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Abstract

The goal of CASP experiments is to monitor the progress in the protein structure predic-

tion field. During the 14th CASP edition we aimed to test our capabilities of predicting

structures of protein complexes. Our protocol for modeling protein assemblies included

both template-based modeling and free docking. Structural templates were identified

using sensitive sequence-based searches. If sequence-based searches failed, we per-

formed structure-based template searches using selected CASP server models. In the

absence of reliable templates we applied free docking starting from monomers gener-

ated by CASP servers. We evaluated and ranked models of protein complexes using an

improved version of our protein structure quality assessment method, VoroMQA, taking

into account both interaction interface and global structure scores. If reliable templates

could be identified, generally accurate models of protein assemblies were generated with

the exception of an antibody-antigen interaction. The success of free docking mainly

depended on the accuracy of initial subunit models and on the scoring of docking solu-

tions. To put our overall results in perspective, we analyzed our performance in the con-

text of other CASP groups. Although the subunits in our assembly models often were

not of the top quality, these models had, overall, the best-predicted intersubunit inter-

faces according to several accuracy measures. We attribute our relative success primarily

to the emphasis on the interaction interface when modeling and scoring.
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1 | INTRODUCTION

In recent years the progress in three-dimensional (3D) protein structure

prediction was impressive.1 Application of deep learning-based methods

now allows modeling of structures for most of the individual proteins.2-4

However, the majority of proteins do not function in isolation. They

usually perform their functions by interacting with other proteins and

assembling into stable or transient protein complexes. Therefore, if

we wish to have a detailed understanding of how proteins function,

the knowledge of the structures of individual proteins is not suffi-

cient. We need to know the structures of corresponding protein

complexes.

The number of possible binary protein-protein interactions is

much higher than the number of proteins encoded in genomes, and

only a small part of these interactions has already been discovered

experimentally.5,6 Similarly, the number of different structural types

of protein complexes is predicted to be much higher than the

number of protein folds.7,8 Therefore, the structural modeling of

Received: 1 May 2021 Revised: 21 June 2021 Accepted: 23 June 2021

DOI: 10.1002/prot.26167

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.

1834 Proteins. 2021;89:1834–1843.wileyonlinelibrary.com/journal/prot

https://orcid.org/0000-0002-0496-6107
https://orcid.org/0000-0003-4918-9505
https://orcid.org/0000-0002-4215-0213
mailto:ceslovas.venclovas@bti.vu.lt
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/prot


protein-protein interactions represents a more complex problem than

the prediction of structures for individual proteins.

Currently, template-based modeling and docking are the two

main methods used for modeling protein complexes. Template-based

modeling is based on the observation that homologous proteins often

interact in the same way.9 Thus a known structure of a protein com-

plex can serve as a template for modeling homologous protein

complexes. If there are no templates, protein-protein docking

methods can be used.5,10 Docking methods aim to find how proteins

interact with each other starting from known structures of individual

subunits that can be either solved experimentally or obtained by com-

putational modeling.

The field of protein structure prediction is monitored in the Criti-

cal Assessment of Structure Prediction (CASP) experiments that

explore every aspect of protein structure modeling.1 The Critical

Assessment of PRedicted Interactions (CAPRI) experiments are

devoted to the prediction of the structures for diverse protein com-

plexes.11 Both CASP and CAPRI are based on blind testing. The partic-

ipants are given the sequences of proteins, for which structures are

solved experimentally but not published (termed “targets”), and then

they are asked to provide structural models. Subsequent comparison

of models with the experimental structures enables establishing the

current state-of-the-art in the field and also objective comparison of

different methods. In recent years, CASP and CAPRI experiments

are collaborating in the area of structural modeling of protein

complexes,12,13 and a category dedicated to assessment of multimeric

proteins has been established in CASP as well.14,15

We participated in recent CASP and CAPRI experiments, aiming

to test our abilities to predict structures of protein complexes using

template-based modeling and free docking.16-18 Our results demon-

strated that there is room for improvement in both of the methods. In

template-based modeling, the identification of templates can be

enhanced. In docking, the assessment and selection of correct inter-

faces from thousands of diverse docking models is probably the most

important problem. It is also interesting to see how the progress in

protein structure prediction influences modeling of protein com-

plexes. At present, it is often possible to generate sufficiently accurate

models of individual proteins, but does this help to predict the

protein-protein interfaces?

