0.022�

6 0.038� 0.002� , 0.002� 0.002� , 0.002� 0.004� 0.780���

4B 0.552��� 0.910��� 0.004� 0.142�� 0.276��� 0.478��� 0.006�

Above the diagonal are results of tests of the null in which l is held to be the same between clones but t0 is allowed to differ. Below the diagonal are results of similar
tests in which t0 is held to be the same but l is allowed to differ. In other words, the first of these two sets of tests gauges differences between clones’ values of l
(above the diagonal), whereas the second set of tests gauges differences between clones’ values of t0 (below the diagonal). Based on 500 bootstrap replicates each. �

P , 0.05, �� P = 0.051–0.150, ��� P . 0.151.
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regulation (Roof et al. 1997) and is required for stability of wild-type E
protein (Bernhardt et al. 2002).

Strengths and limitations of our experimental and
statistical approach
The strength of the experimental and statistical approach taken in this
study lies in its power and applicability. It is powerful in that, more
effectively thanmost other methods, it simultaneously captures informa-
tion related to lysis time variance and burst size as a function of time. The
approach also has potential application to a range of microbiological
questions. The principles and tools underlying the assay and inferential
apparatus could be applied usefully to other cases in which one seeks to
make inferences about dynamic, Poisson-distributed processes that are
sampled destructively over a time course (e.g., tracking the fates of indi-
vidual tagged mutants in a dynamic population of cells or viruses).

However, we concede our approach has limitations. There is in-
creasing evidence that host cells’ physiology plays a vital role in de-
termining phage infection dynamics (Hadas et al. 1997; Rabinovitch
et al. 2002; Storms et al. 2014; Bull et al. 2014). Yet, in synchronizing
and rapidly sampling infections, our assay exposed the cells to temper-
ature changes and nutritional regimes on a short timescale, which may
have altered cells’ physiology in ways important for the measured
phenotypes (van Elsas et al. 2011). While these sorts of manipulations
are not uncommon in the literature (e.g., Wang 2006; Cherwa Jr et al.
2009), they limit the generality of some conclusions drawn from this
work. The unique conditions of the assay complicate comparisons to
previous estimates of the clones’ burst size and lysis time phenotypes,
and theymake it impractical to validate ourmethods against traditional
single-step growth experiments with much confidence.

By the same token, the lysis times andburst sizes inferred in thiswork
may differ from those fX174 exhibits in nature. Environmental differ-
ences in factors like host density and diversity, as well as temperature
changes and nutritional regimes, could possibly lead to differences be-
tween phenotypes measured in the assay and in the wild. That said, it is
unclear how well any particular assay approximates the phage’s natural
environment, which remains largely uncharacterized (Michel et al.
2010). Further study of the ecological niche of fX174 would be neces-
sary to clarify which environmental differences between our assay and
the wild are most relevant to the phage’s life history phenotypes.

Finally, our assumption of a linear increase in burst size with time,
though substantiated by significant past work with fX174 and other
phages (Hutchison and Sinsheimer 1966; Wang et al. 1996; Wang
2006), may be subject to debate (Storms et al. 2014). We hope further
research will help better evaluate the appropriateness of this assumption.

When it comes to achieving the core aims of thiswork,we believe the
strengths of our experimental and statistical approach outweigh its
limitations. It allowed us to demonstrate that, under at least one set of

conditions held constant for eight similar but distinct fX174 clones,
burst size and lysis time phenotypes (including lysis time variance)
differed significantly. Furthermore, it is reasonable to assume that the
degree of genetic variability among the clones is comparable to that
which is the substrate for natural selection acting in the wild.

Evolutionary implications of heritable variation in lysis
time variance
Our finding that variance in the lysis time offX174 can be subject to at
least some genetic control inspired us to ask, “What, then, could be the
evolutionary implications of mutations affecting variance in phage lysis
time?”Trivially, if burst size growsmore slowly than exponentially once
a cell has been infected, then a mutation increasing lysis time variance
will be selectively favored, because early lysis events contribute more to
population growth than late lysis events detract (Bull et al. 2011; but see
Singh and Dennehy 2014). Empirically, phage burst size is thought to
increase linearly (Hutchison and Sinsheimer 1966; Wang et al. 1996;
Wang 2006; but see Storms et al. 2014), immediately suggesting one
mode of selection. Mutations increasing lysis time variance in a given
environment likely would fix quickly under this mode of selection.

