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Abstract Adipocytes arise from distinct progenitor populations during developmental and adult

stages but little is known about how developmental progenitors differ from adult progenitors.

Here, we investigate the role of platelet-derived growth factor receptor alpha (PDGFRa) in the

divergent regulation of the two different adipose progenitor cells (APCs). Using in vivo adipose

lineage tracking and deletion mouse models, we found that developmental PDGFRa+ cells are

adipogenic and differentiated into mature adipocytes, and the deletion of Pdgfra in developmental

adipose lineage disrupted white adipose tissue (WAT) formation. Interestingly, adult PDGFRa+

cells do not significantly contribute to adult adipogenesis, and deleting Pdgfra in adult adipose

lineage did not affect WAT homeostasis. Mechanistically, embryonic APCs require PDGFRa for fate

maintenance, and without PDGFRa, they underwent fate change from adipogenic to fibrotic

lineage. Collectively, our findings indicate that PDGFRa+ cells and Pdgfra gene itself are

differentially required for WAT development and adult WAT homeostasis.

Introduction
White adipose tissue (WAT) is a dynamic endocrine organ that controls important physiological pro-

cesses and mediates various metabolic responses (Kershaw and Flier, 2004; Rosen and Spiegel-

man, 2006; Rosen and Spiegelman, 2014; Spiegelman and Flier, 2001; Trayhurn and Beattie,

2001). However, the development of WAT is not well understood. Adipocytes are constantly replen-

ished with new adipocytes derived from the stem cell pool, a process named adipogenesis

(Cawthorn et al., 2012; Sebo and Rodeheffer, 2019). In young adult mice, the rate of adipogenesis

has been estimated at 10–15% per month (Rigamonti et al., 2011), and retrospective human studies

also indicate a high turnover rate (Spalding et al., 2008). Under homeostatic conditions, the process

is relatively constant, but it is sensitive to pharmacologic, physiologic, and dietary stimuli. For

instance, adipose tissues can expand from 2–3% to 60–70% of body weight in response to a positive

energy balance through both hyperplasia and hypertrophy (Ginsberg-Fellner, 1981; Hirsch and

Batchelor, 1976; Hirsch and Knittle, 1970; Jo et al., 2009; Knittle et al., 1979). Notably, the thia-

zolidinedione (TZD) class of diabetes treatments increases de novo adipogenesis by stimulating

stem cell compartment self-renew and proliferation (Tang et al., 2011). Both childhood and adult

obesity are caused by uncontrolled expansion of WAT and excessive lipid accumulation, which ele-

vate the risk of metabolic disorders (Berry et al., 2016a; Hajer et al., 2008; Jiang et al., 2012;
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Smorlesi et al., 2012). However, the underlying differences between these two types of obesity are

not clear yet. Therefore, there is a clear clinical need to investigate how WAT is developed, main-

tained, and expanded during developmental and adult stages.

Recently, multiple genetic fate-mapping and lineage-marking studies have been conducted to

understand when and where adipose progenitor cells (APCs), which are capable to proliferate and

differentiate into new adipocytes, are specified (Cattaneo et al., 2020; Jiang et al., 2014;

Lee et al., 2013; Sanchez-Gurmaches and Guertin, 2014; Sanchez-Gurmaches et al., 2015;

Sebo et al., 2018; Tang et al., 2008; Tran et al., 2012; Vishvanath et al., 2016; Wang et al.,

2013). For example, it was reported that adult adipocytes, but not developmental adipocytes, are

differentiated from perivascular smooth muscle actin (SMA, encoded by Acta2 gene) mural cell

source to reside along the blood vessel walls within WAT (Jiang et al., 2014). The following study

identified that platelet-derived growth factor receptor beta (PDGFRb) mediates the interaction and

communication between adult SMA+ APC and niche (Jiang et al., 2017b). Lineage tracing studies

reveal that adipose mural PDGFRb+ cells do not contribute to adult homeostasis but contribute to

adipose remodeling in obese or cold exposed adult mice (Vishvanath et al., 2016). These findings

reveal that adipocytes arise from diverse lineages and that there are at least two different adipose

progenitor populations, including developmental progenitors used for adipose tissue organogenesis

and adult progenitors used for adipose tissue homeostasis. However, the origin and identity of the

developmental progenitors remain to be determined. Also, it is not clear whether developmental

and adult progenitors utilize different regulatory mechanisms to give rise to functionally different

adipocytes. Recent studies suggest that, even within a single adipose depot, there appear to be

multiple subpopulations of adipocytes (Lee et al., 2019).

Platelet-derived growth factor receptor alpha (PDGFRa) is a membrane-bound tyrosine kinase

receptor expressed in perivascular stromal cells within a variety of tissues. PDGFRa has been com-

monly used as a cell surface marker for adipose progenitor identification, and multiple studies have

reported that PDGFRa+ cells generate adipocytes in response to adipogenic stimuli (Berry and

Rodeheffer, 2013; Cattaneo et al., 2020; Joe et al., 2010; Lee et al., 2012; Lee et al., 2012; Riv-

era-Gonzalez et al., 2016). For example, using PdgfraCre; Rosa26RmT/mG mice, PDGFRa marks adi-

pocytes (Berry and Rodeheffer, 2013). Also, WAT-resident PDGFRa+ cells can develop into brown-

like adipocytes in response to b3-adrenergic agonist or white adipocytes in response to high-fat diet

feeding (Lee et al., 2012). Recent studies have shown that there are two subsets of PDGFRa+ cells

in adipose tissues delineated by CD9 expression. Whereas CD9-high PDGFRa+ cells are pro-fibro-

genic and drive adipose tissue fibrosis, CD9-low PDGFRa+ cells are pro-adipogenic and make adi-

pocytes (Marcelin et al., 2017). In addition, increased PDGFRa activity drives adipose tissue fibrosis

during both adult homeostasis and adipose tissue organogenesis (Iwayama et al., 2015; Sun et al.,

2017). However, due to the complexity and nonspecificity of the mouse lines, our understanding of

the role of PDGFRa+ cells in vivo has been limited. Further clarification of PDGFRa+ cell fate by line-

age tracing studies at different time points is still needed. In addition, loss-of-function models gener-

ated in the developmental or adult adipose lineage are required to definitively determine the

physiological functions of PDGFRa in different stages.

In this study, we aimed to understand the role of PDGFRa+ cells and the gene itself in different

stages of adipose tissue (postnatal development and adult maintenance of WAT) using in vivo adi-

pose lineage tracking and gene deletion systems. We found that PDGFRa+ cells are a progenitor

source for postnatal WAT development but not adult WAT homeostasis. Consistently, Pdgfra

expression in APCs is not essential for adult WAT homeostasis but required for postnatal WAT

development. The deletion of Pdgfra in adult APCs did not disrupt adult WAT maintenance and

cold-induced beige adipocyte formation. However, the deletion of Pdgfra in developmental APCs

led to a significant fat reduction associated with smaller fat depots. Mechanistically, embryonic

PDGFRa-deficient APCs were unable to differentiate into mature adipocytes and underwent fate

change from adipogenic to fibrotic lineage. Together, our findings unraveled a dynamic requirement

for PDGFRa+ cells and the Pdgfra gene itself in controlling WAT development and WAT

homeostasis.