To explore these questions in detail, we participated in the

CASP14 experiment, where our group (“Venclovas”) performed rela-

tively well, particularly in the interface prediction. In this article we

describe our modeling methods and analyze our results in detail

aiming to understand what went right, what went wrong and why.

2 | METHODS

2.1 | Modeling outline

The outline of our modeling workflow in CASP14 is shown in

Figure 1. During the initial step, for every target we attempted to

identify multimeric templates for comparative (homology) modeling

using sequence- and structure-based search methods and to generate

models of the whole protein complex. If we could identify templates,

but the sequence-structure alignments were not reliable, we then

used template-based docking, that is, we aligned monomer models to

the chains of the multimeric template to obtain a multichain structure.

Coiled-coil protein structures were predicted using a custom-designed

procedure. If no templates could be identified, we switched to free

docking. In the case of large multisubunit targets, we combined all the

methods, employing a comparative modeling approach for the parts

of the complex for which templates were available followed by dock-

ing of the resulting subcomplexes to obtain the full assembly. Com-

pared to CASP13,18 the major modifications of our modeling pipeline

included the introduction of structure-based searches for multimeric

templates, the use of a novel model selection protocol emphasizing

the interface scores, and the application of short molecular dynamics

simulations to rigid-body docking models in order to improve the

geometry of interchain interactions.

2.2 | Comparative modeling

The outline of multimeric comparative modeling pipeline is provided

in Supplementary Figure S1. Starting with target sequences, we first

searched for potential templates using PPI3D19 and HHpred20,21 web

servers. If this step failed to identify reliable templates (HHpred prob-

ability ≥90%) and/or produced incomplete alignments, we additionally

employed structure-based searches. In this case, selected monomeric

CASP server models corresponding to the subunits of a target protein

complex were used as queries for PDB searches using the DALI

server.22 The aim was to identify multimeric PDB assemblies that

could potentially serve as multimeric templates. Once templates were

identified using either sequence- or structure-based searches, struc-

tural models for the whole protein complex were generated by MOD-

ELLER23 and its plugin AltMod24 using the multichain modeling

function. For the simpler cases, where the use of PPI3D server suf-

ficed, comparative modeling was automatic, except for the choice of

structural templates and for the assessment and ranking of models

based on different templates.

F IGURE 1 Summary of the “Venclovas” group modeling
workflow in CASP14
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2.3 | Template-based docking

For some targets neither sequence-based nor structure-based

searches produced alignments with multimeric homologs of sufficient

reliability and/or coverage such that these alignments could be used

for multimeric comparative modeling. However, in some cases we

observed that the proteins identified as potential multimeric tem-

plates had similar functional annotations as the CASP targets. If the

alignment of CASP server models to these multimeric structures using

TM-align25 seemed plausible, we constructed assembly models by

simply aligning monomeric CASP server models to different chains of

the templates and then relaxing the resulting models to remove steric

clashes using the same methods as in the case of free docking.

2.4 | Coiled-coil modeling

Several targets were predicted to be coiled coils using MultiCoil226

and similar sequence analysis tools provided in MPI Bioinformatics

Toolkit.20 Such targets were modeled using a custom-designed proce-

dure: structure models were automatically generated by MODELLER/

AltMod using the same manually selected coiled-coil template and

automatically generated all possible gapless target-template align-

ments followed by model selection.

2.5 | Free docking

When no templates could be found for protein complexes, free dock-

ing of top five selected monomeric CASP server models was done by

Hex27 for hetero-complexes and Sam28 for homomultimers (Supple-

mentary Figure S2). The resulting models were ranked using both

global and interface VoroMQA scores as described below. Next, top

100-500 models were relaxed by a very short molecular dynamics

simulation using OpenMM software,29 Amber99SB force field, and

GBSA-OBC solvation model.30,31 The relaxed models were subse-

quently re-ranked using the same scoring procedure and clustered

according to the interface Contact Area Difference score (CAD-

score)32,33 values aiming to select a diverse set of models. The free

docking workflow was fully automated, but the final models were

always inspected visually.

