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Abstract

Background: In microarray data analysis, hierarchical clustering (HC) is often used to group samples or genes according to
their gene expression profiles to study their associations. In a typical HC, nested clustering structures can be quickly
identified in a tree. The relationship between objects is lost, however, because clusters rather than individual objects are
compared. This results in a tree that is hard to interpret.

Methodology/Principal Findings: This study proposes an ordering method, HC-SYM, which minimizes bilateral symmetric
distance of two adjacent clusters in a tree so that similar objects in the clusters are located in the cluster boundaries. The
performance of HC-SYM was evaluated by both supervised and unsupervised approaches and compared favourably with
other ordering methods.

Conclusions/Significance: The intuitive relationship between objects and flexibility of the HC-SYM method can be very
helpful in the exploratory analysis of not only microarray data but also similar high-dimensional data.
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Introduction

Recent developments of high-throughput technology such as

genotyping arrays have generated a wealth of high-dimensional

data. In order to analyze this huge amount of data as a whole set,

various clustering methods [1–3] are used where a set of objects

are grouped into clusters in an unsupervised approach i.e., no a

priori knowledge is assumed. Objects within the same cluster should

be similar to one another and dissimilar to the objects in other

clusters. Through clustering, hidden data patterns can be revealed,

e.g., samples of genes expressed under varying conditions can be

assigned to biologically meaningful groups based on their gene

expression levels over a set of experiments.

Hierarchical clustering (HC) is one of the most popular clustering

methods. Typical hierarchical clustering is agglomerative; begin-

ning with as many clusters as objects, similar clusters are

sequentially merged based on some form of distance metrics, e.g.,

Euclidian distance, until only one cluster remains. For n objects, n-1

merging steps are needed to produce a tree diagram, also known as

a dendrogram. The final dendrogram, however, is not unique

because the tree at each merging step can be flipped in either

direction. In fact, there exist 2n-1 possible dendrograms with the

same clustering structure. Figure 1 is a dendrogram by HC for

microarray data with two different tissue types. While the majority

of samples are grouped according to their tissue types, not only are

misclustered samples (green branches in the black group and black

ones in the green group) found but they are far apart from their

proper group. Better grouping can be obtained by simply flipping

some internal nodes. This presents a major challenge to users since it

is impossible to test all possible forms, especially when the labels, i.e.,

leaf colors, are unknown. Another drawback of HC stems from the

greedy approach of the method. All clustering steps are entirely

based on local decisions without any re-evaluation of the clustering.

Any initial misbehaving grouping is carried on to the end [4].

Furthermore, the relationship between the elements is lost during

the clustering process since clusters rather than individual elements

are compared [5]. The resulting tree can be difficult to interpret.

One way to get around the shortcomings of HC is to order the

leaves with some heuristics or dimension reduction methods.

Gruvaeus and Wainer [6] proposed a method joining two clusters

in each merging step such that the endpoints of the clusters are

most similar. In Eisen’s heuristic of popular heat map [7], average

expression level was used in determining the order of leaves. Bar-

Joseph et al. [8] proposed a fast optimal leaf ordering method that

finds a linear ordering of leaves in which the sum of similarities of

neighbouring leaves is maximized. Dimension reduction methods

can be also used for ordering as in Tien et al. [9] where the rank-

two ellipse (R2E) [10] was used as en external reference to guide in

flipping internal nodes of a tree.

In this paper, we propose a method, HC-SYM, to order the

leaves of a binary tree based on their bilateral symmetric distances.

The purpose is to put more similar objects in the middle and
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objects that are more dissimilar in the outside of tree in order to

represent the tree in more smooth patterns while keeping the local

grouping structure of HC intact. For complex data sets with many

objects and classes, this method can be selectively applied

according to levels of the tree for flexible exploratory analysis.

The approach is illustrated with a public microarray gene

expression dataset with varying number of classes. The results

are compared to other ordering methods.

Methods

Distance measurements between clusters
In hierarchical clustering methods, the distance between two

clusters can be measured in several ways as a function of the

distance between objects in the two clusters. If x[A, y[B, and d(x,

y) = distance metric between objects x and y, then the distance

between A and B can be measured using one of the following

methods: the nearest neighbour or single linkage (Figure 2(a)); the

furthest neighbour or complete linkage (Figure 2(b)); or the average

distance between all pairs (Figure 2(c)). With these distance

measurements, the ordering of objects within each cluster, typically

drawn as an oval with objects in them, does not affect the inter-

cluster distances. The ordering of objects within a cluster, however,

is important since the objects are linearly located in a dendrogram,

the visual representation of HC, and it might be more critical for

interpretation in a certain study. To order objects using inter-cluster

distance, innermost , outermost, all, or symmetric pairs are used as shown

in Figure 3 where the left and right subtree of a dendrogram are

designated as the left (L) and right clusters (R), respectively: they are

not A and B since changing their locations would result in different

inter-cluster distance. This strategy is similar to Figure 2 in that each

pairing method has a corresponding linkage: innermost to single

linkage, outermost to complete linkage, and all to average linkage.