In order to control for the influence of this mode of selection, we
recently have explored a model in which burst size increases exponen-
tially in time since infection (D. M. Weinreich, C. Brown, and L. M.
Wahl, unpublished data). This has allowed us to infer the intrinsic
selective consequences of mutations that influence lysis time variance.
As expected, in phage populations growing at their stable age-of-
infection distribution in unlimited host cells (Bull et al. 2011; Bull
2006), we found such mutations to be selectively neutral, since, by con-
struction, the contribution of early bursts to population growth is now
exactly balanced by (exponentially larger) late bursts.

However, the moment a mutation appears, the mutant subpopula-
tion is by definition not at stable age distribution, and indeed we have
found in simulations thatmutations increasing variance in lysis time are
transiently enriched in the population (D. M.Weinreich and C. Brown,
unpublished data). This effect follows from the fact that the frequency of
phages with high lysis time variance exceeds (sometimes considerably)
the frequency of their low-variance brethren early in each lysis cycle.
While the reverse is true late in the cycle, the effect is of smaller
magnitude and much shorter lived. Finally, overlaying periodic de-
mographic bottlenecks (e.g., as employed in lab conditions, but also
surely in nature), we observed that mutations increasing lysis time
variance can enjoy a dramatic increase in population frequency, despite
their neutrality when they finally reach their stable age-of-infection
distribution (D. M. Weinreich and C. Brown, unpublished). We there-
fore suggest a second mode of selection acting on mutations affecting
variance in lysis time.

n Table 5 Parameter estimates and confidence intervals for burst
size by time regression analysis

Clone
Slope (â)
(PFU/Min)

Intercept
(m̂) (PFU) ŝ (PFU)

WT 16.7 (15.1, 18.4) 28.4 (19.9, 36.5) 19.9 (15.6, 23.5)
319 19.3 (19.0, 19.6) 12.6 (11.4, 13.8) 3.2 ( 2.6, 3.7)
321 11.3 (10.7, 12.0) 13.9 (11.6, 16.1) 7.4 ( 6.2, 8.3)
323 12.4 (11.7, 13.1) 14.8 (12.1, 17.5) 7.2 ( 5.8, 8.3)
324 8.7 ( 7.6, 9.8) 27.5 (23.0, 32.3) 13.0 (10.7, 15.2)
5 26.7 (25.0, 28.3) 34.6 (28.1, 41.0) 17.5 (14.4, 20.2)
6 31.6 (31.1, 32.2) 8.0 ( 5.3, 10.7) 7.2 ( 5.8, 8.4)
4B 25.1 (24.5, 25.6) 16.7 (13.9, 19.2) 6.6 ( 5.3, 7.7)

Each confidence interval based on 1000 bootstrap replicates.

n Table 6 Estimates of lysis time mean and variance of fX174
clones

Clone
Lysis Time

Mean (min) Variance (min2)

WT 23.4 (18.5, 28.4) 125.4 (56.3, 231.0)
319 18.5 (16.0, 20.8) 33.6 (16.0, 60.8)
321 19.3 (17.5, 21.0) 23.0 (12.3, 38.4)
323 20.1 (17.7, 22.7) 38.4 (20.3, 72.3)
324 19.4 (16.7, 21.7) 36.0 (17.6, 67.2)
5 18.9 (16.5, 21.0) 32.5 (16.0, 56.3)
6 18.9 (15.2, 23.0) 79.2 (38.4, 148.8)
4B 22.2 (18.8, 25.5) 90.3 (49.0, 156.3)

95% confidence intervals are in parentheses. Mean lysis time = t0 þ l. Variance
in lysis time = l2.
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Future directions
The findings reported here suggest two complementary avenues for
future investigation. One is microbiological, and it involves exploring
fX174 lysis in relation to its genetic determinants and its host’s biology.
It would be interesting to explore the mutants’ performance in a range
of assays, such as those involving thermally regulated microscopy
(Dennehy and Wang 2011), single-cell microfluidics-based techniques
(Yin and Marshall 2012), or periodic filtration and sampling (Hutchison
and Sinsheimer 1963). (The last and oldest of these techniques could
prove especially fruitful, since it would allow direct access to both
lysis time and burst size.) In addition, it would be highly informative
to use methods like those designed by Storms et al. 2014 to study how
fX174 mutants’ burst sizes and lysis times vary as a direct function of
the host’s cell cycle. These types of experiments could yield valuable
insight into the regulation and host-dependence of fX174 life history
phenotypes.