2.6 | Hybrid modeling

For some large target protein complexes structural templates were

available only for some of the subunits or domains. In these cases, a

hybrid modeling strategy was used, that is, part of the complex was

modeled using comparative modeling, whereas remaining subunits

were docked to it either by template-based docking using TM-align25

or by free docking. In addition to that, a mixture of free docking and

template-based models was submitted for several smaller targets that

had templates only from structure-based search.

2.7 | Model selection

For model selection we used both global structure scores and inter-

face scores. This approach was described previously16,18 and

implemented in the VoroMQA web server,34 but for CASP14 we

introduced some modifications. These included VoroMQA-dark, a

new method for global structure evaluation (see below), and an

improved tournament-based ranking algorithm (see Supplementary

Information for details). When ranking models based on their pairwise

comparisons, the algorithm puts more emphasis on the interface

pseudo-energy and less emphasis on the global structure score. This is

achieved by using a tolerance value when comparing global

VoroMQA-dark scores. If the difference between global scores is

small, the interface scoring becomes the only decisive factor. We

named the new VoroMQA-dark-based model selection protocol

as “VoroMQA-select-new.” In addition to fully automated scoring

methods, models were also evaluated according to constraints

obtained from the literature or from the CASP contact prediction

servers, if such data were available. All models were visually inspected

before submission and manual ranking adjustments were introduced,

if necessary. These manual adjustments were predominantly applied

in the hybrid modeling cases.

2.8 | VoroMQA-dark method for model quality
assessment

VoroMQA-dark is a new model quality assessment method based on

the previously published VoroMQA35 method (which will be referred

to as VoroMQA-light). VoroMQA-dark uses a neural network

(NN) trained to predict local (per-residue) CAD-score32 values. The

global structure score is computed by averaging the predicted local

scores. The NN input vector for each residue is computed from the

Voronoi tessellation-based contact areas and the corresponding con-

tact potential values from VoroMQA-light. See Supplementary Infor-

mation for more details on VoroMQA-dark. The VoroMQA-dark

standalone software is included in the extension of the Voronota36

package freely available from https://kliment-olechnovic.github.io/

voronota/expansion_js/.

3 | RESULTS

3.1 | Overview of the results

To analyze our performance in CASP14 we used several accuracy

measures designed to evaluate various features of multimeric models.

For the overall model evaluation we used QS-score, a distance-based

measure of interface accuracy.37 To make qualitative model

accuracy assignments we converted QS-score values to CAPRI-like

accuracy categories.38 Four other scores were used to assess the

interface and the overall structure accuracy. Interface Contact Similar-

ity (ICS or F1-score) and Interface Patch Similarity (IPS or Jaccard
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coefficient) were used to assess contact and interface patch predic-

tion, respectively.14 Oligomeric lDDT and TM-score were used to

assess overall structure accuracy. lDDT is an all-atom superposition-

free score,39 whereas TM-score is based on the rigid body superposi-

tion of Cα atoms.40,41 In addition to the above scores reported by the

Prediction Center, we also used CAD-score32,33 to evaluate both

structure and interface accuracy.

The summary of our modeling results based on the QS-score is pres-

ented in Table 1, whereas the detailed accuracy evaluation of our best

models is provided in Supplementary Table S1. As can be seen in Table 1,

for 11 targets we identified multimeric templates and used comparative

modeling, producing medium or high-accuracy models for eight of them.

In the absence of reliable target-template sequence-structure alignments,

we applied template-based docking using TM-align. This approach

resulted in models of medium accuracy for two targets. Hybrid

approaches utilizing both comparative modeling and docking steps were

used for nine targets with relative success. The results of free docking

were ranging from completely incorrect to medium-accuracy models. The

custom modeling procedure that we used for coiled coils did not produce

any reliable models.

3.2 | Modeling results in the context of other
CASP14 groups and automated model selection

The results, presented in Table 1 and Supplementary Table S1, do not

tell much about our relative success. To investigate our performance

in the CASP14 context, we compared our results (group “Venclovas”)
with those of three other top-performing groups for models desig-

nated as first (model 1). We also included our automatic model selec-

tion protocol (“VoroMQA-select-new”) as a virtual group, allowing it

to make selections from all CASP14 multimeric models (produced by

both automatic servers and human groups). By doing this we aimed to

test the effectiveness of our automatic scoring in a scenario where a

set of diverse models, generated by multiple methods, is available to

select from. For the performance comparison, we used the sum of

z scores of two interface accuracy measures (ICS and IPS) and two

global structure accuracy measures (lDDT and TM-score).