However, symmetric pairing has no counterpart linkage.

Problem defined
Let L = {x1,…, xm} and R = {y1,…,yn} (or L = {x2m,…, x21} and

R = {y2n,…,y21} when allowing negative indexing) be left and

right clusters whose objects need to be ordered. Our goal is to

locate similar x and y closer in the linear order by using distances

between members and their adjacent cluster, i.e., d(x, R) or d(L, y)

where d is a distance metric. If we use the all-linkage approach, we

can use the average distances for all members in L and R and order

the members according to their average. In this approach, the time

complexity to look up the all m+n members in d is O((m+n)2).

Simpler and less computing intensive approach taking linear time

to look up is to use only symmetric pairs of the two clusters so that

d(x{i,yi)ƒd(x{j ,yj), ð1Þ

where i , j for all i, j[{1..k} if k is size of the smaller cluster: the

distance of inner symmetric pairs are smaller than or equal to the

one of outer symmetric pairs. If we define B, bilateral symmetric

distance between L and R, to be

B~
Xk

i~1

d(x{i,yi), ð2Þ

Figure 1. Hierarchical clustering of two tissue types. Malignant breast and kidney samples, n = 45 and n = 32, respectively, are taken from Liu
et al. data [11] for hierarchical clustering using the average-linkage method with the Pearson correlation distance.
doi:10.1371/journal.pone.0022546.g001

Figure 2. Distance measurements between clusters. Three most
widely used inter-cluster distances are (a) single linkage, (b) complete
linkage, and (c) average linkage method.
doi:10.1371/journal.pone.0022546.g002

Figure 3. Distance measurements between clusters with linear
ordering of objects. Four inter-cluster distance measurements for the
left (L) and right (R) cluster can be considered when taking the order of
objects into account; (a) innermost linkage, (b) outermost linkage (c) all
linkage, and (d) symmetric linkage.
doi:10.1371/journal.pone.0022546.g003
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where k is the size of smaller cluster as before, then B is minimized

when condition (1) is met.

If the size of L and R is equal, the order of all members can be

determined purely based on the bilateral symmetric distance. For

the unequal size of clusters, some members inevitably do not have

their symmetric counterpart. However, they still should be ordered

for smooth transition. Ordering can be done based on the

distances between the unpaired members to their adjacent clusters,

i.e., d(x, R) or d(L, y). Alternatively, the unpaired members can be

compared to their own clusters, i.e., d(x, L9) or d(R9, y) when L9 and

R9 is the set of members determined by the bilateral symmetric

distance for L and R, respectively.

Algorithms
As in Figure 4, two main functions, symOrder and HC-SYM, are

used for implementation of the ordering algorithms based on the

bilateral symmetric distance. The former orders the leaves of tree,

T, given a distance matrix, D, according to the symmetric

distances of the leaves in the two subtrees of T, the left (Tl) and the

right (Tr), respectively. First, we order tree only for the balanced

part i.e., the number of objects is twice the min(|Tl|, |Tr|) when

|T| denotes the number of leaves in T. We fill an order vector,

SYM, by sequentially selecting the minimum distance of pairs of x

and y where x[Tl and y[Tr. The result is an order of objects all

based on the symmetric distances for the perfectly balanced tree.

However, most trees are unbalanced. To order unbalanced part of

trees, we use the average-linkage approach where unpaired objects

are ordered by the average distances with the already ordered

objects in the same cluster. The resulting vector is concatenated

with SYM. The leaves of T are ordered based on SYM in which

each internal node is flipped only if the average order of the leaves

in its right subtree in SYM precedes the one in its left subtree

(Discussed more detail in Tien et al. [9]). The original internal

structure of T is absolutely preserved because flipping internal

nodes do not change the hierarchy of clusters.

HC-SYM, on the other hand, is a recursive version of symOrder

where ordering can be applied to different levels of the tree from

top to bottom. Level 1 means the entire tree is ordered using the

left and the right subtrees of the root as Tl and Tr, respectively.