Theoretical evolutionary problems present another opportunity for
future research. Does natural selection act on lysis time variance in
nature? What is the fixation probability of a mutation that affects lysis
time variance, and how do populations carrying such mutations evolve
in the face of periodic bottlenecks?Existing computationalmodels could
be strengthened by more thoroughly exploring the models’ parameter
sensitivity and investigating how mutations that pleiotropically influ-
ence adsorption, lysis time, and burst size affect predicted population
dynamics. In addition, the models must be integrated with other the-
oretical work exploring the fixation probabilities of mechanistically
distinct beneficial mutations in lytic phages (Wahl and DeHaan
2004; Hubbarde et al. 2007; Patwa and Wahl 2008, 2009). Once elab-
orated and refined, models could be tested empirically through both
“single-sampling” assays and longer-term evolution experiments. The
former approach would assess the probability of loss of lysis time
variants introduced at very low frequency in replicate phage popula-
tions, while the latter would explore whether real evolutionary out-
comes match our theoretical predictions.
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APPENDIX 1: NUMBER OF PHAGES PER WELL POISSON ESTIMATOR

The counts from an assay place each well into one of three categories: empty, not showing lysis events but nonzero, and showing lysis
events. The probability of a well being empty is e2ba . The probability that a well has n phages is bn

ae
2ba=n!. The probability that all n phages

fail to lyse their host is pn, leading the probability of n in a well showing no lysis events to be ðpbaÞne2ba=n!. Finally, the probability of a
well showing one or more lysis events is one minus the probability of a well being empty, plus the sum of all the probabilities associated
with wells that do not show lysis events, which turns out to be 12 e2ð12pÞba . The categorization of wells into three types leads to the
following likelihood.

L
�
Na1;Na2;⋯;NaMa ;Ra

� ¼YMa

r¼1
ðpbaÞNar e2ba

Nar!
�
 
La

Ra

!�
12e2ð12 pÞba

�Ra

¼ ðpbaÞ
P

Nar e2MabaYMa

r¼1
Nar!

�
 
Ld

Ra

!�
12e2ð12 pÞba

�Ra

(6)

Therefore,

ln L ¼
XMa

r¼1

Nar ðlnba þ ln pÞ2Maba 2
XMa

r¼1

lnNar!þ ln

�
La
Ra

�
þ Ra ln

�
12 e2ð12pÞba

�
(7)

The maximum likelihood estimator is obtained by first calculating two partial derivatives,

@

@ba
ln ðLÞ ¼

XMa

r¼1
Nar

ba
2Ma þ Rað12 pÞe2ð12pÞba

12 e2ð12pÞba
(8)

@

@p
ln ðLÞ ¼

XMa

r¼1
Nar

p
2

Rabae
2ð12pÞba

12 e2ð12pÞba
(9)

and then setting both
@

@ba
lnðLÞ ¼ 0 and

@

@p
lnðLÞ ¼ 0. Denote the solution by b̂a and p̂, respectively. The solution associated with Equation 8

leads to

cba ¼ Na þ Ra
Ma

ð12 p̂Þcbae
2ð12p̂Þbba

12 e2ð12p̂Þbba

(10)

and the solution associated with Equation 9 gives

Na

p̂
¼ Ra

Ma

cbae
2ð12p̂Þbba

12 e2ð12p̂Þbba

: (11)

Now multiply both sides of the above equation by 12 p̂

Nað12 p̂Þ
p̂

¼ Ra

Ma

b̂dð12 p̂Þe2ð12p̂Þbba

12 e2ð12p̂Þbba

(12)

Note that second term on the right side of Equation 10 is equivalent to the left side of Equation 12. This leads to the following simple relationship
between b̂a and p̂:

cba ¼�Na þ�Na
12 p̂
p̂

(13)

Thus p̂ ¼ �Na=b̂a and ð12 p̂Þb̂a ¼ b̂a 2 �Na. We can eliminate p̂ from Equation 10 by substituting b̂a 2 �Na for ð12 p̂Þb̂a to get
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cba ¼ Na þ Ra

Ma

�
b̂a 2 �Na

�
e2ðb̂a2�NaÞ

12 e2ðb̂a2�NaÞ

cba 2Na ¼ Ra

Ma

�
b̂a 2 �Na

�
e2ðb̂a2�NaÞ

12 e2ðb̂a2�NaÞ

Ma

Ra
¼ e2ðb̂a2�NaÞ

12 e2ðb̂a2�NaÞ
Ma=Ra

1þMa=Ra
¼ e2ðb̂a2�NaÞ (14)