The comparison, shown in Figure 2, revealed that different fea-

tures of our models were predicted with different level of success.

According to the accuracy of intersubunit interfaces (ICS and IPS)

we achieved the best results. We were particularly successful in

predicting interface patches (IPS). On the other hand, the global

structure accuracy of our models is not so great compared to other

top-performing groups. This is especially visible if we consider

lDDT, an all-atom score, largely reflecting the accuracy of individual

subunits. Interestingly, our automatic model selection protocol

showed relatively strong performance, taking the third position by

any of the four scores. Although this method performed worse than

our human group on both interface accuracy measures and TM-

score, the results according to all-atom accuracy (lDDT) were quite

a bit better.

To look at different features in more detail, we examined per-

target z scores. z Score values were accumulated progressively for tar-

gets ordered by the maximum ICS value of all the models produced by

any group for a given target. Such an ordering may be interpreted as

an estimate of the target difficulty. Figure 3 shows the resulting plots

for the models designated as first (model 1). In addition to the data for

the same top groups and “VoroMQA-select-new,” the plots also

TABLE 1 Summary of the “Venclovas” group CASP14 assembly modeling results

Modeling strategy
Number of
targets

Accuracy category of our best model

High
(QS-score ≥0.7)

Medium (0.3 ≤

QS-score < 0.7)
Low (0.1 ≤

QS-score < 0.3)
Incorrect
(QS-score <0.1)

Comparative modeling 11 1 7 0 3

Template-based docking 2 0 2 0 0

Hybrid 9 1 3 5 0

Free docking 5 0 1 2 2

Coiled-coil modeling 2 0 0 1 1

Total 29 2 13 8 6

F IGURE 2 Comparison of results of our group (“Venclovas”) and
our automated model selection protocol (“VoroMQA-select-new”)
with other top-performing CASP14 groups
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include the data for the best models provided by any predictor group.

The latter curve may be considered as a reference by representing the

upper limit of what could have been achieved in CASP14.

Interestingly, the per-target analysis (Figure 3) revealed that

the relative success of different groups was dependent not only on

the evaluation measure as seen in Figure 2, but also on the set of

prediction targets. According to the interface prediction accuracy,

our group dominated for most of the targets [Figure 3(A,B)]. On the

other hand, if we consider the global accuracy of models the pic-

ture is different. According to TM-score [Figure 3(D)] our models

are below the state-of-the-art for about half of targets, whereas

according to lDDT [Figure 3(C)] this is true for nearly all the targets.

To see whether our models as assessed by lDDT were indeed sig-

nificantly inferior to those of other top groups, we examined the

cumulative raw values (Supplementary Figure S3). Surprisingly, it

turned out that the absolute differences between the groups, espe-

cially if evaluated using lDDT (Figure S3F), are relatively small. This

indicates that in most cases subunit structures were of comparable

accuracy and that relatively large z score differences resulted from

small structural improvements (see examples in Figure S4). The

same analysis performed with the CAD-score-based analogs of ICS,

IPS, and lDDT scores led to similar conclusions (Supplementary

Figure S5).

In addition to individual scores, we analyzed their combinations

reflecting either the interface prediction accuracy or the accuracy of both

the interface and the global structure. We performed this analysis both

for models designated as first (Figure S6) and for the best-of-five models

(Figure S7). The analysis of these combinations has further corroborated

above observations on our relative success in the interface prediction and

on target-dependent group performance. Interestingly, in the analysis of

best-of-five models our automatic selection protocol (VoroMQA-select-

new) was the best according to the interface accuracy [Figure S7(A,C)]

and close to the top according to the combined accuracy [Figure S7(B,D)].

Although having access to all the models VoroMQA-select-new had an

important advantage over other groups, the results suggest that this auto-

matic selection procedure is quite robust.

F IGURE 3 Cumulative z score values of the models designated as first. Targets were ordered by the maximum achieved ICS score. Group
names in the plot legends are ordered by the corresponding sums of z scores that are shown in brackets. ICS, Interface Contact Similarity
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3.3 | Template-based modeling

As the structures of protein complexes are often evolutionary

conserved,9 template-based modeling is currently the most reliable

method to model them. Straightforward multimeric comparative

modeling resulted in medium to high accuracy models for 8 of

11 CASP14 targets. Template-based docking also resulted in medium-

accuracy models for two targets. Thus, if reliable templates were avail-

able the template-based approach worked well for both homomers

and heteromers.

