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Abstract

Background: Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used
for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of
fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering
response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate
such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response
due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an
optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate.

Results: We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering
immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and
gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The
effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light
scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold
nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in
the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface
biomarkers using SERS probes.

Conclusion: SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate
interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance
spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing
strongly enhanced Raman signals on polystyrene, which is an inexpensive yet non-ideal Raman substrate. The
assay sensitivity, which is in the low pM range, suggests that these SERS probe particles could be used for Raman
labeling of cell or tissue samples in a polystyrene tissue culture plate. With continued development, this approach
could be used for direct labeling of multiple cell surface biomarkers on strongly interfering substrate platforms.
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Background
Surface-enhanced Raman spectroscopy (SERS) has the
potential to address the clinical need to develop direct
cell labeling platforms with both high-throughput and
multiplexing capabilities. One example of this need is
the classification of hematological malignancies, which
require increased multiplexing capacity, as there are 60
recognized subtypes with unique biomarker profiles,
pathological characteristics, and required treatments
[1–8]. Commonly used immunoassay detection methods
such as fluorescence can only detect 3–5 unique analytes,
due to wide fluorescent spectral emission peaks, as illus-
trated in Fig. 1 [9, 10]. This limitation has prompted inter-
est in developing nanoparticle-based optical probes for
multiplex biomarker analysis.
Several different types of nanoparticles have been

used for multiplex immunoassays including colorimet-
ric nanoparticles [11, 12], quantum dots [13, 14], and
SERS probes [15–18]. Of these, SERS probes have the
narrowest emission peaks and the greatest multiplex-
ing capacity [10, 19]. It is estimated that SERS probes
could label up to 100 different biomarkers with little
spectral overlap [10, 19]. The development of a SERS
immunoassay using polystyrene microplates for pro-
tein binding has the potential to meet current clinical
needs for high-throughput detection of multiple analytes.
In addition to their multiplexing capacity, SERS

probes have several other characteristics that make
them useful in immunoassay development. SERS is a
light scattering technique with an emission lifetime of
approximately 10−14 seconds, which is shorter than a
typical fluorescence emission lifetime of approximately
10−8 seconds [20]. The short emission lifetime of SERS

decreases the amount of time that the reporter mol-
ecule remains in an excited state and reduces photo-
bleaching [21]. Another advantage of SERS probes is
their ability to withstand extreme environmental con-
ditions (changes in humidity, pH, and ionic strength)
while maintaining a strong emission signal [22, 23].
Since SERS probes are resistant to environmental
changes, they have been used for in vivo detection of
biomarkers [24, 25]. Finally, because of the light scat-
tering nature of SERS probes, a single light source
can be used to excite multiple SERS probes at the
same time [23, 26]. Each of these characteristics
makes SERS probes ideal for robust and sensitive
multiplex immunoassays.
SERS probes are fabricated using gold or silver

nanoparticles labeled with Raman reporter molecules
and antibodies for detection and targeting. The metal-
lic nanoparticle core enhances the electromagnetic
field near the Raman reporter molecules, resulting in
an average light scattering enhancement of 104 - 106

times [27]. This enhanced electromagnetic field is
caused by excitation of the nanoparticle’s surface elec-
trons and is referred to as localized surface plasmon
resonance (LSPR). LSPR is an electron-wave reson-
ance state caused by the oscillation of the nanoparticles’
electrons in response to incident light. LSPR produces
intense nanoparticle absorption and scattering at a
specific wavelength referred to as the LSPR peak
wavelength. The LSPR wavelength is influenced by
the size, shape, and dielectric properties of the nano-
particles [28]. Nanoparticle geometry and LSPR char-
acteristics can be tuned to match a Raman system’s
excitation wavelength, resulting in increased light

Fig. 1 A comparison of the spectral emission width and structure of fluorescent and SERS probes. The spectral emission width of SERS probe is
much narrower than fluorescent probes. The narrow spectral emission width of SERS probes enables the light scattering signal from multiple
SERS probes to be detected simultaneously without peak overlap
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scattering enhancement and greater SERS probe assay
sensitivity [29, 30].
SERS probes used in direct cell labeling applications