Shin et al. eLife 2020;9:e56189. DOI: https://doi.org/10.7554/eLife.56189 2 of 21

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.56189


Results

Developmental adipocytes derive from a PDGFRa+ cell source
Our previous work demonstrated that adult but not developmental adipocytes emanate from a vas-

cular smooth cell expressing smooth muscle actin (SMA) and other mural markers (Jiang et al.,

2017b; Jiang et al., 2014). However, the specific origins of developmental APCs remain unknown.

We proposed to test the possibility of using PDGFRa as a fate marker for the developmental APCs.

PDGFRa is a membrane-bound tyrosine kinase receptor that has been used as a cell surface marker

for adipose progenitor identification. Moreover, multiple studies using several Pdgfra genetic tools

have shown that PDGFRa+ cells can mark the adipose lineage and generate adipocytes (Berry and

Rodeheffer, 2013; Lee et al., 2012). We hypothesized that PDGFRa+ cells mark the developmental

APCs but not adult APCs, and contribute to adipose tissue organogenesis and development.

To investigate the fate mapping of PDGFRa+ cells, we marked and monitored PDGFRa+ cells

using PdgfraCre-ERT2; Rosa26RRFP (PDGFRa-RFP) mice. Using this model, we previously reported

PdgfraCre-ERT2 dependent RFP reporter expression faithfully labels adipose tissue-resident PDGFRa+

cells and their descendants (Berry et al., 2016b; Lee et al., 2012). To avoid potential off-target

effects of tamoxifen (Ye et al., 2015) and to induce Pdgfra-dependent recombination, we provided

one dose of tamoxifen at P10 (adipose tissue organogenesis) or P60 (established depots for adipo-

cyte turnover and maintenance), and examined reporter expression at pulse (P13 or P63; pulse) or

after a 2-month chase (P60 or P120). Both whole-mount staining and immunohistochemistry (IHC)

studies indicated that, at pulse (P13 or P63), PDGFRa-dependent RFP expression was restricted to

the perivasculature in subcutaneous inguinal WAT (IGW), perigonadal WAT (PGW), and brown adi-

pose tissue (BAT). As expected, mature adipocytes were not labeled as previously reported

(Berry et al., 2016b; Berry and Rodeheffer, 2013; Lee et al., 2012; Figure 1—figure supplement

1). However, P10 to P60 chase revealed the elaboration of RFP expression into adipocytes in both

male and female IGW and BAT but not in PGW suggesting the creation of new adipocytes from a

PDGFRa+ source (Figure 1A). Of note, there was strong RFP+ labeling in the male epididymis

(Figure 1A). Surprisingly, during the P60 to P120 chase, we observed minimal RFP-adipocyte label-

ing in IGW, PGW, and BAT depots (connected with interscapular WAT) based on whole-mount

images (Figure 1B). Interestingly, we did not observe fate mapping differences between male and

female adipose depots (Figure 1A,B).

To further deduce the contribution of PDGFRa+ lineage during WAT development and mainte-

nance, we quantified RFP+ cells in adipose tissue sections from PDGFRa-RFP mice (RFP marks

PDGFRa+ lineage and their descendants) injected with tamoxifen at P10 or P60 and perfused at P60

or P120. Consistent with the results from whole-mount imaging, there were RFP+ adipocytes in IGW

and BAT depots but not PGW depots from P10-P60 chow-fed male mice (IGW 20–30%; PGW 0%;

BAT 30–35%) (Figure 1C). In contrast to developmental labeling, we observed significantly less RFP

+ (roughly 2%) adipocyte labeling of WAT and BAT depots from male mice. Rather our IHC studies

demonstrated the presence of PDGFRa-RFP+ cells residing in perivascular positions, similar to pulse

(Figure 1D). In a separate study, PDGFRa-reporter mice were administered tamoxifen at P60 and

chased to P180. Again, we observed very few adipocytes labeled by PDGFRa-RFP+ cells rather

these cells appeared to be restricted to the vasculature of both WAT and BAT (Figure 1—figure

supplement 1). Together, it appears, under our conditions, that PDGFRa+ cells give rise to develop-

mental adipocytes but not a major APCs for adult adipocytes.

Developmental, but not adult, PDGFRa+ cells are a cellular origin of
adipogenesis associated with high-fat diet and TZD feeding
It has been reported that PDGFRa+ cells contribute to adipose tissue expansion in response

to high-fat diet (HFD) (Lee et al., 2012). To test if the fate-mapping potential of PDGFRa-RFP+ cells

changes in response to HFD challenge, we fed tamoxifen-induced PDGFRa-RFP reporter mice from

P10-P60 or P60-P120 with chow diet or HFD (60% of calories from fat). To our surprise but in agree-

ment with our fate-mapping studies above, we found very few PDGFRa-RFP+ generated adipocytes

during the P60-120 HFD challenge (Figure 1B,D). By contrast, developmental HFD fate mapping

demonstrated a strong correspondence between RFP reporter expression and adipocytes labeling

in IGW and BAT but not PGW. Quantification indicated that ~90% of IGW and ~95% of brown
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Figure 1. Developmental, but not adult, adipocytes derive from a PDGFRa+ cell source. (A–B) PdgfraCre-ERT2; Rosa26RRFP (PDGFRa-RFP) mice were

administered tamoxifen (TM) (A) at postnatal day 10 (P10) and fed chow or HFD until P60 or (B) at P60 and fed chow or HFD until P120. IGW, PGW, and

BATs were examined for direct RFP fluorescence either at (A) P60 or (B) P120 (chase). White arrowheads indicate the epididymis labeling. Scale = 100

mm. (C–D) RFP staining of IGW, PGW, and BATs from above P10-P60 and P60-P120 mice using immunohistochemistry (IHC). Scale = 200 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Pdgfra-dependent RFP expression at pulse, P60-P180, and P60-P120 TZD pulse-chase.
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adipocytes were RFP+ whereas only ~5% PGW adipocytes were labeled (Figure 1A,C; Figure 1—

figure supplement 1). The low labeling of PGW could reflect the developmental specification of this

depot, as this depot has been shown to be specificed beyond P10. Together, our fate-mapping data

suggest that P10 but not P60 labeled PDGFRa+ stromal vascular (SV) cells are adipogenic. HFD-fed

mice utilize only the developmental but not adult labeled PDGFRa+ cells as a cellular source for adi-

pose tissue expansion.

