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Smoking and COVID-19: The Real Deal
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The coronavirus disease (COVID-19)
pandemic has had a devastating impact
globally with millions of individuals infected
and a rising death toll that now surpasses
one million (1). It is therefore critical to
identify risk factors for worse outcomes
related to the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)
virus. The use of tobacco products is such a
potential risk factor, given its adverse effects
on health and the high prevalence of use.
Both electronic and combustible tobacco
products have been shown to cause damage
to the lungs (2, 3) and to alter the immune
system response leading to increased
susceptibility to most respiratory viruses.
Although research is ongoing, there are
several proposed mechanisms by which
SARS-CoV-2 may increase susceptibility to
infection or lead to worse clinical outcomes.

Overall, the epidemiological data are
mixed on whether tobacco use increases the
risk of COVID-19 infection. However, there
is clear evidence that tobacco use is
associated with worse clinical outcomes,
including the risk of mortality, with current
smokers having a greater risk of in-hospital
death (9.4% compared with 5.6% for
nonsmokers) (4–6). The OpenSAFELY study

linked electronic health records with
in-hospital deaths in the United Kingdom,
for approximately 17 million individuals in
the United Kingdom. Accounting only for
age and sex, smokers and former smokers
had a 25% and 80%, respectively, higher risk
of mortality compared with nonsmokers (7).
With regard to incident infection, meta-
analyses have shown that current smokers
are at a reduced risk of SARS-CoV-2
infection (8). However, the literature is
generally flawed by significant heterogeneity
on how smoking status was determined,
leading to missing data, inability to separate
current, former, and never-smokers, reliance
on self-report or electronic medical records,
and lack of data on frequency and duration
of use of tobacco products. Furthermore, in
many of these studies, there is a high
representation of healthcare workers who are
less likely to smoke than the general
population but are at greater risk of exposure
to SARS-CoV-2. Conversely, emerging
evidence suggests that the use of electronic
cigarette products is linked to a fivefold
greater likelihood of testing positive for
COVID-19 (9). This study, however, relied
on an Internet panel and self-report. These
data suggest a smoking paradox for COVID-
19, with current smokers being at a lower
risk for infection but at a significantly greater
risk for worse outcomes.

What are the possible mechanisms by
which smoking could affect SARS-CoV-2
infection and the outcome of COVID-19?
The smoking-related comorbidities
(cardiovascular disease, chronic obstructive
pulmonary disease [COPD]) provide the
most coherent connection between smoking
and COVID-19 severity. However, several
disease mechanisms, anchored in smoking-
associated lung injury, altered host defenses,

and the unique aspects of SARS-CoV-2
infectivity, are also relevant.

Airway and Airspace Injury (Direct
Toxic Effects)

Smoking delivers myriad tissue toxicants to
the lung that can culminate in geographic
injury to both airway and airspace
compartments. Although the pathologic
effects of tobacco smoke on the oropharynx
are well known and underscore the risk of
malignancy, the involvement of the nasal
epithelium, the recognized portal of entry for
SARS-CoV-2, is less well described. Limited
surveys of chronic smokers and animal
models of smoke exposure do show nasal
epithelial pathology that approximates
changes in the proximal airway with epithelial
cell loss and expansion of mucosecretory cells
(10–12). Nasal and smell dysfunction,
signature presenting symptoms in COVID-
19, are frequent in chronic smokers
implicating common injury mechanisms. As
of this writing, no studies of viral abundance
in smokers versus nonsmokers with COVID-
19 have been published.

Lower airway pathology featuring
epithelial metaplasia, dysfunctional ciliated
cells, goblet cell hyperplasia, and secretory
gland expansion are known consequences of
chronic smoke exposure (13–15). This battery
of effects certainly impairs viral clearance given
the compromise of themucociliary apparatus
(16). The smoke-induced production of
damaging oxidants compromises tissue repair
and confers enhanced susceptibility to
infection (17).Whether the altered airway
epithelial composition enhances viral
infectivity is unknown, but answers to that
question will be informed by advanced
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preclinical and in vitromodels of smoking plus
SARS-CoV-2 infection.

Inflammation Profile That
Supports Viral Pathogenesis

An important consideration is whether
smoking compromises antiviral
inflammatory cascades or contributes to
the inability to regulate such responses.
COVID-19 is a staged disorder
punctuated by early viral replication and
dispersal in the airway and lungs followed
by either resolution (appropriate antiviral
response) or progressive tissue pathology
(persistent antiviral response or direct
tissue injury). Smoking is a known risk
factor for influenza infection, potentially
reflecting a broad susceptibility across
respiratory viruses (18–20). Airway
epithelial cells exposed to whole smoke or
isolated from smokers display attenuated
interferon signaling with poly I:C
treatment or viral infections (21–23).
Nicotine also suppresses interferon-
mediated antiviral responses in cell
systems (24). Taken together, active
smoking creates a proviral milieu that is
potentially exploited by many respiratory
viruses.