can typically be detected in the low pM to low nM
nanoparticle range [31, 32]. Table 1 lists references,
published from 2013 to 2015, showing the dynamic
range for SERS probes used in direct cell labeling ap-
plications [33–37]. Assay sensitivity and dynamic
range vary widely and depend on multiple factors in-
cluding nanoparticle geometry, Raman reporter dens-
ity, and Raman system throughput [29, 38]. Another
factor that directly influences SERS assay sensitivity is
the substrate used for sample analysis. Commonly
used substrates for SERS-based immunoassays include
gold or silver coated surfaces [15–17, 39, 40], quartz
microscope slides [41, 42], or mica sheets [43]. Less
expensive polystyrene substrates are traditionally not
used in SERS analysis due to their strong light scat-
tering background signal and intrinsic fluorescence
[44]. The goals of this research are to develop a SERS
assay on a polystyrene substrate and to determine the
effect of substrate inference on the assays sensitivity
and dynamic range.
In this study, we developed Raman-labeled nanoparti-

cles for an immunoassay using a polystyrene microplate
substrate. SERS probes used in the assay were synthe-
sized as shown in Fig. 2. First, gold nanoparticles were
labeled with Raman reporter molecules. After Raman re-
porter binding, polyclonal antibodies were covalently
modified with a long-chain polyethylene glycol (PEG)
linker molecule and then conjugated to the probe sur-
face. The particles were further stabilized with additional
PEG and then purified by centrifugation. This approach
was used to produce SERS probes for a light scattering
immunoassay. Optical absorbance spectroscopy was
used to quantify elastic scattering from the gold nano-
particles, while Raman spectroscopy was used to detect
inelastic light (Raman) scattering. This dual-modality ap-
proach can be used to characterize SERS probes prior to

cell or tissue labeling studies and to assess the influence
that substrate interference may have on the labeling
application.

Results and Discussion
Raman reporter selection and optimization of SERS probe
optical response on a polystyrene substrate
To determine the optimal Raman reporter molecule for
strong light scattering enhancement on a polystyrene
substrate, several commonly used Raman reporter mole-
cules were surveyed using a custom Raman microscope
system designed in-house (See Additional file 1: Figure
S1). These Raman reporters included 4-aminothiolphenol
(4-ATP), 4-mercaptobenzoic acid (4-MBA), crystal violet,
malachite green, and 3,3′- diethylthiatricarbocyanine
(DTTC) iodide. Each Raman reporter was mixed with a
nanoparticle solution and analyzed both on a non-
interfering quartz substrate and on a highly-interfering
polystyrene substrate. The response of each Raman re-
porter was evaluated to determine the required acquisition
time, the intensity of major Raman peaks, and the position
of those peaks relative to the Raman peaks of polystyrene.
It was determined that each of the reporter molecules was
a viable candidate for use on a polystyrene substrate
because the major peaks observed in the polystyrene
spectrum (620 cm−1, 1002 cm−1, and 1032 cm−1) did
not overlap major peaks seen in each Raman reporter
spectra (Fig. 3).
After the Raman reporter was added to the nano-

particle solutions, a significant increase in nanoparti-
cle aggregation was often observed. This aggregation
was caused by ion-induced displacement of the
citrate-capping layer on the nanoparticle surface [45].
The formation of nanoparticle aggregates was moni-
tored by measuring the shift in the LSPR wavelength
after reporter addition and by dynamic light scattering
(Fig. 4). Depending on the mean size of nanoparticle
aggregates and the extent of the LSPR shift, the ag-
gregation process can produce significant changes in

Table 1 SERS assay dynamic range

Nanoparticle Type Raman Reporter Dynamic Range Lower Limit of Detection (LLOD) Polystyrene Substrate? Reference

Gold Nanorods (LSPR 815nm) NIR Dyes 1 - 100 pM 1 pM No [33]

Silver Nanospheres Dimers 4-MBA 1 -500 pM 1 pM No [34]

Silica Coated Gold Nanospheres S420, S421, S440 1-400 pM 1 pM No [35]

Silica CoatedGold Nanospheres S420,S440 1-1200 pM 1 pM No [36]

Silica CoatedGold Nanospheres S420, S421, S440 0.8 - 800 pM 0.8 pM No [37]