Peroxisome proliferator-activated receptor gamma (PPARg) is a master regulator of adipogenesis

(Farmer, 2006; Lehrke and Lazar, 2005). PPARg agonists such as rosiglitazone (Rosi), a thiazolidine-

dione (TZD), have been reported to trigger the formation of new adipocytes from an adult adipose

stem/progenitor compartment (Crossno et al., 2006; Tang et al., 2011). To test whether adult

PDGFRa+ cells can acquire adipogenic potential when exposed to PPARg agonists, we administered

Rosi to PDGFRa-RFP+ mice for 8 weeks (Figure 1—figure supplement 1). We observed that the

PDGFRa-dependent RFP expression remained restricted at the vasculature, and there were rare RFP

+ labeled adipocytes, based upon lipidTox and perilipin staining of IGW sections (Figure 1—figure

supplement 1). These data suggest that in response to TZDs administration, PDGFRa+ cells may

not represent a major progenitor cell population for new adipocytes.

Developmental and adult PDGFRa+ cells have distinct molecular and
functional signatures
To examine the in vitro adipogenic potential of P10 and P60 PDGFRa+ cells, we isolated total SV

cells from IGW depots from tamoxifen-pulsed PDGFRa-RFP mice (P13 or P63; pulse). This fraction

contains both RFP+ and RFP negative (RFP-) cells. Cells were cultured for 7 days in white adipogenic

conditions. Consistent with our fate-mapping data, the SV cells from P13 mice produced RFP labeled

mature adipocytes (>75% of total adipocytes are RFP+) (Figure 2A). By contrast, the SV cell cultures

from P63 PDGFRa-RFP mice generate very few RFP+ adipocytes (<5% of total adipocytes are RFP+)

and PDGFRa-RFP+ cells retained their fibroblast morphology (Figure 2B). Using fluorescence-acti-

vated cell sorting (FACS), we isolated P10 tamoxifen-pulsed PDGFRa-RFP SV cells into RFP+ and

RFP- cells and subsequently cultured them in adipogenic media for 7 days. Cultures containing

FACS-isolated P10 RFP+ had many RFP+ adipocytes and were overall more adipogenic compared

to P10 RFP- cells as assessed by lipid content and adipocyte gene expression (Figure 2C,D). These

data are consistent with our in vivo lineage-tracing data, indicating that developmental PDGFRa+

cells are adipogenic.

Our in vivo lineage-tracing data and in vitro primary cell culture data indicated that WAT organo-

genesis requires PDGFRa+ cells while adult WAT homeostasis utilized a different APC source. We

next investigated whether the molecular basis of P10 and P60 PDGFRa+ cells were distinct. We

FACS-sorted P10 and P60 tamoxifen-pulsed PDGFRa-RFP SV cells into RFP+ and RFP- cells

(Figure 2E). FACS-isolated P10 PDGFRa+ cells had significantly higher levels of preadipogenic

markers (Pparg, Pref1, Zfp423) compared to P60 PDGFRa+ cells (Figure 2E). By contrast, levels of

fibroblast markers (Col1a1 and Col3a1) and Cd24 (a proposed APC marker) displayed no significant

difference between P10 and P60 PDGFRa+ cells (Figure 2E). We also did not observe any differen-

ces in the expression of mature adipocyte markers (Fabp4, Plin1, Adipoq) and endothelial markers

(Cd31, VE-cadherin) (data not shown).

To further assess PDGFRa’s contribution to the APC lineage, we combined the PDGFRa-RFP

reporter mouse model with the doxycycline suppressible adipose lineage track system, AdipoTrak

(PpargtTA; TRE-Cre; TRE-H2B-GFP) (Jiang et al., 2017b; Tang et al., 2008). AdipoTrak labeled cells

are necessary for WAT formation and homeostasis and mark the entire adipose lineage (stem-to-adi-

pocyte) (Jiang et al., 2017b; Tang et al., 2008). This dual model will allow for spatiotemporal line-

age identification and overlap between PDGFRa-RFP+ cells and AdipoTrak-GFP+ cells (Figure 2—

figure supplement 1). Dual reporter mice were tamoxifen-induced at P10 or P60 and SV cells from

WATs were isolated 3 days later. Flow cytometric quantification, using RFP as a surrogate for

PDGFRa and GFP for PPARg, identified strong correspondence between RFP and GFP in P10 sam-

ples (IGW 15.36%; PGW 8.25%; BAT 6.63%), but not at P60 (Figure 2F; Figure 2—figure supple-

ment 1). Together, these results indicate that P10 but not P60 PDGFRa+ cells express adipose

progenitor markers, which might account for their differences in adipogenic capabilities.
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Figure 2. Developmental, but not adult, PDGFRa+ cells are adipogenic. (A–B) PdgfraCre-ERT2; Rosa26RRFP (PDGFRa-RFP) male mice were administered

TM at P10 (A) or P60 (B). Stromal vascular fraction of cells (SVF) were isolated from IGW of the mice after 3 days and cultured. The numbers indicate the

percentage of the RFP+ labeled adipocytes. Scale = 100 mm. (C) TM-induced PDGFRa-RFP male mice either at P10 or P60 were fed chow or HFD until

P120. SVF were isolated from IGW of the mice at P120, cultured, and examined for direct RFP fluorescence. Scale = 100 mm. (D) The real-time q-PCR

analysis of adipogenic markers from cells described in C. *p<0.05 P10 RFP- compared to P10 RFP+ cells. (E) Gene expression levels of P10 and P60 RFP

+ cells in SVF isolated from pooled IGW (n = 10). *p<0.05 P60 RFP+ compared to P10 RFP+ cells. Data are expressed as mean ± SEM. (F) PpargtTA-

H2BGFP; PDGFRa-RFP male mice were administered TM at P10 or P60. SVF were isolated from the pooled IGW, PGW, and BAT depots (n = 8) after 3

days and sorted using RFP signal. GFP+RFP+ cells were quantified.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Developmental, but not adult, PDGFRa+ cells overlap with PPARg+ cells.
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Developmental PDGFRa+ cells contribute to postnatal but not adult
WAT development
To test whether these P10 labeled PDGFRa-RFP+ cells still maintain adipogenic potential in the

adult stage, we performed fate-mapping tests from P10-P120. WAT whole-mount imaging showed

that PDGFRa+ SV cells labeled at P10 made adipocytes which could still be observed at P120 in

IGW under both chow- and HFD-fed conditions (Figure 3A; Figure 3—figure supplement 1). We

quantified the number of PDGFRa-RFP+ adipocytes between P10-P120 fate mapping with our P10-

P60 fate mapping studies. Interestingly, we found that the percentage of RFP+ adipocyte labeling

from P10-P120 was either maintained or significantly reduced compared to RFP- adipocyte labeling

from P10-P60 (Chow P10-P120: IGW ~20%; PGW ~20%; BAT ~5%, HFD P10-P120: IGW ~5%;

PGW ~ 10%; BAT ~10%) (Figure 3—figure supplement 1). Thus, our fate-mapping data suggest

that postnatal P10 PDGFRa+ cells do not continue to contribute to adult WAT homeostasis or HFD-

induced expansion.