Level 2 means ordering is done once again using the grand

Figure 4. Algorithms. Pseudocodes of the two main functions for the implementation of ordering algorithms based on the bilateral symmetric
distance; (a) symOrder (b) HC-SYM.
doi:10.1371/journal.pone.0022546.g004
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children of the root as Tl and Tr (There are two sets of Tl and Tr

here since the root of a binary tree has four grand children nodes).

In addition to the level, there are two more parameters in HC-SYM:

(1) br, the ratio between Tl and Tr, and (2) sr, the minimum ratio of

sizes of subtree, Tl or Tr, to T. Target nodes are selected according

to level, br and sr and they are sequentially run by symOrder in a top-

down approach; parental nodes are run before their descendant

nodes.

Results and Discussion

Datasets
We used a public gene expression dataset published by Liu et al.

[11] for illustration of the proposed ordering method (http://www.

samsi.info/200304/dmml/web-internal/bio/data/data_rsvd.xls).

The data were human tissue gene expression profile on

oligonucleotide microarrays from Affymetrix consisting of 224

genes analyzed in 255 malignant and 249 normal samples as

shown in Table 1. A total of 504 samples of eight tissue types

including breast, colon, kidney, liver, lung, ovary, prostate, and

testis were analyzed. The goal of the data analysis was to group

samples according to their biological functions, i.e., tissue types.

Two subsets of the data have been analyzed, set A consisting of 77

total malignant breast and kidney tissues, and set B consisting of all

504 samples. Additionally, the yeast cell-cycle data of Cho et al.

[12] has been included in the analysis [Figure S5].

Performance evaluation
Since cluster membership is determined already by HC, the

object of the performance evaluation of our study is not to evaluate

quality of typical clustering but rather to evaluate the performance

of seriation [13], the suitable linear ordering of objects, without

changing the internal structure of a tree. There can be two

approaches for this purpose, supervised or unsupervised. Cluster-

ing is intrinsically unsupervised learning. However, if we use

dataset with the known cluster labels for a testing purpose, we can

take a supervised approach in which quality of grouping is

measured directly from the linear order of leaves in a tree. For a

tree of size n, we define ld(x1, x2) to be a positive linear distance for

the two leaves x1 and x2 belonging to the same class when the

leaves are numbered 1 to n starting from the left of a tree. So ld is 1

when x1 and x2 are adjacent and n-1 when they are apart the

furthest. In order to measure grouping of each class, we define the

seriation score, S(c) for a class c to be:

S(c)~
X

x1,x2[c

1

ld(x1,x2)
ð3Þ

S(c) is maximized when all members of c are adjacent each other.

We also define the seriation rate, SR, to be the sum of seriation scores

for all classes divided by the sum of maximum seriation scores

which occurs when all objects are grouped with no error, so that

Table 1. Test datasets.

Tissue type

Pathology breast colon kidney liver lung ovary prostate testis

normal 37 67 37 19 49 5 29 6

malignant 45* 66 32* 20 52 5 29 6

total 82 133 69 39 101 10 58 12

Dataset A:
*(n = 77) and Dataset B: entire 504 samples.
doi:10.1371/journal.pone.0022546.t001

Figure 5. Dendrograms with proximity view for dataset A. Comparison of (a) HC and (b) HC-SYM for dataset A using dendrograms and
proximity matrices. HC was performed by the average-linkage method with the Pearson correlation distances. Proximity matrices were drawn with
the Pearson correlation coefficients.
doi:10.1371/journal.pone.0022546.g005
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SR ranges 0 to 1. Thus, SR can be simplified as

SR~

Pk
c~1

S(c)

Pk
c~1

max(S(c))

, ð4Þ

where k is the number of total classes.

For the unsupervised approach, however, the scoring measure,

SR, is not applicable since the class labels are unknown. One

possible approach is to use a symmetric proximity matrix. A n6n

symmetric similarity matirx R = [rij] is called a perfect Robinson

matrix [14,15] when all the values in R is increasing when moving

toward the main diagonal such that rij # rik if j , k , i (lower

triangle) and rij $ rik if i , j , k (upper triangle). Chen [10]

proposed generalized anti-Robinson (GAR) scores which is a loss

function counting the number of violations of Robinson matrix

form for a n6n permuted proximity matrix P = [pij] for varying

window sizes, w, resulting in

GAR~
Xn

i~1

X
(i{w)ƒjvkvi

I(pijvpik)z
X

ivjvkƒ(izw)

I(pijwpik)

" #
,ð5Þ

where I(.) is an indicator function returning 1 only for violations of

Robinson form.