Identifying the correct template having the same oligomeric state

is the key to successful modeling of protein complexes.16-18,37 Ambig-

uous oligomeric state of templates may be the reason why we failed

to model T1034, for which we used templates having different oligo-

meric states.

In CASP14 we had additional examples demonstrating the limita-

tions of template-based modeling for protein complexes. One such

example, H1036, represents a trimeric viral protein bound to an anti-

body. Our models were based on homologous trimer structures bound

to antibodies. This resulted in good models of homotrimer interfaces,

but the antibody was bound to a completely different epitope

(Figure S8). This incorrectly predicted interface is not surprising bear-

ing in mind the nature of antibody-antigen interactions. The binding

site in the antibody (paratope) is formed by hypervariable loop

regions, and the antigen-binding site (epitope) can be anywhere on

the protein surface.42

Our results for T1099 show another limitation of template-based

approach for protein complexes. This target is a large viral capsid, yet

modeling its structure can be reduced to a problem of predicting a

homotetramer (T1099v0) having two different interfaces (T1099v1

and T1099v2). Our models contained high-accuracy interface 2, yet

the interface 1 was incorrect (Figure S9). The reason for this failure

was the large insertion in the target interface, compared to the tem-

plate structures.

3.4 | Hybrid modeling of large targets

When modeling a large protein complex templates might be available

just for some parts of it. During CASP14 this was the case for hetero-

meric targets H1060 and H1097. For both of these targets more

accurate models were generated for those parts that had templates.

H1060 was a viral protein complex containing 27 subunits (five

homomeric rings bound to each other, A6B3C12D6, Figure 4). We

found templates for all the rings and generated models of medium

accuracy for all of them using either comparative modeling or

template-based docking methods. Next, we tried to do template-

based docking of the ring models to each other using another viral

template, but for such a large complex the docking was complicated.

As a result, the accuracy of hetero-complex (H1060v1) model is lower

than the accuracy of models for individual rings.

Similar situation was observed with hetero-pentamer H1097,

where we tried to dock the domains of the fifth subunit to a

homology model of a hetero-tetramer albeit with limited success

(Supplementary Table S2).

3.5 | Free docking

Our free docking results show similar trends as in previous CASP and

CAPRI experiments (Figure 5; Supplementary Table S3).18 First, the

IPS values sometimes (in 4 of 11 analyzed cases) are much higher than

ICS. This indicates that the residues mediating protein-protein binding

are predicted better than the mutual subunit orientation defining the

exact contacts at the interface. Another observation is that the accu-

racy of subunits matters a lot when docking modeled protein struc-

tures. We did not produce any acceptable accuracy models when we

were starting from subunit structures of lower accuracy (lDDT <0.4 or

TM-score <0.5). It is also important to note that the opposite is not

necessarily true. Accurate models of individual subunits do not guar-

antee accurate docking models.

The most successful docking results were obtained for H1081v0,

T1083 (Figure 6), and T1084. Interestingly, in the cases of T1083 and

T1084 the free docking models were better than the template-based

models, but the reasons for this are not clear. H1081 was a large tar-

get, where two decameric rings had to be docked, and for that we

developed a custom procedure. The homology models of decameric

rings were aligned on the axis perpendicular to the ring plane and then

pushed to each other (using 1 Å steps) and rotated around the axis

(using 2� steps), saving every distinct arrangement. Afterward all

obtained models were relaxed, scored, and ranked. This custom “two-

ring docking” procedure resulted in surprisingly good models.