60 nm Gold Nanospheres DTTC Iodide 76 - 500 pM 76 pM Yes **

Gold Nanorods(LSPR 779nm) DTTC Iodide 45 - 500 pM 45 pM Yes **

The typical dynamic range for SERS-based immunoassays and cell labeling ranges from 1–1200 pM SERS probe [33–37]. The dynamic range is expressed as the
actual number density of the SERS particles and should not be confused with the concentration of Raman reporter molecule added to the particles surface. Raman
reporter concentration will typically range from 1,200 - 10,000 reporter molecules per colloid [82]. Note: ** SERS probe detection limits and Raman-based assay
development methods presented in this paper
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the particles’ SERS response. In some cases, Raman
reporter-induced aggregation results in an increase in
the SERS response due to the formation of intense
nanoparticles hot spots [46]. Without using methods
for precise control of hot spot formation and aggrega-
tion, this effect may also result in inconsistent Raman
enhancement and decreased assay reproducibility [47].
During fabrication of a typical batch, Raman reporter-
encoded nanoparticles had limited, and highly con-
trolled, aggregation as seen in Fig. 4, which shows the
LSPR shift and mean particles size of gold nanoparti-
cles that were labeled with DTTC iodide.
To reduce nanoparticle aggregation, the concentration

of the Raman reporter molecule was maintained at less
than 600 nM during the labeling process. In addition to
reducing nanoparticle aggregation, this low reporter
concentration was required to promote uninhibited anti-
body binding. Ionic reporter molecules, such as DTTC
iodide, crystal violet, and malachite green, produced
nanoparticle aggregation when used at high concentra-
tions. On the other hand, thiol-containing molecules

such as 4-ATP and 4-MBA successfully stabilized the
particle surface, resulting in very little nanoparticle
aggregation. Based on these initial observations, re-
porter molecules such as 4-ATP or 4-MBA seem to
be ideally suited for maintaining a monodispersed so-
lution of Raman encoded nanoparticles. We observed
that thiol-containing Raman reporters are excellent at
stabilizing the particle surface, but they resulted in
poor SERS enhancement with our custom Raman system
(Additional file 2: Figure S2). In fact, it has been reported
that 4-MBA may result in poor SERS enhancement unless
added to the nanoparticle surface at concentrations high
enough to form a self-assembled monolayer [48][49].

Fig. 2 Synthesis schema for the production of SERS probes. The labeling and functionalization of concentrated gold nanoparticles during the
fabrication of SERS probes is a multistep process, which can be optimized for use with strongly interfering substrates such as polystyrene

Fig. 3 Raman reporter selection and polystyrene peak overlap. To
avoid substrate interference, Raman reporters were selected that
had very little peak overlap with the Raman spectrum of polystyrene.
Major peaks observed in the polystyrene spectra are found at 620 cm−1,
1002cm−1, and 1032 cm−1

Fig. 4 Raman reporter-induced aggregation. When high concentrations
of Raman reporter were used during the reporter labeling process,
nanoparticle aggregation occurred. The aggregation process results
in a LSPR shift and a reduction in LSPR intensity, which can reduce
SERS enhancement. DTTC iodide-induced aggregation was observed
by monitoring the LSPR peak spectrum of the nanoparticles and by
using dynamic light scattering
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Because DTTC iodide provided the best optical re-
sponse on our custom Raman microscope system, it
was selected as the Raman reporter for SERS labeling
(Additional file 2: Figure S2). DTTC iodide is a near-
infrared dye with a maximum absorption at 765nm.
Among the Raman reporter molecules surveyed, DTTC
iodide was unique because its maximum absorption point
is near our Raman system’s excitation wavelength
(785nm). Matching the Raman system’s excitation wave-
length to the molecule’s absorption band further amplified
inelastic light scattering through resonance Raman en-
hancement [29, 50, 51]. This resonance contribution re-
sulted in an increase in the Raman signal and a decrease
in substrate interference. The non-overlapping profile of
DTTC iodide-labeled SERS probes proved to be the best
solution to maximize SERS probe enhancement on a poly-
styrene substrate.

Antibody conjugation and particle functionalization
Anti-human IgG antibodies were bound to the gold
nanoparticles’ surface using an activated orthopyridyldi-
sulfide (OPSS)-PEG-NHS molecule that covalently binds
to primary amine groups on the protein. When the acti-
vated PEG molecule is resuspended in a protein solu-
tion, two competing reactions will occur: conjugation
and hydrolysis (Additional file 3: Figure S3). Reaction
conditions were modified to promote conjugation of the
activated PEG molecule. The conjugation reaction was
performed with the following PEG:antibody molar con-
jugation ratios: 1:1, 2:1, 4:1, 6:1, 8:1, 10:1, and 15:1. Suc-
cessful conjugation of OPSS-PEG to the antibodies was
verified using sodium dodecyl sulfate - polyacrylamide
gel electrophoresis (SDS-PAGE) analysis. As shown in
Fig. 5, the molecular weight of the PEGylated proteins
increases proportionally to the increasing PEG:protein
ratio as indicated by the position of the PEGylated pro-
teins with relation to the protein ladder. Also, PEG
staining of the gel using a 5 % barium chloride solution
followed by an iodine/iodide solution showed that the
amount of bound PEG increased consistently with the
increasing PEG:protein ratio. The results from the pro-
tein gel confirm that successful conjugation occurred
with addition of activated OPSS-PEG to the protein
solution.
PEGylated antibodies were bound to the nanoparticle