Comparison to other methods
In addition to the basic hierarchical clustering (HC), we

compared HC-SYM to two additional seriation methods; HC-

PCA and HC-OLO (optimal leaf ordering). For HC-PCA, the first

component of PCA was obtained and was used as an external

reference in flipping internal nodes of tree. HC-OLO was

available in seriation package [13] in R [16]. For visual

representation of the analysis, a dendrogram with colored

branches was used for the supervised approach. For the

unsupervised approach, on the other hand, a color image of the

symmetric similarity matrix was used to show two-way (both rows

and columns) and one-mode (sample) data . The default values for

Figure 6. Result for dataset A. Performance measured by (a) Seriation rate (b) Anti-Robinson scores for dataset A.
doi:10.1371/journal.pone.0022546.g006

Figure 7. Dendrograms of HC-SYM for dataset B at various levels. HC-SYM was applied at different levels.
doi:10.1371/journal.pone.0022546.g007
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HC-SYM was used thoughout the whole analysis (br = 0.3 and

sr = 0.03).

Results
The result of HC and HC-SYM for dataset A was visually

compared in Figure 5. After ordering, improved clustered patterns

were clearly noticed in the dendrogram of HC-SYM (5a versus

5b). In addition, the overall shape of the dendroram becomes

triangular; loose clusters (long branches) in the middle and tight

clusters (short braches) outside. This tendency was also observed in

the proximity view of the similarity matrix where the distinction

between two clusters were rather fuzzy in the middle and more

reddish spots were found when moving towards corners along the

diagonal. In the SR metrics HC-SYM and HC-OLO showed

relatively good performance as shown in Figure 6(a). Figure 6(b)

illustrated good local (i.e., window size ,37) characteristics of HC

and inferior performance on global (i.e., window size .46)

perspective. HC-SYM, however, showed relatively strong perfor-

mance in both smaller and bigger window sizes. In addition, HC-

SYM is compared with other methods using anti-Robinson scores.

The results are in Figure S1.

Figure 7 illustrates changes in order for dataset B when HC-

SYM is applied at different levels where black dots represent the

nodes whose left and right subtrees were ordered based on the

symmetric distance. Also a triangular shaped dendrogram was

observed in most of the selected nodes for ordering. For this

complex dataset, HC-SYM showed the best SR even at the first

level and maximal SR was observed at the level four (Figure 8(a)).

Figure 8(b) shows the anti-Robinson score decreasing in the mid

window sizes and increasing in the bigger window sizes as the level

increases; improved local behaviour while sacrificing global

behaviour. When compared with other methods by anti-Robinson

measure, HC-SYM showed better performance in the global scale

and similar local performance with other methods [Figure S2]. As

in dataset A, in the proximity view, cells with higher similarity

scores were observed more in the corners of clusters [Figure S4]

when compared to the result of HC [Figure S3].

Conclusions
One major drawback of HC is its lack of a systematic ordering

method to show global patterns of data. HC-SYM is proposed as

one possible remedy where a tree is ordered to minimize the

symmetric distances between adjacent clusters. After the ordering,

the relationship between objects becomes clearer and the

performance of clustering was favourably evaluated with other

existing methods. Additionally, HC-SYM approach is flexible as it

can be applied at various levels of a tree. This ordering method,

especially along with a proper visual aid, proximity view, can be

very helpful in the exploratory analysis of not only microarray data

but also similar high-dimensional data.

Figure 8. Result for dataset B. Performance measured by (a) Seriation rate (b) Anti-Robinson scores.
doi:10.1371/journal.pone.0022546.g008
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Supporting Information

Figure S1 Comparison of Anti-Robinson scores for
dataset A. Anti-Robnison scores by four seriation methods were

compared for dataset A.

(TIF)

Figure S2 Comparison of Anti-Robinson scores for
dataset B. Anti-Robnison scores by four seriation methods were

compared for dataset B. The level of HC-SYM was 1.

(TIF)

Figure S3 Dendrogram with proximity view for dataset
B using HC. The result of HC by both dendrogram and color

image of similarity matrix.

(TIF)

Figure S4 Dendrogram with proximity view for dataset
B using HC-SYM. The result of HC-SYM by both dendrogram

and color image of similarity matrix. The level of HC-SYM was 1.

(TIF)

Figure S5 Seriation of yeast cell cycle data. The yeast cell-

cycle data of Cho et al. [16] containing time-course expression

profiles more than 6000 genes at 17 time points was analyzed with

the proposed method using 145 genes whose phases have been

assigned with a removal of one abnormal time point as suggested

by Tamayo et. al [4]. (a) Comparison of seriation rates (b)

Dendrogram of HC and HC-SYM at level 2. The parameter

values were br = 0.3 and sr = 0.03 for HC-SYM after HC was

carried by average-linkage with Pearson correlation distance.

(TIF)
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