The modeling of other docking targets was less successful

(Figure 7) illustrating common problems related to the monomer

F IGURE 4 Modeling of H1060. In the images of subcomplexes
v1–v5 the target structure is shown in gray and the model structure is
colored
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model accuracy and scoring. For example, in the monomer structure

of T1054 which we used for docking, the position of N-terminal helix

is not compatible with the dimeric structure. The helix is too well

packed against the subunit structure, occupying the place of a helix

from another subunit in the dimer [Figure 7(A,B)]. Therefore, it was

impossible to obtain a correct docking model starting from such a

monomer. Interestingly, when during the post-CASP analysis we

repeated the docking experiment using the same monomer model, but

without the N-terminal helix, the docking was highly successful

[Figure 7(C)]. Of note, in solution this protein exists as a mixture of a

monomer and a decamer, and the dimer observed in the crystal might

represent an intermediate state in decamerization.43

In our best model for heterodimeric target H1065 one of the sub-

units is rotated ~180� compared to the experimental structure

[Figure 7(E)]. Again, the interface patch is identified correctly while

the interface contacts and subunit orientation are different. Both

monomer models are fairly accurate (lDDT >0.65, CAD-score >0.7,

TM-score >0.8), therefore, their accuracy probably is not the reason

for incorrect docking [Figure 7(D)]. However, scoring is really prob-

lematic for H1065: both the global and the interface VoroMQA scores

of the experimental structure and the model are highly similar (global

scores: 0.70 vs 0.68, interface energy: �354 vs �388 for target and

model, respectively). In other words, even if the experimental struc-

ture was present among the models it would not necessarily have

been selected.

4 | DISCUSSION

During CASP14 our group used well-known methodologies for struc-

tural modeling of protein complexes: template-based modeling and

rigid-body docking. We did not use any deep learning-based

interchain contacts prediction or refinement using extensive molecu-

lar dynamics simulations. Our main aim was accurate prediction of

protein-protein interfaces, even if this meant lower global accuracy

of models. As the interface accuracy of our models designated as first

was the best among CASP14 groups predicting protein assemblies

F IGURE 5 Dependence of the predicted interface accuracy on the subunit accuracy in our free docking models having the largest ICS or IPS
scores. ICS, Interface Contact Similarity; IPS, Interface Patch Similarity

F IGURE 6 Successful docking models for H1081 and T1083

F IGURE 7 Free docking results for T1054 and H1065; (A) a
monomer model of T1054 has additional folded helix in the N-
terminus (blue, encircled); (B) a dimer model (interface CAD-score
0, binding site CAD-score 0.34), in which the N-terminal helix
(encircled) occupies the place of another subunit; (C) a dimer model
(interface CAD-score 0.33, binding site CAD-score 0.58), in which a
monomer without N-terminus was used for docking; (D) monomer
models of H1065 (PDB: 7M5F); (E) interface patch is predicted better
than the interface contacts for H1065 because subunit 2 (red) is
rotated ~180� in the best model of H1065 (ICS = 0.04, IPS = 0.57).
Target structures are gray, model structures are colored in all images
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[Figures 2 and 3(A,B)], it appears that we have coped with this task

quite successfully. Probably the main reasons for the successful

modeling were (1) effective multimeric template identification by

sequence and structure-based methods, (2) model selection proce-

dure, involving improved VoroMQA scoring with more emphasis on

the interaction interface, and (3) short molecular dynamics simulations

aimed at removing unrealistic geometry and clashes in docking

models.

Unlike the interface accuracy, the global accuracy of our models

was not the highest [Figures 2 and 3(C,D)]. This is particularly evident

from the close to average values of lDDT, the score that considers all

atoms. Most of these lower scores came from template-based models

generated using MODELLER/AltMod. When we used CASP server

models for docking, lDDT scores were typically higher. This suggests

that the global accuracy of our template-based models might have

been higher had we used more advanced modeling techniques.44

The template-based modeling remains the most accurate method

to predict the structures of protein complexes, but the limiting factor

for this approach is the detection of structural templates. Typically

templates are identified by sequence-based search methods such as

BLAST, PSI-BLAST,45 or HHpred.21 In CASP14, aiming to expand the

set of available templates, we additionally employed structure-based

searches. The efficiency of structure-based approach has been greatly

increased by the recent advances in protein structure prediction.3,4

The availability of more accurate models for monomers may be the

reason why our structure-based template searches successfully com-

plemented sequence-based searches in CASP14, but less so in

CASP13.18 It is possible that the structure-based template identifica-

tion for protein complexes may play an even more prominent role in

the future.