surface through gold-disulfide binding. The disulfide
group on the OPSS-PEG molecules has been used fre-
quently for gold nanoparticle functionalization and
binds to the solid gold surface through a semi-covalent
gold-sulfur bond [52–55]. An advantage of using acti-
vated OPSS-PEG for protein binding is that it avoids
potential problems with protein disulfide reduction
caused by the use of thiol-based agents in gold nano-
particle functionalization [56]. The binding of OPSS-

PEG to the nanoparticles’ surface was confirmed by the
increased particle stability caused by the addition of
OPSS-PEG to the nanoparticles solution. OPSS-PEG
stabilized gold nanoparticles showed increased stability
and aggregation resistance even in solutions of high
ionic strength. Increasing the stability of the OPSS-PEG
stabilized particles was an important step for antibody
functionalization and SERS-probe targeting.

Addressing the challenge of particle stability
One challenge of developing antibody-conjugated SERS
probes is balancing nanoparticle stability and protein
stability. To maintain nanoparticle stability, ultra-pure
water (18.2 MΩ-cm) is commonly used for nanoparticle
dilution and resuspension [57]. On the other hand, pro-
tein solubility and proper protein function require the
use of buffers such as phosphate-buffered saline (PBS)
or tris-buffered saline (TBS). These buffers maintain the
hydration layer around the protein, which results in a
stable protein conformation and solubility [58–60]. In
this study, the key to maintaining the balance between
protein and nanoparticle stability was adding PEGylated
antibodies at an optimized antibody to gold nanoparticle
ratio of 200:1. It was observed that if PEGylated anti-
bodies were added to the gold nanoparticle solution at a
ratio significantly higher than this, ion-induced particle
aggregation would occur. Alternatively, if PEGylated
antibodies were added at a lower ratio, the nanoparticles
would remain stable but protein aggregation and insolu-
bility would occur.

Fig. 5 SDS-PAGE analysis of PEGylated antibodies. SDS-PAGE analysis
confirmed successful antibody PEGylation. The gel was stained using
Coomassie Blue to detect protein (blue/green on the gel) and a
barium chloride iodine mixture to detect PEG (brown). The image
contrast for Fig. 5 was uniformly adjusted to highlight each individual
band in the gel
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After the addition of PEGylated antibodies, the nano-
particles were further stabilized with a layer of thiol-
polyethylene glycol (SH-PEG). SH-PEG provides steric
stabilization, which makes the nanoparticles resistant to
the effect of ion-induced aggregation. SH-PEG function-
alized SERS probe nanoparticles were fabricated, provid-
ing a consistent optical response for several weeks.
These particles could also be centrifuged and dispersed
without signal loss or particle aggregation (Additional
File 4: Figure S4). During the fabrication process, the
aggregation state was monitored using optical absorb-
ance spectroscopy and dynamic light scattering to en-
sure that surface functionalization did not disrupt
particle stability.

Development of a SERS immunoassay using spherical
gold nanoparticles and gold nanorods
Antibody-conjugated SERS probes were developed and
tested in a light scattering immunoassay format. A visual
protocol for the light scattering assay is presented in
Fig. 6a. PEG:protein ratios of 1:1, 2:1, 4:1, 6:1, 8:1, 10:1,
15:1 were evaluated to determine the effect of PEG con-
jugation on the probes light scattering response. The
resulting immunoassay shows specific binding of the
SERS probe nanoparticles to human isotype IgG, bound
to the polystyrene plate (Fig. 6b). The unconjugated
SERS probe control condition (Fig. 6b, row A) shows
very little specific binding. In addition, PEG conjugation
ratios of up to 15:1 have a minimal effect on the ability
of the SERS probes to bind to the immunoassay plate.
To quantify SERS probe binding, two batches of DTTC

SERS probes were fabricated. One batch was developed
using spherical gold nanoparticles (AuNP) and the second
was fabricated with gold nanorods (AuNR). A consistent
Raman reporter-labeling ratio was used for both AuNP
and AuNR particles so that the signal response could be
compared based on different nanoparticle geometries ra-
ther than on the concentration of Raman reporter. The

optical density of the Raman-labeled nanoparticles was
determined to be 20.3 ± 3.3 OD(536nm) and 20.1 ± 1.1
OD(779nm) for AuNP and AuNR, respectively. After fabri-
cation and purification, the LSPR wavelengths and Raman
intensities of the two SERS probe geometries were com-
pared in a light scattering immunoassay.