To validate the notion that adult PDGFRa+ cells do not contribute to adult WAT homeostasis, we

revisited the constitutive PdgfraCre mouse model and combined it with Rosa26RRFP reporter. Lineage

marking analysis demonstrated that different labeling results in IGW depots at 2-month-old and 6–

month-old mice. We found nearly all 2-month-old IGW mature adipocytes (95–100%) were labeled

with RFP. Yet, at 6 months, we found minimal RFP-adipocyte marking (10–15%) (Figure 3B). These

data suggest that adipocytes generated in the adult homeostatic phase were derived from a

PDGFRa-independent source. To further confirm this, we generated a deletion model, in which

PPARg, the master regulator of adipogenesis, was constitutively deleted in PDGFRa+ cells, to block

adipocyte differentiation. We observed that there was severe disruption of IGW development at 2-

month-old mice, revealing the importance of PDGFRa+ cells for adipose tissue development. How-

ever, 6-month-old mice showed recovered IGW tissue size with normal adipocyte number

(Figure 3C). These data support the possibility that developmental PDGFRa+ cells are used for

WAT development, but adult WAT maintenance does not utilize PDGFRa+ cells as a progenitor

source.

To further evaluate the necessity of the PDGFRa+ cells in a cell-autonomous manner, we com-

bined the Ppargfl/fl conditional mouse model with the tamoxifen-inducible PdgfraCre-ERT2. This model

will provide a spatiotemporal deletion of Pparg to test the necessity of PDGFRa+ cells to generate

new white adipocytes. At P60, we isolated SV cells from un-induced PdgfraCre-ERT2; Ppargfl/fl

(PDGFRa-PPARg-KO) mice. We then cultured the cells in adipogenic media containing either vehicle

or 4-OH-tamoxifen (2 uM/mL). Consistent with the in vivo lineage tracing data, SV cells from control

and PDGFRa-PPARg-KO mice that received 4-OH-tamoxifen underwent adipogenesis similarly as

indicated by Oil Red O staining and adipocyte marker expression (Figure 3—figure supplement 1).

These results support the notion that adult labeled PDGFRa+ cells are not an essential cellular

source for adipogenesis.

PDGFRa in adult SMA+ APCs is not required for adult white or beige
adipogenesis under physiological conditions
Our in vivo and in vitro data show that PDGFRa+ cells do not contribute to adult WAT homeostasis.

SMA+ cells were reported as adult adipose progenitor cells required for adult WAT homeostasis

and turnover (Jiang et al., 2014). Further, this study showed that some SMA+ cells express

PDGFRa. Flow analysis indicated that about half of the RFP labeled SMA+ cells expressed PDGFRa,

and this was confirmed by quantitative PCR analysis, showing a ~10-fold enrichment of Pdgfra

mRNA expression in RFP labeled SMA+ cells. Thus, we hypothesized that PDGFRa in SMA+ cells

could potentially regulate APC function and differentiation. To test this notion, we combined the

Pdgfrafl/fl conditional mouse model with APC lineage tracking and deletion tool, Acta2Cre-ERT2;

Rosa26RFP to create Acta2Cre-ERT2; Pdgfrafl/fl (SMA-PDGFRa-KO; Figure 4A,B). At P60 mice were

administered one dose of tamoxifen for 2 consecutive days and mice were analyzed 30 days later.

Consistent with the PDGFRa fate-mapping studies, at P90, we observed no physiological difference

between control and SMA-PDGFRa-KO mutant mice under chow diet feeding. The control and

mutant mice had similar body weight (Figure 4C), fat mass (Figure 4—figure supplement 1), food

intake (Figure 4—figure supplement 1), adipose tissue weights (Figure 4D), and glucose clearance

(Figure 4E). As expected, SMA-PDGFRa-KO mutant BAT had reduced expresson of Pdgfra
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(Figure 4—figure supplement 1). Histologically, we did not observe obvious phenotypic difference

between control and mutant WAT or BAT morphology and architecture (Figure 4F). We also

assessed fate-mapping analysis of control and SMA-PDGFRa-KO APCs to produce adipocytes. In

line with our previous observations, control APCs generated RFP labeled adipocytes (Figure 4G).

Similarly, SMA-PDGFRa-KO APCs also generated white adipocytes with the same efficiency

(Figure 4G). Thus, our fate-mapping data support that new adipocytes generated from SMA+ cells
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. P10 PDGFRa+ cells contribute to postnatal but not adult WAT development.
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(RFP+) in both IGW and PGW are not affected by Pdgfra deletion. To exclude the possibility that

SMA-PDGFRa-KO cells generated dysfunctional adipocytes, we examined metabolic performance

using metabolic cage analysis of control and mutant mice at P90, after a 30 day chase. We observed

that control and mutant mice showed similar energy expenditure, oxygen consumption, carbon diox-

ide production, and respiratory exchange ratio (Figure 4—figure supplement 1). Taken together,

these data indicate that PDGFRa does not play a significant role in the ability of adult APCs to gen-

erate adipocytes and maintain adult WAT homeostasis.

To further evaluate if PDGFRa functioned in SMA+ APCs, we isolated SV cells from tamoxifen

pulse control and SMA-PDGFRa-KO mice at P60 and subsequently culture them in adipogenic

media. The adipogenic potential of SMA-PDGFRa-KO cells appeared similar to control SV cells as

assessed by Oil Red O staining (Figure 4H).
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Figure 4. Deleting Pdgfra in adult SMA+ APCs is dispensable for adult white adipogenesis. (A–B) Acta2Cre-ERT2;

Pdgfrafl/fl male control and mutant (SMA-PDGFRa-KO) mice were administered TM at P60 and analyzed at P90. (C)

Body weight of control and SMA-PDGFRa-KO mice at P90. Data are expressed as mean ± SEM. (D) Adipose tissue

weights. Data are expressed as mean ± SEM. (E) Blood glucose level during glucose tolerance test. Data are

expressed as mean ± SEM. (F) Hematoxylin and eosin (H&E) staining of IGW, PGW, and BAT. Scale = 100 mm. (G)

IGW and PGW were analyzed for direct RFP fluorescence and stained with LipidTox. Scale = 200 mm. (H) Oil Red