The template-based modeling of protein complexes represents a

more complex problem than the homology modeling of individual pro-

teins. Unlike monomeric proteins, the modeling of complexes has to

deal with additional complications such as the presence of alternative

intersubunit interfaces and differences in stoichiometry of homolo-

gous protein complexes.16-18,37 In CASP14, the modeling of evolu-

tionary nonconserved antibody-antigen interactions was yet another

example of a more complex problem. In other cases such as host-

pathogen interactions that do not always emerge from long coexis-

tence of species, it might also be hard to apply either template-based

or coevolution-based modeling methods.

When there are no templates and other constraints are lacking,

free docking is the only feasible approach to predict the structures of

protein complexes. Our CASP14 results support previous observa-

tions that docking may be successful only when subunits are suffi-

ciently accurate.12,18 Thus, a recent breakthrough in protein structure

prediction might help not only to detect templates for multimeric

structures through structure-based searches but also to expand the

applicability of protein docking. However, even if fairly accurate struc-

tures of monomers are available, the free docking is much better in

predicting protein-protein binding sites46,47 than the exact mutual

arrangement and interface contacts. This has been observed by us

both in previous studies18 and in CASP14.

CASP14 results showed that our docking workflow still has a lot

of room for improvement. With more time and more computational

resources devoted for every target, some improvements could be

made even while staying in the realm of rigid-body docking and keep-

ing our current, admittedly imperfect scoring function: (1) using a

higher number of diverse input monomers, for example, generated by

modeling domain motions and by remodeling flexible loops and tails;

(2) ensuring that the docking software always performs a sufficiently

exhaustive sampling of conformations; (3) producing structural varia-

tions of each oligomeric docking solution using molecular dynamics or

other sampling techniques. These enhancements would allow to

explore the conformational space more thoroughly, possibly leading

to better results.48

Despite the limitations of our CASP14 modeling protocol, our

strong performance suggests that the prediction of interchain con-

tacts using coevolution and deep learning methods still has little

impact on modeling of protein-protein interactions. Why is that?

Apparently, there are multiple reasons why interchain contact predic-

tion is harder than intrachain. For example, contact prediction for het-

eromeric protein complexes requires generating joined multiple

sequence alignments. The interacting proteins in the alignment are

inferred by genomic distances or by phylogeny,49,50 as well as

selected using automated sequence comparison procedures.51 How-

ever, this significantly reduces the number of sequences in the align-

ment and does not guarantee the correct pairing of proteins. The

alignment joining problem is not present for homo-multimers, yet in

this case the problem is to distinguish intrasubunit from intersubunit

contacts.50 So far this problem has been solved by including the

monomer structures into the prediction pipeline.52

In addition to the issues related to obtaining and analyzing the

multiple sequence alignments, training of supervised learning-

based methods for contact prediction using the structures of pro-

tein complexes may be limited by the availability of experimental

structural data. The number of possible protein complexes is

believed to outnumber the number of possible protein folds,7,8 and

it is not clear whether known structures represent a significant part

of all interaction types.8,53 Moreover, there are examples of

protein-protein interactions such as antibody-antigen or host-

pathogen protein interactions, for which principles of coevolution

are hardly applicable.

Modeling of structures for individual proteins is highly automated,

and multiple structure prediction servers are available in CASP1 and

beyond.54 On the other hand, automated servers that predict struc-

tures of protein complexes starting from sequences are scarce. This

may be not surprising bearing in mind the diversity of methods used

for multimeric structure prediction. When the modeling strategy is

clear, the automation becomes a software engineering task. As a

result, there are servers for template-based modeling of protein com-

plexes, such as fully automated SWISS-MODEL54 and Robetta44 or

semiautomated PPI3D,19,55 which we applied for homology modeling

targets. Servers for protein-protein docking are available as well.10 In

CASP14 our free docking workflow was also automated to the point

such that it could be potentially implemented as a web server.

DAPKŪNAS ET AL. 1841



However, more complicated cases, such as modeling of large protein

complexes, still require human input in merging the structures derived

from different templates, combination of homology modeling

with docking, and integration of diverse information from different

sources.18

To conclude, the progress in monomeric protein structure predic-

tion has not yet translated into similar breakthrough in structural

modeling of protein complexes. A number of issues of both technical

and fundamental nature have to be solved to make a leap in producing

reliable structural models of protein interactions, and it will be exciting

to see what developments will occur in this research area in the

nearest future.
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