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ARTICLE

Pharmacodynamic Models of Differential Bortezomib 
Signaling Across Several Cell Lines of Multiple Myeloma

Vidya Ramakrishnan and Donald E. Mager*

The heterogeneous polyclonal nature of multiple myeloma complicates the identification of protein biomarkers predictive of 
drug response. In this study, a pharmacodynamic systems modeling approach was used to link in vitro bortezomib exposure 
and myeloma cell death. The exposure-response was integrated through a network of important protein biomarker dynamics 
activated by bortezomib in four myeloma cell lines. The pharmacodynamic models reasonably characterized the protein and 
myeloma cell dynamics simultaneously following bortezomib (20 nM) treatment. The models were used to identify differ-
ences in pathway dynamics across cell lines from model-estimated protein biomarker turnover parameters and global sen-
sitivity analyses. Additionally, a statistical correlation analysis between drug sensitivity and model-fitted protein activation 
profiles (i.e., cumulative area under the protein expression-time curves) supported the identification of shared biomarkers 
associated with sensitivity differences among the cell lines. Both types of analysis identified similar important proteins as-
sociated with bortezomib pharmacodynamics, such as phosphorylated Nuclear Factor kappa-light-chain-enhancer of acti-
vated B cells (pNFkappaB), phosphorylated protein kinase B (pAKT), and caspase-8 (Cas 8).

Multiple myeloma is a hematological cancer characterized 
by heterogeneity in its presentation and progression.1,2 
The changing genetic progression of the disease, similar 
to branching Darwinian evolution, introduces heterogeneity 
through the development of clonal populations of cells.3,4 
These subpopulations of cells proliferate with differing clo-
nogenic potential and sensitivity to chemotherapy, which 
results in substantial interpatient variability in responses to 
the same treatment regimen as well as intrapatient variability 
across multiple cycles of treatment.3,4 Multiple myeloma is 
incurable at present and is characterized by repeating cy-
cles of remission and relapse, with an overall 5-year survival 
rate of just 47%.5 This presents a significant challenge to 

treatment, which requires continual assessment of the clonal 
composition to develop appropriate treatment strategies.6 
Thus, approaches are needed to translate tumor heteroge-
neity for appropriate risk assessment and the recommen-
dation of safe and effective treatment plans. Integration of 
disease-related and drug-related (i.e., mechanism-based) 
biomarkers in clinical trials is one such approach with con-
siderable potential. Achieving this goal requires the identifi-
cation of specific sets of markers that may influence cellular 
components and could be targeted by therapeutic agents, 
appropriate regimens, and/or combination therapies.

The objective of this study is to investigate the role of intra-
cellular signaling protein expression within different myeloma 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Multiple myeloma is a constantly changing disease due 
to clonal heterogeneity. The clonal populations of geneti-
cally diverse myeloma cells result in complex disease dy-
namics leading to heterogeneity in response to therapeutic 
interventions.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Heterogeneous responses to chemotherapy necessi-
tate the need for adequate risk assessment and therapy 
management. This study includes a quantitative pharma-
cology approach to investigate the heterogeneous intra-
cellular signaling mechanisms governing drug action and 
enables the identification of potential biomarkers associ-
ated with drug sensitivity.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Sensitivity analyses of the final cell line specific 
dynamic models and an exploratory statistical analysis 
suggest potential protein biomarkers of bortezomib phar-
macodynamic response.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   Upon adequate translation across a larger panel of cell 
lines, in vivo xenograft systems, and patient-derived tumor 
samples, this approach could enable risk stratification 
based on biomarker profiles, aiding the timely identi
fication of aggressive disease progression and enabling 
appropriate therapeutic interventions (i.e., precision 
medicine).
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cell lines that differ in their pharmacodynamic responses to 
bortezomib exposure.7 The differences in cell-line responses 
were established via experimental and traditional pharma-
cokinetic/pharmacodynamic modeling, which showed that 
MM.1S and NCI-H929 cells exhibited greater intracellular 
signaling, faster cell killing, and lower half-maximal inhibi-
tory concentration (IC50) values as compared to U266 and 
RPMI8226 myeloma cells. Bortezomib is a targeted prote-
asome inhibitor that influences many intracellular signal-
ing proteins that regulate proliferation, cellular stress, and 
apoptosis pathways in myeloma cells.8 The drug triggers 
the nuclear factor-kappa B (NFκB) and phosphoinositide 3 
(PI3)/protein kinase B (AKT) pathways, stress-associated 
Jun NH2-terminal kinase (JNK) and p53 pathways, cell cycle 
inhibitory p21 and p27 pathways, and extrinsic (caspase-8) 
and intrinsic (caspase-9) apoptotic pathways.9 In this study, 
systems models integrating cell line specific signaling mech-
anisms were developed for the less sensitive U266 and 
RPMI8226 cell lines, which were subsequently tailored to 
describe bortezomib pharmacodynamics in the more sen-
sitive MM.1S and NCI-H929 cell lines. The four models are 
drug specific, individual cell-type models that may facilitate 
the identification of common biomarkers. Global sensitivity 
analyses of the models enabled a comparison of proteins/
pathways governing responses in each cell line, and results 
were in agreement with a comparative statistical correlation 
analysis. Such biomarker-based pharmacodynamic models 
can provide insights into the determinants of system proper-
ties that are not possible with empirical models.