Quantification of spherical gold nanoparticles and gold
nanorods using optical absorbance spectroscopy
The assay was quantified using optical absorbance spec-
troscopy. In a typical assay, SERS probes were diluted
across 12 wells of the immunoassay plate using a 1:2 ser-
ial dilution, so that the full assay range from the nM to
low pM range could be assayed in a single plate. To
quantify the assay response, the absorbance of each well
was measured over a range of 400–850 nm and the
wavelength and intensity of the LSPR peak was deter-
mined. The AuNP SERS probes had a single LSPR peak
at 536nm while the AuNR SERS probes had both a
transverse LSPR peak at 520nm and a longitudinal LSPR
peak at 779 nm (See Fig. 7a and c). The maximum LSPR
peak intensity was then plotted against the concentra-
tion of nanoparticle added to each well (Fig. 7b and d).
The resulting data points were fit with a five-parameter
logistic curve. The assay's sensitivity limits were calcu-
lated according to the Clinical and Laboratory Standard
Institutes EP17-A2 guidelines [61, 62]. The lower limit
of detection (LLOD) for the assay is defined as the low-
est concentration that could be distinguished from the
blank with 95 % confidence [63]. Based on this calcula-
tion, the LLOD for the AuNP and AuNR assays were de-
termined to be 22.8 pM and 60.3 pM respectively.

Quantification of spherical gold nanoparticles and gold
nanorods using SERS
Both the antibody-conjugated AuNP and AuNR SERS
particles were also quantified using Raman spectroscopy.
As done previously, SERS probes were diluted using a

Fig. 6 SERS immunoassay development. Fig. 6a presents a visual protocol for the development of a light scattering immunoassay. Step 1:
Antigen is non-covalently bound to the polystyrene plate. Step 2: Buffer is used to remove unbound antigen. Step 3: The polystyrene surface
is blocked to prevent non-specific binding. Step 4: SERS probe detection antibody is added to the plate. Step 5: Wash buffer is used to remove
unbound SERS probe. Step 6: Light scattering from the SERS probe is measured for assay quantification. The resulting assay shows specific
binding of the SERS probe to polystyrene embedded human IgG (Fig. 6b)
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1:2 serial dilution across the wells of the immunoassay
plate. Raman spectra were acquired for each individual
well in the plate, and a similar correlation between SERS
probe concentration and light scattering signal was ob-
served. Fig. 8a and Fig. 8c show the Raman spectrum of
the AuNP and AuNR SERS probes, respectively. Both
Raman spectra show characteristic peaks corresponding
to DTTC iodide and to the polystyrene plate. In both
cases, the spectral area of the DTTC iodide peak is cor-
related to the concentration of SERS probe, while the
polystyrene peak intensity remains constant. A standard
curve and sensitivity plot illustrating the correlation for
both AuNP and AuNR SERS probes is shown in Fig. 8b
and Fig. 8d, respectively. For both SERS platforms, the
standard curve was fit using five-parameter logistic re-
gression. The LLOD for each assay was 76.1 pM and
44.7 pM for AuNP and AuNR SERS probes, respectively.
Previous studies have suggested that to produce

strong Raman enhancement, the nanoparticle size,
shape, and composition should be chosen so that the
particle LSPR peak is positioned near the excitation

wavelength [64, 65]. To increase the sensitivity,
strongly enhancing AuNRs where chosen for Raman
reporter binding. Because the 779nm LSPR peak of
the AuNR SERS probes was closer to the Raman sys-
tem’s excitation wavelength, an increase in the SERS
response was observed. The lower than expected op-
tical absorbance and SERS response of AuNR parti-
cles may be due to particle aggregation as suggested
by the wide LSPR peaks and lower intensities seen in
optical absorbance spectroscopy (Fig. 7c). These re-
sults indicate that developing a fabrication schema for
better control of the aggregation process may result in
greater SERS and optical absorbance enhancement for this
assay. Despite substrate interference and nanoparticle ag-
gregation, both AuNP and AuNR assays had nanoparticle
labeling concentrations that fell within the typical dynamic
range for direct cell labeling (See Table 1).
Continued research on the optimal nanoparticle and

Raman reporter combination for large Raman scattering
enhancement on a polystyrene substrate may result in
even greater enhancement and higher assay sensitivity.