O staining of SVF adipogenesis from IGW of control and SMA-PDGFRa-KO male mice at P90.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. SMA-PDGFRa-KO mice do not display abnormal energy expenditure.
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Previous fate-mapping studies using Acta2Cre-ERT2 revealed that SMA+ WAT resident perivascular

cells also serve as beige progenitors: new beige adipocytes are formed in WAT rapidly when mice

are exposed to cold, in part through de novo differentiation from SMA+ progenitors (Berry et al.,

2016b). Therefore, we decided to examine if PDGFRa is required for beige adipogenesis using the

SMA-PDGFRa-KO mouse model. We administered one dose of tamoxifen for 2 consecutive days to

both control and mutant mice at P90 and then waited 2 weeks prior to cold exposure (6.5˚C)

(Figure 5A). Both control and mutant mice had a similar rectal temperature, a surrogate for beiging,

at the end of cold exposure (Figure 5B). SMA-PDGFRa-KO mice had similar body weight, serum

glucose level, and adiposity as controls after cold exposure (Figure 5C–E). Histologically, H&E stain-

ing and UCP1 IHC of IGW and PGW depots showed similar results in control and mutant mice

(Figure 5F,G). There was also no significant BAT morphological difference between control and

mutant mice (Figure 5—figure supplement 1). Consistent with H&E staining, qPCR analysis of ther-

mogenic genes (Ucp1, Prdm16, and Cidea) from whole IGW depots suggested no significant
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Figure 5. Deleting Pdgfra in adult SMA+ APCs is dispensable for cold-induced beige adipogenesis. (A) A 3-

month-old Acta2Cre-ERT2; Pdgfrafl/fl male control and SMA-PDGFRa-KO mice were administered TM. After 14 days

of TM washout, the mice were cold-exposed for 7 days. (B) Rectal temperature after cold exposure. Data are

expressed as mean ± SEM. (C) Body weight after cold exposure. Data are expressed as mean ± SEM. (D) Blood

glucose after cold exposure. Data are expressed as mean ± SEM. (E) Adipose tissue weight. Data are expressed as

mean ± SEM. (F) Hematoxylin and eosin (H&E) staining of IGW and PGW. Scale = 100 mm. (G) UCP1 staining of

IGW and PGW using immunohistochemistry (IHC). Scale = 100 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Deleting Pdgfra in adult SMA+ APCs is dispensable for cold-induced beige adipogenesis.
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difference between control and mutant beige adipocyte potential (Figure 5—figure supplement 1).

These data suggest that PDGFRa may not have a functional role in adult SMA+ APCs in altering

their ability to generate cold-inducible beige adipocytes.

PDGFRa in developmental APCs is essential for adipose tissue
development
Our data thus far suggests that PDGFRa does not have a functional role in adult adipogenic poten-

tial. Therefore, we decided to re-examine PDGFRa’s role in WAT organogenesis and combined the

AdipoTrak (AT) adipose lineage tracking and deletion system (PpargtTA; TRE-Cre; TRE-H2B-GFP)

(Tang et al., 2008) with the Pdgfrafl/fl conditional mouse model (PpargtTA; TRE-Cre; TRE-H2B-GFP;

Pdgfrafl/fl = AT-PDGFRa-KO) (Figure 6A). Of note, AdipoTrak labeled P10 and P30 cells express

Pdgfra based on qPCR analysis (Jiang et al., 2014). Although control and AT-PDGFRa-KO mice dis-

played similar body weight at P60 (Figure 6B), AT-PDGFRa-KO mutant mice showed smaller adi-

pose depots and reduced WAT weights (Figure 6C,D). By contrast, the weights of other tissues such

as liver, kidney, spleen, pancreas, muscle, and heart showed no difference compared to controls

(Figure 6E). Glucose tolerance test showed that mutant mice had impaired glucose tolerance, which

may be due to the deficiency of functional adipocytes (Figure 6F). Histological staining revealed a

paucity in adipocytes and only remnant adipocytes could be observed in mutant IGW and interscap-

ular WAT (ISCW) (Figure 6G; Figure 6—figure supplement 1). Lipodystrophy is often accompanied

by other metabolic disturbances such as liver steatosis; however, mutant mice did not appear to dis-

play fatty liver disease at this stage of life (Figure 6—figure supplement 1). We also evaluated the

cell-autonomous adipogenic potential of SV cells. Specifically, SV cells were isolated from control

and mutant mice and cultured in adipogenic media. Compared to control cells which are highly adi-

pogenic, the AT-PDGFRa-KO mutant cells did not display adipogenic potential based on

the appearance and Oil Red O staining (Figure 6H). These data strongly indicate that PDGFRa in

developmental APCs is essential for adipose tissue development.

PDGFRa regulates adipose tissue development
Our histological staining of AT-PDGFRa-KO WAT demonstrated the lack of adiposity with fibrotic

tissue replacement; therefore, we tested if PDGFRa loss led to fibrosis. Trichrome collagen staining

of IGW depots showed the presence of fibrotic tissue in mutant but not in control specimens

(Figure 7A). We then assessed if APCs deficient in PDGFRa resulted in changes in APC locality and

number. Whole-mount imaging of control and mutant WAT demonstrated the presence of GFP+

APCs in the correct anatomic anlage (Figure 7B). PDGFRa-deficient GFP+ cells also appeared to

occupy the correct perivascular niche position (Figure 7—figure supplement 1). We then performed

FACS analysis on GFP+ APC number and found AT-PDGFRa-KO mice had many more GFP+ pro-

genitors than control WAT (control: 14.4% of SV cells; mutant: 59.9% of SV cells) (Figure 7C–D). Fur-

ther analysis of these depots via FACS showed an increase in the endothelial marker Cd31 (PECAM)

(Figure 7C). Directed qPCR analyses of the FACS-isolated GFP+ cells from the AT-PDGFRa-KO

mutant mice verified the reduction in Pdgfra mRNA expression. Mutant GFP+ cells had lower

expression of adipogenic markers, including Pparg, Fabp4, Plin1, and Lep (Figure 7E). Consistent

with the trichrome collagen staining, mutant GFP+ cells had higher expression of fibroblast markers,

such as Col1a1, Col3a1, Col6a1, and Ddr2, compared to those from the control mice (Figure 7F).

These data suggest that the loss of PDGFRa within the APC lineage promotes fibrotic gene expres-

sion rather than the adipogenic program. This could be a potential rationale for the fibrotic tissue

incorporation in these WATs and could suggest a lineage fate switch (Figure 7G).