MATERIALS AND METHODS

Pharmacodynamic systems models
The time-courses of intracellular proteins following borte-
zomib exposure in four multiple myeloma cell lines were 
obtained from a published study.7 Briefly, all cell lines 
were treated with bortezomib (20 nM) and 10 intracellular 
proteins regulating bortezomib pharmacodynamics were 
measured at several time points. Bortezomib exposure 
was linked to myeloma cell death using protein biomarker 
dynamics, and the protein interactions in the models were 
guided by a qualitative logic-based Boolean network de-
scribing signal transduction in myeloma cells.7 The models 
consist of a series of ordinary differential equations for mul-
tiple indirect-response turnover profiles describing relative 
protein expression, with drug/protein(s) modulating synthe-
sis or degradation rate constants under treatment condi-
tions.10 Time-dependent transduction models were used 
for temporal delays in network interactions as needed.11 
The four model structures are shown in Figure 1a–d and 
the detailed mathematical equations are provided in the 
Supplementary Materials.

The proteins were integrated into the pharmacodynamic 
end point of myeloma cell growth, and bortezomib-induced 
cell death is defined as:

with cell growth and death described by first-order growth 
(kg) and natural cell death (kd) rate constants. Cell growth 
was governed by proliferation pathway proteins pAKT and 
mammalian target of rapamycin (pmTOR). A cell cycle inhib-
itory protein (p21) was used to inhibit cell growth, whereas 
caspases stimulate cell death. Myeloma cell viability was 
reported as values normalized to untreated control cell vi-
ability at time 0 hour, thus the initial condition of Eq. 1 was 
set to 1. The temporal dynamics of proteins up to 24 hours 
were included in model development because cells showed 
complete cell death by that time. The degradation kinetics 
of bortezomib in media was described as mono-exponential 
decay with a half-life of 144 hours.12

Naïve pooled data analysis was used for model fitting, 
and parameter estimation was achieved using the maximum 
likelihood estimation algorithm in ADAPT5.13 Final mod-
els were selected based on goodness-of-fit criteria, which  
included model convergence, parameter estimation, and 
visual inspection of predicted vs. observed values and re-
sidual plots.

Global sensitivity analysis
Global Sobol sensitivity analysis was implemented in 
the open source Sensitivity Analysis Library in Python 
(SALib).14,15 SALib was used to determine the sensitivity 
of the area under the effect curve (AUEC) of bortezomib-
induced cell death in 24 hours to changes in the individual 
protein turnover rate constant parameters, keeping all the 
other model parameters (stimulatory coefficients and power 
coefficients) fixed to their estimated values. The AUEC was 
calculated as the difference between the area under the cell 
proliferation and cell death curves. The rate constants were 
varied in the range of twofold for RPMI8226, MM.1S, and 
NCI-H929, and ± 20% for U266 from their estimated values, 
depending on estimation accuracy of the Sobol indices, 
to generate a computationally feasible number of simula-
tions.16 Samples of parameter sets were generated using 
the Saltelli sampling method that generates N × (2D + 2) 
samples, in which a value of 10,000 was used for N and D 
as the number of parameters being varied. Model output 
was simulated for all the generated parameter sets, and 
the large number of parameter sets ensured that adequate 
confidence intervals were obtained for the parameters with 
significant Sobol index values (above 0.05).17 The total-
order, first-order, and second-order indices along with their 
95% confidence interval values were computed with SALib.