Fig. 7 AuNP and AuNR light scattering immunoassay with detection by optical absorbance spectroscopy. After antibody-conjugated gold
nanoparticles were bound to the immunoassay plate, the assay response could be detected using optical absorbance spectroscopy. The
absorbance spectrum of each well was recorded and the intensity of the major LSPR peaks for both AuNP and AuNR SERS probes was
determined (Fig. 7a, c). The LSPR response was correlated to the nanoparticle concentration and a standard curve and sensitivity plot was
developed (Fig. 7b, 7d). The curve was fit using five-parameter logistic equation. LLOD values for AuNP and AuNR assays detected using
optical absorbance spectroscopy were 22.8 pM and 60.3 pM, respectively
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A promising application that may result in increased
SERS assay sensitivity is the development of precisely
engineered nanoparticle junctions (or hot spots) for
much larger Raman enhancement. Electromagnetic hot
spots between nanoparticle aggregates and the tips of
nanostructures can result in signal enhancement of up
to 108 - 1012 times [27, 66, 67] and have been used for
single molecule detection [68–74]. To promote assay re-
producibility, hot spot nanoparticle aggregates must be
precisely fabricated and characterized. Further work util-
izing precisely engineered hot spot nanoparticle clusters
may open the doors for a sensitive, multiplex SERS assay
on a polystyrene substrate.

Conclusion
This research article has described a step-by-step
process to fabricate SERS probe nanoparticles using
spherical gold nanoparticles and gold nanorods. The op-
tical properties of both SERS probe platforms were
tested in a light scattering immunoassay. This method
for SERS probe fabrication and testing promoted repro-
ducibility and consistency in the probe's optical response
and allowed us to fabricate SERS probes with a signal

that could be detected on a polystyrene substrate.
The optical signal of the probes was detected using a
dual-modality approach where both elastic and inelas-
tic scattering were detected using optical absorbance
spectroscopy and Raman spectroscopy, respectively. Des-
pite substrate interference, both spherical gold nanoparti-
cles and gold nanorods had assay detection limits in the
low pM range. These results suggest that SERS-based cell
labeling applications could be conducted on a polystyrene
substrate. This SERS immunoassay method has potential
for high-throughput, multiplex biomarker analysis. In the
future, these probes may be used to detect multiple bio-
markers in a clinical setting. If pursued, this method could
enable the simultaneous, high-throughput detection of
biomarkers specific to hematological malignancies or
other complex diseases that require the detection of mul-
tiple biomarkers for successful diagnosis and treatment.

Methods
Design of a Raman microscope system
To determine the optical response of the SERS probes, a
custom Raman microscope system was constructed. The
system was retrofitted to a Nikon TE-2000-S inverted

Fig. 8 AuNP and AuNR light scattering immunoassay with detection by SERS. Using the 785nm custom Raman microscope, the Raman spectra of
the AuNP and AuNR SERS probes bound to the polystyrene plate were recorded. Fig. 8a shows the Raman spectrum of DTTC iodide labeled
AuNP SERS probes. The spectrum shows characteristic peaks corresponding to DTTC iodide at 493 cm−1 and 508 cm−1 and to polystyrene at
1002 cm−1 and 1032 cm−1. By solving for the area under each reporter peak, an AuNP SERS probe standard curve was developed (Fig. 8b).
The curve was fit using a five-parameter logistic equation and the LLOD was calculated as 76.1 pM. The Raman spectra of AuNR SERS probes
were also acquired (Fig. 8c). A standard curve and sensitivity plot shows that the LLOD for the AuNR SERS probe assay was 44.7 pM (Fig. 8d)
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microscope base. A 785nm single-mode laser from In-
novative Photonics Solutions (Monmouth, NJ) was
coupled to a fiber optic cable with a numerical aperture
of 0.39 and a core diameter of 400μm (Thorlabs Inc,
Newton, NJ). The end of the fiber was attached to a laser
entry port on the back of the microscope base to illu-
minate the sample on the microscope stage. Laser light
was focused onto the sample and backscattered light
was collected through the objective lens. A longpass fil-
ter removed elastic scattering and the Raman scattered
light, which was passed to the spectrometer and dis-
persed using an IsoPlane 160 spectrometer (Princeton
Instruments, Trenton, NJ) with a 1200 g/mm grating.
The dispersed light was imaged with a Princeton Instru-
ments Pixis 400 detector. All spectra were processed
using LightField (Princeton Instruments) and Spekwin32
[75] spectral software. During Raman spectrum acquisi-
tion, 40mW of laser power was focused on the sample
and Raman spectra were acquired using a 10-second ac-
quisition time.