Discussion
APCs are key components for WAT formation, maintenance, and expansion, and a variety of external

stimuli can influence adipose homeostasis by controlling the regulatory mechanisms (Berry et al.,

2013; Berry et al., 2014; Hepler et al., 2017; Jiang et al., 2012; Sebo and Rodeheffer, 2019;

Tang et al., 2008). Distinct populations of APCs have been identified, but their relationship and the

relevance to physiological and pathological adipose expansion remains unknown. We previously

reported that there are two distinct adipose progenitor compartments, developmental and adult,

which are utilized for adipose organogenesis and adipose homeostasis, respectively (Jiang et al.,
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2014). We have demonstrated that these two different progenitor pools have different microana-

tomical, functional, morphological, genetic, and molecular profiles. Notably, adult progenitors

fate map from a SMA+ mural cell lineage while developmental progenitors do not (Jiang et al.,

2014). However, the identity of developmental APCs and the regulatory mechanisms governing

WAT development and homeostasis were unclear. In the current study, we attempted to disentangle

these two APC populations by using a PDGFRa tamoxifen-inducible lineage-tracing system. We

found that PDGFRa+ cells generate adipocytes during development but not during adult WAT

homeostasis. Further, we show that the role of PDGFRa is differentially required. For example, dur-

ing development, PDGFRa signaling is important for APCs to generate mature adipocytes. On the

other hand, during WAT homeostasis, PDGFRa signaling in SMA+ adult APCs is dispensable for

both white and cold-induced beige adipocyte formation. Our results implicate PDGFRa as a

Figure 6. PDGFRa in developmental APCs is essential for adipose tissue development. (A) A 2-month-old

PpargtTA; TRE-Cre; TRE-H2B-GFP; Pdgfrafl/fl male control and AT-PDGFRa-KO mice were analyzed. (B) Body

weight. Data are expressed as mean ± SEM. (C) IGW and PGW tissue. (D) Adipose tissue weight. *p<0.05 AT-

PDGFRa compared to AT-Con mice. Data are expressed as mean ± SEM. (E) Other tissue weight. Data are

expressed as mean ± SEM. (F) Blood glucose level during glucose tolerance test. *p<0.05 AT-PDGFRa-KO

compared to control mice. Data are expressed as mean ± SEM. (G) Hematoxylin and eosin (H&E) staining of IGW.

Scale = 100 mm. (H) Oil Red O staining of SVF isolated from IGW of control and AT-PDGFRa-KO mice.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. PDGFRa in developmental APCs is essential for adipose tissue development.
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Figure 7. PDGFRa regulates adipose tissue development through lineage control. (A) A 2-month-old PpargtTA;

TRE-Cre; TRE-H2B-GFP; Pdgfrafl/fl male control and AT-PDGFRa-KO mice were analyzed. Trichrome staining of

IGW. Scale = 200 mm. (B) Direct GFP fluorescence of IGW. Scale = 100 mm. (C) Flow cytometry profiles of SVF

isolated from IGW. (D) Quantification of GFP+ adipose progenitor cell number. Data are expressed as

mean ± SEM. (E) Adipogenic marker gene expression levels in GFP+ cells of SVF isolated from IGW. Data are

expressed as mean ± SEM. (F) Fibrotic marker gene expression levels in GFP+ cells of SVF isolated from IGW.

Data are expressed as mean ± SEM. *p<0.05 AT-PDGFRa-KO compared to control mice in D-F. (G) Working

model for PDGFRa in developmental and adult progenitors. Developmental progenitors are marked by PDGFRa+

and adipogenesis is dependent on PDGFRa. In the absence of PDGFRa, developmental progenitors switch the

lineage to fibrotic. Adult progenitors for WAT homeostasis are not marked by PDGFRa+ and adipogenesis during

WAT homeostasis is largely PDGFRa independent.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Pdgfra deletion in developmental APCs.
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regulator of developmental APC lineage specification and adipogenesis in turn promoting WAT

organ development.

Our study provides fate-mapping and genetic evidence that PDGFRa is differentially required for

adipogenesis at different times of lifespan, revealing the distinct regulatory mechanisms governing

adipose tissue development versus adult adipose tissue homeostasis in vivo. Other studies also sug-

gest the existence of distinct regulatory mechanisms for WAT development and maintenance

(Shao et al., 2017; Wang et al., 2015). It has been reported that CEBPA (CCAAT Enhancer Binding

Protein Alpha), a critical transcription factor expressed during adipogenesis, is not required for WAT

development and maintenance during the fetal and early postnatal stage, but it is essential for the

obesogenic expansion of WAT induced by HFD (Wang et al., 2015). ZFP423 (zinc finger protein

423), expressed in committed preadipocytes (Gupta et al., 2012), is shown to regulate adipocyte

differentiation during fetal adipose development; however, in adult mice, it controls a white-to-beige

phenotypic switch (Shao et al., 2017). Also, Adipoq driven Cre is more actively expressed at an ear-

lier stage of the adipocyte life cycle during fetal WAT development compared to adult mice

(Shao et al., 2017). AKT2 (Serine/Threonine Kinase 2) is dispensable for adipose tissue development

but required for CD24+ adipose progenitor cell proliferation in postal animals (Jeffery et al., 2015).

These studies consistently indicate that developmental and adult APCs utilize distinct regulatory

mechanisms to respond to developmental and nutritional cues. The findings may also hint that adi-

pocytes generated during developmental and adult stages have distinct functions.

Our data suggest that PDGFRa signaling, specifically in SMA+ APCs, does not play a significant

role in SMA+ progenitors’ differentiation into adipocytes under physiological condition. It is unclear

at this point whether PDGFRa signaling in adult APCs has other important functions under patholog-

ical conditions. For example, PDGFRa signaling might be essential for the obesogenic expansion

and fibrotic response of WAT induced by HFD. This hypothesis, while speculative, is consistent with

several studies reported that overexpressing PDGFRa inhibits adipogenesis and promotes fibrosis

(Hepler et al., 2017; Iwayama et al., 2015; Lee et al., 2012; Marcelin et al., 2017; Sun et al.,

2017). A more specific study showed that a subset of PDGFRa+ cells with high CD9 expression,

induced by obesity, originates pro-fibrotic cells, while those with low CD9 expression are committed

to adipogenesis (Iwayama et al., 2015; Sun et al., 2017). HFD feeding triggers the recruitment of

PDGFRa+ cells and obesity induces CD9 expression in PDGFRa+ cells, which become fibrotic

cells (Marcelin et al., 2017). Thus, we cannot completely rule out the roles of PDGFRa signaling in

adult APCs unless a proadipogenic and a fibrogenic challenge is done in the mice and fibrosis is

assessed. It will be interesting to challenge SMA-PDGFRa-KO mice with HFD feeding and then test

if PDGFRa in adult APCs plays a role in obesogenic WAT expansion.