Solving Equation 14 for b̂a gives the estimator,

b̂a ¼ �Na þ ln ðMa þ RaÞ2 ln ðMaÞ (15)

APPENDIX 2: TIME TO LYSIS

Recall that wemodel the probability of a phage lysing its host by time twith a shifted exponential,PðT, tÞ ¼ wt ¼ 12 e2ðt2t0Þ=l. Define Btar as
the number of phages in well r, assay a, that have lysed their hosts by time t (when sampling occurs). Btar is Poisson with mean bdwt . Let Ytar be an
indicator with value 1 if Btar . 0 and 0 otherwise. Let Utar be the number of phages that have not lysed their hosts in well r, assay a, at time t
(Utar ¼ Nar 2 Btar). Based on standard theoryUtar is independent of Btar andUtar is also Poisson distributed but with mean bað12wtÞ. However,
Utar is only directly observable when no phages in the well have lysed their hosts (i.e., when Btar ¼ 0). We now show how to use the binary Ytar

together with Poisson distributed Utar to estimate l and t0. First, the likelihood of the lysis data are given by,

L ðYÞ ¼
Y
a

Y
t

Y
r

�
e2bawt

�12Ytar
�
12e2bawt

�Ytar (16)

The likelihood for the number of phages in wells not showing lysis events is given by

LðUjY ¼ 0Þ ¼
Y
a

Y
t

Y
r

�ð12wtÞba

�Utar

Utar!
e2bdð12wtÞ (17)

However, to account for the fact thatUtar is only observable when no lysis occurs (i.e., Ytar ¼ 0), we must adjust the likelihood for wells showing
plaques but not showing lysis events as follows.
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Y
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Y
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Y
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�ð12wtÞba

�Utarð12YtarÞ�ð12YtarÞUtar
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The combined likelihood is,
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(19)

Dropping factorial terms that do not involve parameters and taking the log, the log-likelihood is proportional to

ln LðY;UÞ �
X
a

X
t

X
r

2
�
12Ytar

�
bawt þ Ytar ln

�
12 e2bawt

�
þð12YtarÞ

�
Utar ln

�ð12wtÞba

�
2bað12wtÞ

� (20)

As discussed in the main text, we estimate l and t0 by brute force, where we calculate the likelihood using Equations 3 and 20 for a large array of
joint values, taking the largest as the (approximate) maximum likelihood estimates.
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APPENDIX 3: BURST SIZE AS A FUNCTION OF SIZE

The count observable in well r from assay a taken at time t, Ctar, can be expressed as,

Ctar ¼ a
XNd�

i¼1

TiarIfTtar , tg þ m
XNd�

i¼1

IfTiar , tg þ
XNd�

i¼1

Z
i
IfTiar , tg (21)

where Tiar is the lysis time of phage i in well r of assay a, and I represents an indicator function that takes value 1 when the condition that follows
is true, and 0 otherwise. This simplifies to, Ctar ¼ aXtar þ mBtar þ d where Btar is the number of phages initially in well r of assay a sampled at
time t, Xtar is the sum of their lysis times, and d is normally distributed with mean zero and variance Btars

2. Our goal is to then estimatem, a, and
s. BecauseXtar and Btar are unobservable but are needed to estimate the parameters, we employ the following EM algorithmwhich replaces them
with their expected value. Note that these steps summarize the process; we provide derivations and details in subsections below.
EM algorithm
1. Begin with initial guesses for Bð0Þ

tar and Xð0Þ
tar for each well. Let j ¼ 0.

2. Given these values, estimate a and m using least-squares.

min
a;m

X
t;a;r

�
Ctar2aXðjÞ

tar2mBðjÞtar
�2

BðjÞtar
¼
X
t;d;r

�
Ctar2bajX

ðjÞ
tar2 bmjB

ðjÞ
tar

�2
BðjÞtar

(22)

3. Use the least-squares estimates baj and bmj to estimate s2

ŝ2
j ¼

1
n

X
t;a;r

�
Ctar2bajX

ðjÞ
tar2 bmjB

ðjÞ
tar

�2
BðjÞtar

(23)

4. Impute the values XðjÞ
tar and BðjÞ

tar using their posterior expected values. Details below.