Design of SERS probes and Raman reporter selection
60nm Citrate-capped gold nanoparticles were purchased
from Ted Pella, Inc., Redding, CA. Citrate-capped gold
nanorods were purchased from Nanocomposix, San
Diego, CA. Raman reporter molecules including 4-
aminothiolphenol (4-ATP), 4-mercaptobenzoic acid
(4-MBA), crystal violet, malachite green, and 3,3′-
diethylthiatricarbocyanine (DTTC) iodide were pur-
chased from Sigma Aldrich, St. Louis, MO.
To produce SERS probes, 60nm citrate-capped gold

nanoparticles (2.6x1010 nanoparticles per milliliter) were
concentrated and added to a glass vial. The solution was
rapidly stirred with a magnetic stir bar and the reporter
molecules were added dropwise to the nanoparticles at a
1:6 volumetric ratio as used in prior work [5]. The
optimal Raman reporter molecule was determined by
surveying the optical response of several Raman re-
porter molecules including 4-ATP, 4-MBA, crystal
violet, malachite green, and DTTC iodide. Each re-
porter colloid solution was incubated for 1 hour to
promote surface binding.

Antibody conjugation and particle functionalization
To develop antibody-conjugated SERS probes, cross-
absorbed human and mouse IgG antibody-antigen
pairs were used (Thermofisher, Rockford, IL). Anti-
bodies were conjugated to the SERS probes using
orthopyridyldisulfide-polyethylene glycol-succinimidyl
valerate (OPSS-PEG-SVA, Laysan Bioscience). Prior to
conjugation, the antibodies were transferred to a buffer
solution of 100mM sodium bicarbonate using ZebaSpin™
desalting columns with a 10kDa molecular weight cutoff
(Thermofisher). After buffer exchange, 5000 molecular

weight OPSS-PEG-SVA was added to the protein solution.
The reaction proceeded at room temperature for 2 hours
and then overnight at 4 °C. After conjugation, the PEGy-
lated antibodies were quantified using SDS-PAGE.
Using a TGX Fast Cast™ gel casing kit (BioRad,

Hercules, CA), a 7.5 % polyacrylamide gel was prepared.
PEGylated proteins were mixed with non-reducing lith-
ium dodecyl sulfate sample buffer (Thermofisher) and
placed in a water bath at 100 °C for 4 minutes. After
cooling, the PEGylated proteins were loaded into the gel
and the gel was run for 75 minutes at 150V using tris-
HEPES-SDS running buffer (Thermofisher). The gel was
stained for protein using a Coomassie Blue protein stain
and for PEG using a 5 % barium chloride solution
followed by a 1N iodine/iodide solution as done by other
researchers [76–80].
To fabricate the SERS probe nanoparticles, PEGylated

antibodies were bound to the gold nanoparticles surface
by gold-disulfide binding [53]. DTTC iodide was added
dropwise to the nanoparticles at a range of 200 - 1500μM
and was incubated with the particles for 1 hour. Following
incubation, PEGylated antibodies were added dropwise to
the nanoparticle solution at an antibody to nanoparticle
ratio of 200:1. The colloid solution incubated for 1 hour
to promote disulfide bonding to the particle surface. Fi-
nally, SH-PEG was added to the particles at a concentra-
tion of 10μM to block any unbound surface sites and to
increase particle stability. The SH-PEG was incubated
for 10 minutes after which the particles were centri-
fuged at 5000xg, the supernatant was removed, and
the particles were suspended in PBS to maintain pro-
tein stability and structural properties. The antibody-
conjugated SERS probes were stored at 4 °C until use
in the immunoassay.