Several groups have now reported that adipose stromal cells express PDGFRa (Hepler et al.,

2017; Iwayama et al., 2015; Lee et al., 2012; Marcelin et al., 2017; Sun et al., 2017). In addition,

fate-mapping studies using inducible Pdgfra-Cre have been performed in multiple labs. However,

the results are strikingly different. For example, a more recent study using Pdgfra-MerCreMer line-

age traced animals found that PDGFRa+ fibroblasts gave rise to brown, beige, and white adipocytes

during adult homeostasis (Cattaneo et al., 2020). Another study suggests that PDGFRa+ cells are

bi-potential to produce both beige and HFD-induced white adipocytes (Lee et al., 2012). Moreover,

another study suggests the balance between PDGFRa/PDGFRb signaling determines progenitor

commitment to beige or white adipogenesis (Gao et al., 2018). Multiple factors may account for

this discrepancy. One possible explanation lies in the use of different inducible Cre models of

Pdgfra. The Pdgfra-MerCreMer was produced by knocking in the inducible Cre cassette into the

endogenous Pdgfra locus, which represents native Pdgfra expression; yet, it may disrupt Pdgfra tran-

scription (Ding et al., 2013). By contrast, our PdgfraCre-ERT2 line was generated using BAC trans-

genic mice (Rivers et al., 2008), which did not affect endogenous expression but may not fully

recapitulate the endogenous Pdgfra expression. Another potential factor in the difference is the

Cre-loxP recombination efficiency and cell-type specificity. In a previous report (Jiang et al., 2017a),

we have characterized the PdgfraCre-ERT2 model and showed that PDGFRa-RFP+ cells were 100%

positive for PDGFRa antibody staining, indicating this system can specifically label the cell types of

interest, which is PDGFRa+. In the current study, our FACS analysis showed less PDGFRa-RFP label-

ing at P60 compared to P10 WAT labeling. From our studies, it is unclear why there is less labeling;

however, one notion we support is an overall total reduction in PDGFRa expressing cells within

WATs. An additional exploration into this hypothesis would be critical for evaluating PDGFRa

Shin et al. eLife 2020;9:e56189. DOI: https://doi.org/10.7554/eLife.56189 14 of 21

Research article Cell Biology Developmental Biology

https://doi.org/10.7554/eLife.56189


expression and function in future studies. We also noted, at P10, RFP- cells have about a third of the

mRNA of Pdgfra than RFP+ cells, indicating not all of the PDGFRa+ cells underwent DNA recombi-

nation under our experimental conditions and labeling efficiency. This low labeling is consistent with

a previous study by Jeffery et al, who reported that two different inducible lines of PdgfraCre-ERT2

marked adipose lineage with variable efficiency (Jeffery et al., 2014). In alignment, Rodeheffer and

colleagues demonstrated the lack of significant fate mapping of PDGFRa+ cells to de novo adult

WAT adipogenesis (Jeffery et al., 2014). Nevertheless, our fate-mapping data using this PdgfraCre-

ERT2 transgenic line suggest a previously unanticipated differential labeling and contribution of

PDGFRa in WAT development and homeostasis. A likely reason we postulate for the differential con-

tribution of PDGFRa is possibly due to the dynamic expression of PDGFRa between developmental

and adult APCs.

A limitation of our studies is that our developmental fate-mapping data did not allow us to dis-

criminate whether functionally distinct PDGFRa+ cells exist to give rise to white and brown adipo-

cytes, or if there is a common progenitor for all adipocytes in different depots. Recent studies using

single-cell RNA-sequencing reveal that distinct subpopulations of APCs in the stromal vascular frac-

tion of WAT are present in both mouse and human adipose tissues (Burl et al., 2018; Gu et al.,

2019; Hepler et al., 2018; Merrick et al., 2019; Schwalie et al., 2018; Zhou et al., 2019). It will be

of future interest to perform single-cell RNA-sequencing or clonal lineage tracing to examine the

heterogeneity PDGFRa+ cells and their relationship to other APCs within a single depot.

In summary, our study suggests that PDGFRa signaling plays a key role in adipose tissue develop-

ment by determining adipose progenitor cell fate and in the regulation of progenitor cell dynamics

under the HFD challenge. This study expands the current knowledge regarding independent adi-

pose progenitor compartments for WAT formation and maintenance. These data highlight the key

roles of the distinct APC and their different regulatory mechanism governing WAT organogenesis

and homeostasis. Our results may help to discover the new therapeutic targets for treatment and

prevention of both childhood and adult obesity, and the subsequent metabolic dysregulation.

Materials and methods

Animals
All animals were maintained under the guidelines of the University of Illinois at Chicago (UIC) Animal

Care and Use Committee. Mice were housed in a 14:10 light:dark cycle, and experimental diets and

water were provided ad libitum. AdipoTrak mice are defined as PpargtTA; TRE-Cre (JAX Stock:

006234); TRE-H2B-GFP as previously reported (Tang et al., 2008). Rosa26RRFP (JAX Stock No:

007908), PdgfraCre (JAX Stock No: 013148), Ppargfl/fl (JAX Stock No: 004584), and Pdgfrafl/fl (JAX

Stock No: 006492) mice were obtained from the Jackson Laboratory. Acta2Cre-ERT2 mice were gener-

ously provided by Dr. Pierre Chambon. Drs. Sean Morrison and Bill Richardson generously provided

the PdgfraCre-ERT2. Cre recombination was induced by administering one dose of tamoxifen (Cay-

man, Ann Arbor, MI) dissolved in sunflower oil (Sigma-Aldrich, St. Louis, MO) for 1 or 2 consecutive

days (50 mg/Kg intraperitoneal injection). In these experiments, tamoxifen was given to all animal

groups including control mice which carried the floxed alleles but lacked the Cre transgene. For

cold exposure, mice were placed in a 6.5˚C cold metabolic chamber for 7 days. The mice were fed

either normal chow (4% Kcal fat, Harlan-Teklad, Madison, WI) or high-fat diet (HFD; 60% Kcal fat;

D12492, Research Diets, New Brunswick, NJ). Rosi intake was estimated to be 15 mg/kg body mass/

day.

Stromal vascular fraction isolation and cell culture
Stromal vascular (SV) cells were isolated from subcutaneous WAT, including inguinal and interscapu-

lar depots. After 1 hr of slow shaking of the tissue in isolation buffer (100 mM HEPES pH 7.4, 120

mM NaCl, 50 mM KCl, 5 mM Glucose, 1 mM CaCl2, and 1.5% BSA) containing 1 mg/mL Collage-

nase, Type 1 (Worthington Biochemical Corporation, Lakewood, NJ) at 37˚C, the suspension was

centrifuged at 1000 � g for 10 min. The floating adipocyte layer and the solution were removed,

and the SV pellet was resuspended in DMEM/F12 media (Sigma-Aldrich, St. Louis, MO) supple-

mented with 10% FBS (Sigma-Aldrich, St. Louis, MO) and 1% Penicillin/Streptomycin (Gibco, Wal-

tham, MA).
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The isolated mouse SV cells were cultured in DMEM/F12 media (Sigma-Aldrich, St. Louis, MO)

supplemented with 10% FBS (Sigma-Aldrich, St. Louis, MO) and 1% Penicillin/Streptomycin (Gibco,

Waltham, MA). For Cre induction in the cell culture system, we used 2 uM 4-hydroxytamoxifen (4-

OH-tamoxifen, Sigma, Sigma-Aldrich, St. Louis, MO). White adipogenesis was induced by treating

confluent cells with DMEM/F12 containing 10% FBS, 1 mg/mL insulin (Sigma-Aldrich, St. Louis, MO),

1 mM dexamethasone (Cayman, Ann Arbor, MI), and 0.5 mM isobutylmethylxanthine (Sigma-Aldrich,

St. Louis, MO) for the first 3 days and with DMEM/F12 containing 10% FBS and 1 mg/mL insulin for

another 3 days.