Xðjþ1Þ
tar ¼ E

�
XðjÞ
tar

���Ctar; baj; bmj; ŝ
2
�

(24)

Bðjþ1Þ
tar ¼ E

�
BðjÞtar
���Ctar; baj; bmj; ŝ

2
�

(25)

5. Return to step 2, replacing j with jþ 1, until convergence occurs.

Least squares estimates for a and m (step 2 in EM algorithm)
Because the error is normal, values of m and a that minimize the sum of squared differences between observed and expected counts provide the
maximum likelihood estimates. The function that expresses this sum of squares is,

gða;mÞ ¼
X
t;a;r

ðCtar2aXtar2mBtarÞ2
Btar

(26)

Then

@

@a
gða;mÞ ¼

X
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2 2Xtar
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ðCtar 2aXtar 2mBtarÞ

@

@m
gða;mÞ ¼

X
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2 2ðCtar 2aXtar 2mBtarÞ
(27)

Set
@

@a
gða;mÞ ¼ 0 and

@

@m
gða;mÞ ¼ 0 solve. The solutions are the least squares estimates denoted by â and m̂ satisfy the following set of linear

equations.

X
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XtarCtar

Btar
¼ â
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t;a;r

Ctar ¼ â
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(28)
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For notational convenience let

A ¼
X
t;a;r

X2
tar

Btar
B ¼

X
t;a;r

Xtar

C ¼
X
t;a;r

XtarCtar

Btar
E ¼

X
t;a;r

Btar

F ¼
X
t;a;r

Ctar

(29)

The estimates are then

â ¼ CE2BF
AE2B2

(30)

and

m̂ ¼ CB2AE
B2 2AE

(31)

Conditional expectations (step 4 in EM algorithm)
Nowwewill calculate the expected number phages conditional on the size of the burstEðBtarjCtar; â; m̂; ŝ

2Þ aswell as the expected sumof lysis times
given the burst size EðXtarjCtar; â; m̂; ŝ

2Þ. Throughout this section, assay a and well r will be fixed; for notational convenience we will drop those
subscripts and just denote Ctar;Btar;Tiar;Nar; and Xtar by Ct ;Bt ;Ti;N; and Xt; respectively. Because we will be simulating the joint distribution of
Bt ;Xt conditional on Ct we will sometimes use a second subscript. In this case Btj;Xtj;Tij;Nj will represent the jth simulated value. To do this, we
will first need the joint distribution of Xt and Bt , which we obtain through the following simulation algorithm.

1. Simulate Nj from a Poisson distribution with mean ba. If Nj ¼ 0 repeat, otherwise proceed.
2. Simulate T1j;T2j;⋯;TNj ;j from a shifted exponential with mean l̂, and shift t̂0 estimated using the likelihood equation (4).
3. Calculate Btj ¼

XNj

i¼1
IfTij # tg and Xtj ¼

XTj

i¼1
TijIfTij # tg for each value of t in the assay. Round values of Xtj to the nearest tenth of

a minute (for values, 1 min), the nearest quarter minute for values between 1 min and 5 min, and the nearest minute for values between
5 min and 100 min. Store.

4. Repeat 1 through 3 for j ¼ 1; 2;⋯;M where we set M ¼ 100; 000.
5. For each value of t, convert the observed joint values of ðBtj;XtjÞ to proportions.

The above algorithm generates the empirical distribution fBt ;Xt ðbt ; xt jl; t0Þ. We note that the distribution for Ct conditional on Bt and Xt is
normally distributed with mean aXt þ mBt and variance Bts

2. Denote this distribution by

fCt

�
ct jbt ; xt ;a;m;s2� ¼ 1ffiffiffiffiffiffiffiffiffiffi

2pbt
p

s
exp
n
ðct2axt2mbtÞ2=ð2btsÞ

o
(32)

then

E
�
Xt jCt ;a;m;s

2� ¼X
xt

X
bt

xtfBt ;Xt ðbt ; xt jl; t0ÞfCt ðct jbt ; xt ;a;m;s2Þ
fCt ðctÞ

(33)

and

E
�
Bt jCt ;a;m;s

2� ¼X
xt

X
bt

btfBt ;Xt ðbt ; xt jl; t0ÞfCt ðct jbt ; xt ;a;m;s2Þ
fCt ðctÞ

(34)

where

fCt ðctÞ ¼
X
xt

X
bt

fCt

�
ct jbt ; xt ;a;m;s2�fBt ;Xt ðbt ; xt jl; t0Þ (35)

Using Equations 33 and 34 we can calculate the expected values of Xtar and Btar for use in the EM algorithm.
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