Light scattering immunoassay development
A light scattering immunoassay was developed using
high-bind polystyrene plates as a binding substrate. IgG
isotype antibodies were added to the plate surface at a
concentration of 50μg/ml. After 1-hour incubation, the
plate was washed with tris-buffered saline with 0.05 %
tween 20 (TBST). To prevent non-specific binding, AAA
superblock (Scytek Laboratories, Logan, UT), was added
to each well of the plate for an additional hour. After in-
cubation, the blocker was removed from the wells and
SERS probes were added to the immunoassay plate. The
SERS probes were incubated in the wells of the im-
munoassay plate for 2.5 hours to ensure that complete
antigen binding had occurred. The plate was washed 3
times with TBST to remove unbound SERS probe.
Both AuNP and AuNR SERS probes were used to de-

termine the SERS assay sensitivity. AuNP and AuNR
SERS probes were fabricated according to the protocol
above, except that prior to Raman reporter labeling, the
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particles were centrifuged and concentrated. The molar
concentration of particles added to each well was esti-
mated based on the initial nanoparticle concentration
and the optical density of the nanoparticle solution after
fabrication, assuming a linear relationship between
nanoparticle concentration and optical density [81].
Binding of the SERS probe to the immunoassay plate
was determined using optical absorbance spectroscopy
and Raman spectroscopy. With optical absorbance spec-
troscopy, the absorbance of each well was measured at
the LSPR wavelength. With Raman spectroscopy, the
Raman scattering spectra were measured and baseline
corrected to remove fluorescence.
The corrected spectra were normalized based on

the intensity of the major polystyrene peak at 1002
cm−1, and the spectral area of each Raman reporter
peak was calculated. The spectral peak area was com-
pared to the concentration of SERS probe particles
and a standard curve for the assay was developed by
first fitting the data to a 5-parameter logistic curve.
LLOD values were computed as outlined in the Clin-
ical and Laboratory Standard Institutes, EP17-A2
protocol [61, 62]. Briefly, the limit of blank (LOB)
and LLOD values were computed using the following
equations: LOB ¼ �xBlank þ 1:645σBlank , LLOD = LOB +
1.645σLowRange where �xBlank is the mean value of the
blank, σBlank is the standard deviation of the blank,
and σLowRange is the standard deviation of lowest con-
centration sample present in the standard curve.

Additional files

Additional file 1: Figure S1. Design of a custom Raman microscope
system. The optical response of the SERS probes was detected using a
custom Raman microscope system, which was constructed with an
inverted microscope base, Figure S1A. With its inverted base and long
working distance objectives lenses, the system was built to analyze SERS
probes on a microplate substrate. The custom Raman system had a
spectral resolution of 1.6 cm−1, a laser wavelength of 785nm, and a
maximum power of 40mW. The Raman system captured spectral
images using a 1340x400 pixel CCD detector. A Raman spectral image was
obtained (Figure S1B, background image) and was averaged across each
column to produce a Raman spectrum (Figure S1B, red overlay). The
custom Raman system was used to acquire the Raman spectra of
SERS probes in the development of light scattering immunoassays.
(PDF 1673 kb)

Additional file 2: Figure S2. SERS enhancement of different Raman
reporters on spherical gold nanoparticles. Raman spectra were
acquired for five different Raman reporter molecules; DTTC iodide,
Crystal Violet, Malachite Green, 4-ATP, and 4-MBA. Sixty nanometer
spherical gold nanoparticles were labeled with each reporter at a
concentration of 400nM. After labeling, the Raman spectrum of each
nanoparticle solution was acquired on our custom Raman microscope
system. The intensity of the major peak in each spectrum was determined
and compared. The Raman intensity of DTTC iodide is much greater than
for other reporter molecules. (PDF 103 kb)

Additional file 3: Figure S3. OPSS-PEG-SVA conjugation and hydrolysis.
Activated OPSS-PEG-SVA can undergo two separate and competing
reactions, hydrolysis and conjugation. To promote conjugation, the

concentration of the protein solution was maintained at greater than
1mg/ml during conjugation and the NHS ester molecule was added
to the protein solution immediately upon suspension. In addition, the
NHS ester reagent was stored at −20 °C in a desiccator and under nitrogen
to avoid possible hydrolysis due to ambient moisture. The hydrolysis
reaction will release a NHS ester-leaving group with a maximum
absorbance at 260nm. The quality of the stored NHS ester reagent
was estimated by measuring the absorbance of a freshly prepared
solution at 260nm and comparing that value to the initial absorbance
from a newly opened vial of the reagent. (PDF 114 kb)

Additional file 4: Figure S4. SERS probe stability and optical response.
The stability of the SERS probes was determined by measuring the
optical response of the probes before and after the addition of the
SH-PEG. SERS probes fabricated using the synthesis methods described
previously were stable for at least 1 month when stored at 4 °C. When
SH-PEG was added to the gold nanoparticle solution, it did not signifi-
cantly displace the Raman reporter. In addition, the aggregation state,
optical response, and protein function were not adversely affected by
centrifugation. (PDF 163 kb)
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