Flow cytometry
SV cells were isolated, washed, centrifuged at 1000 � g for 10 min, and sorted with a MoFlo Astrios

Cell Sorter (Beckman Coulter, Brea, CA) operated by the UIC Flow Cytometry Core. For RFP+ sort-

ing, live SV cells from P10 and P60 tamoxifen-injected PdgfraCre-ERT2; Rosa26RRFP mice were stained

with DAPI to exclude dead cells and sorted based on native fluorescence. The SV cells from RFP-

mice were used to determine background fluorescence levels. For GFP+ and RFP+ flow analysis, SV

cells were isolated from PpargtTA; TRE-H2B-GFP; PdgfraCre-ERT2; Rosa26RRFP double reporter mice

(IGW, PGW, and BAT were pooled from n = 10 for P10 and n = 8 for P60 mice). For GFP+ (native

fluorescence)/CD31+ flow analysis, SV cells were isolated from P30 Control and AT-PDGFRa-KO

mice. SV cells were stained with rat anti-CD31 (CD31;1:200 BD Bioscience: item no: 550274) on ice

for 30 min. Cells were then washed twice with the staining buffer and incubated with cy5 donkey

anti-rat (1:500, Jackson ImmunoResearch, item no: 711-605-152) secondary antibody for CD31. Cells

were incubated for 30 min on ice before flow cytometric analysis. For gating strategies of both GFP

sorting and flow analysis, live cells were selected by size on the basis of FSC and SSC. Single cells

were then gated on both SSC and FSC Width singlet’s. SVF cells isolated from GFP-negative mice,

along with primary-minus-one controls, were used as a negative control to determine background

fluorescence levels.

Real-time quantitative PCR
Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA) from either mouse tissues or cells.

cDNA was synthesized using High Capacity RNA to cDNA Kit (Life Technologies, Carlsbad, CA), and

gene expression was analyzed using Power SYBR Green PCR Master Mix with ViiA7 Real-time PCR

System (Applied Biosystems, Foster City, CA). Quantitative PCR values were normalized to 18 s

rRNA expression. Primer sequences are provided in Supplementary file 1.

Histological staining
Hematoxylin and eosin (H&E) or trichrome staining was carried out on paraffin sections using the fol-

lowing procedure. Adipose tissues were fixed in 10% formalin overnight, processed in STP120 tissue

processing unit (Thermo-Fisher Scientific, Waltham, MA) in a series of ethanol dehydrated steps

(50%, 70%, 80%, 95%, 95%, 100%, and 100% at 45 min/step) and xylene substitute rinse steps (three

times, 45 min/step), and then submerged in paraffin (two times, 1 hr/step). Processed tissues were

embedded in paraffin blocks using a HistoStar tissue embedding station (Thermo-Fisher Scientific,

Waltham, MA), and the embedded tissues were sectioned with an HM325 microtome (Thermo-

Fisher Scientific, Waltham, MA) at 8 to 12 mm thickness. Slides were baked for 1 hr at 55˚C and

stained with H&E. For immunohistochemistry (IHC), sections were deparaffinized, boiled in antigen-

retrieval solution, treated with UCP1 antibody (1:500, ab23841, Abcam, Cambridge, United King-

dom), and stained with Vectastain ABC KIT (PK-6100, Vector Laboratories, Burlingame, CA) and

DAB KIT (SK-4100, Vector Laboratories, Burlingame, CA). RFP (tdTomato) reporter expression in par-

affin sections was visualized by immunostaining with a mouse monoclonal antibody against DsRed

(Takara, 632392) at 1:500. Adipocytes were identified by immunostaining with anti-Perilipin-1

(Abcam, ab61682) used at 1:1000. To stain lipid, chopped adipose tissues were incubated in Lipid-

Tox (Invitrogen, Carlsbad, CA) at 1:200 in PBS for overnight at 4˚C before washing in 1� PBS and

mounting for imaging. Whole-mount images were taken on a Leica M205 FA microscope, and immu-

nostaining images were collected on a Leica DMi8 inverted microscope. For quantification of

images, two independent observers assessed three random fields in 10 random sections from at

least three mice per cohort.
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Oil Red O staining
In vitro differentiated cells were fixed in 4% paraformaldehyde for 45 min at room temperature.

After washing with 1� PBS twice, the cells were stained with Oil Red O working solution (0.5% iso-

propanol, Sigma-Aldrich, St. Louis, MO) at room temperature for 30 min. The Oil Red O solution

was removed, and the cells were washed with 1� PBS before imaging.

Metabolic phenotyping experiments
Temperature was monitored daily using a rectal probe (Physitemp). The probe was lubricated with

glycerol and was inserted 1.27 cm (0.5 in), and the temperature was measured when stabilized. Body

composition was measured using a Bruker Minispec 10 whole body composition analyzer (Bruker,

Billerica, MA) at the UIC Biologic Resources Laboratory. For glucose monitoring, tail blood was

drawn in the morning and blood glucose levels were measured with a Contour glucometer (Bayer,

Leverkusen, Germany). For glucose tolerance tests, 1.25 mg glucose/g body weight of the mouse

was injected intraperitoneally after a 5 hr fasting, and blood glucose levels were measured at the

indicated intervals.

Metabolic cage studies
Control and SMA-PDGFRa-KO mice were housed individually and acclimatized to the metabolic

chambers at the UIC Biologic Resources Laboratory for 2 days before data collection was initiated.

For the subsequent 3 days, food intake, VO2, VCO2, and physical activity were monitored over a 12

hr light/dark cycle with food provided ad libitum.

Quantification and statistical analysis
All labeling quantifications were performed in at least four animals with a minimal of 3 distinct sec-

tions being imaged and counted per animal. A two-tailed Student’s t-test or one-way ANOVA fol-

lowed by post-hoc comparisons using the Bonferroni post-hoc test was conducted. A p<0.05 was

considered statistically significant. Data were presented as mean ± standard error of the mean (SEM)

and plotted in GraphPad Prism 8.0. All experiments were performed on 2–3 independent cohorts

with a minimum of 4 mice/group.
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