Alteration in Angiotensin-
Converting Enzyme 2 Abundance

Successful SARS-CoV-2 infection of airway
epithelial cells involves a coordinated series
of molecular events. The initial trigger is the
SARS-CoV-2 spike protein engagement with
angiotensin-converting enzyme 2 receptors,
followed by a protease-mediated activation of
membrane fusion and then use of the
endocytic machinery to facilitate viral
replication and eventual release from the
dying cell. Does smoking impact any of these
critical events? Many consider measurable or
elevated lung angiotensin-converting enzyme
2 expression as a risk factor for SARS-CoV-2
infection and the effect of smoking on the
expression of lung angiotensin-converting
enzyme 2 has been examined by scores of
investigators. As angiotensin-converting
enzyme 2 harbors known lung-protective
effects, largely exerted by enhancing
counterregulatory renin–angiotensin
signaling, the increased expression could
either facilitate viral engagement or serve to
reinforce host defenses or both. Among

published studies, there is an
overrepresentation of analyses of RNA
datasets from lungs of smokers compared
with nonsmokers or from resident lung cells.
Findings from these studies have been
variable with most showing persuasive
evidence of angiotensin-converting enzyme 2
induction among smokers, whereas others
show no significant difference (25–31).
Furthermore, the few studies that measured
angiotensin-converting enzyme 2 protein in
the lungs or in the resident cells of
smokers versus nonsmokers show a modest
increase in angiotensin-converting enzyme 2
expression with active smoking (32).
A strenuous exploration of how and
whether tobacco smoke or nicotine
exposure affects coronavirus 2 infectivity or
viral titers is needed to provide context to
the angiotensin-converting enzyme 2
expression data.

Disturbances in RAS Signaling

Alterations in renin–angiotensin system
(RAS) signaling plausibly underscore
selective manifestations of COVID-19
because the virus receptor is an angiotensin
processing enzyme that seems to be
downregulated on acute lung injury and/or
coronavirus infection (33–36). The loss of
critical angiotensin-converting enzyme 2
functions such as the 1) degradation of
proinflammatory angiotensin II (AngII), 2)
complex tissue-protective effects, and, in its
soluble form, 3) possible antiviral decoy
interactions may serve to enable virulence,
infectivity, and overall morbidity (37–39).
The tissue-protective effects of angiotensin-
converting enzyme 2 are believed to reside in
the coupled hydrolysis of AngII and
production of Ang1–7. Blood AngII
concentration are elevated in patients with
COVID-19 and associated with the degree of
hypoxia (40). Despite evidence that
antagonism of conventional RAS signaling
resulting in reduced AngII production
protects against cigarette smoke–induced
lung injury in experimental COPD and is
associated with improved COPD outcomes,
whether such approaches might improve
COVID-19 morbidity in smokers is
unknown (41–43). Clearly, measurements of
the activity of RAS processing enzymes and
the resultant product peptides in smoking
and nonsmoking patients with COVID-19
would provide some guidance for pilot
therapeutic studies.

Nicotine Signaling and
SARS-CoV-2 Infection

There is an argument that nicotine exposure
and signaling could paradoxically reduce
SARS-CoV-2 infection and morbidity (44).
Nicotine has well-established
antiinflammatory effects that reside in its
interaction with the a7 subtype of nicotinic
receptors, but it has varied effects on
interferon-mediated antiviral cascades
(45–48). Nicotine also induces angiotensin-
converting enzyme 2 expression in primary
airway epithelial cells in a dose-dependent
manner (49). A transcriptomic survey of
airway epithelial cells shows a significant
positive correlation between angiotensin-
converting enzyme 2 expression and the a7
nicotinic receptor expression (50). Delivery
and context may also contribute to nicotine-
specific effects on COVID-19. Low-level
exposures to nicotine containing e-cigarette
vapor increase lung inflammation and
angiotensin-converting enzyme 2 expression
in an a7 nicotinic receptor–dependent
fashion (51). The preponderance of data does
not currently support a therapeutic role for
nicotine in COVID-19, but further studies
elucidating the specific effects of nicotine in a
variety of delivery contexts are needed.
Furthermore, given the public health
consequences of nicotine dependence,
caution is the most prudent posture.

Summary and Perspective

Given the adverse impact of nicotine
product use on COVID-19 outcomes, it is
critical to continue to promote treatments
for nicotine dependence as a public health
goal. The possible opposing effects of
nicotine on the SARS-CoV-2 infection/
morbidity axis create a strong incentive to
dissect this complex relationship of smoking
and COVID-19 pathogenesis. Future
research efforts must disentangle this
association. Objectives include 1) more
expansive epidemiological population
health data that includes clear metrics for
assessing smoking status; 2) preclinical
research that models relevant aspects of
cigarette smoke exposure and SARS-CoV-2
infection to reveal the critical mechanisms
that contribute to disease development and
morbidity; and 3) mechanistic parsing of
lung nicotine delivery to delineate
important paracrine and autocrine
interactions between nicotine signaling and
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virus: angiotensin-converting enzyme 2
engagement and processing. The inclusion
of smoking/vaping status in vaccine trials
could yield enlightening data on infectivity
rates by tobacco product exposure. By

combining careful cohort phenotyping for
tobacco product exposures and disease
expression with informative preclinical
studies, the complex relationship between
smoking and COVID-19 can be better

elucidated and ultimately serve public
health objectives.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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