Statistical analysis
A Spearman’s rank correlation coefficient was calculated 
between cell viability values under bortezomib treatment 
at 24 hours and the calculated cumulative relative protein 
expression AUEC (0–24 hours) of the model-fitted profiles 
(calculated using Phoenix 64) for all proteins in SigmaPlot  
(version 12.0; Systat Software, Inc., San Jose, CA).

RESULTS
Pharmacodynamic systems models of “less sensitive” 
cells
Bortezomib-mediated responses were similar in U266 
and RPMI8226 cells. In addition, the comparable (1)

d(MMcells)

dt
=

kg

p21
⋅pAKT2 ⋅pmTOR ⋅MMcells

−kd ⋅Cas8 ⋅Cas9 ⋅MMcells;MMcells(0)=1
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Figure 1  Pharmacodynamic systems models for (a) U266, (b) RPMI8226, (c) MM.1S, and (d) NCI-H929 cell lines. Bortezomib-mediated 
intracellular protein dynamics link drug exposure with drug efficacy. Nodes highlighted in green represent proteins in prosurvival 
pathways, and nodes highlighted in red represent pro-apoptotic proteins. Nodes with a dashed outline are transit compartments. 
Stimulatory and inhibitory connections between nodes are represented by “ “ and “ .”
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sensitivity to bortezomib in terms of cell proliferation dy-
namics suggests similar mechanistic interactions among 
signaling proteins.7 The models for U266 and RPMI8226 
(Figure 1a,b) were used to describe protein profiles and 
cell proliferation data simultaneously, and the experimen-
tally observed data and model fitted profiles are shown in 
Figure 2 (line plots depicting the model fits of the proteins 
are provided in Figures S1 and S2 in Data S1). The mod-
els successfully characterized the dynamics of the sys-
tem, and all model parameters were estimated with good 
precision (Table 1), with the exception of the p21 degra-
dation rate constant (kdp21) in U266 cells. The two mod-
els differed only in the transit compartments and power 
coefficient parameterization as described in the Methods 
section.

U266
Bortezomib-mediated proteasome inhibition causes an ac-
cumulation of unwanted ubiquitinated proteins, resulting in 
severe stress in cells and leading to the activation of pJNK,18 
pNFκB via the stimulation of upstream receptor-interacting 
protein (RIP),12 and pAKT via unknown mechanisms.19,20 
Hence, the models included the direct stimulation of these 
proteins by bortezomib, characterized by linear stimula-
tory coefficients (Table 1). The relatively low value of the 
coefficient for pAKT suggests that stimulation of the AKT 
pathway is not a predominant bortezomib effect. Transit 
compartments (one for pJNK and pAKT and two for pNFκB) 
adequately described the delay in the stimulation of these 
proteins. A minor stimulation of the mTOR pathway was 

Figure 2  Model-fitted time-course of protein dynamics and cell proliferation in U266 (a,b) and RPMI8226 (c,d) cells. (a,c) The left 
panel depicts the experimentally observed and model fitted data. Log relative expression of the 10 proteins are on the Y-axis, and time 
(in hours) is on the x-axis. The dark red color denotes maximum activation and the dark blue denotes maximum inhibition. (b,d) Solid 
symbols represent experimentally observed cell proliferation for untreated-control (black) and 20 nM bortezomib treatment (blue). 
Solid lines are model-fitted curves for untreated-control (black) and 20 nM bortezomib treatment (blue).
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Table 1  Final parameter estimates for the four pharmacodynamic models

Parameter Unit Description Value (% CV)

U266

ktpNFκB Hour−1 pNFκB transit rate constant 0.03528 (3.17)

SmpNFκB nM−1 pNFκB stimulatory coefficient 3.984 (7.28)

ktpAKT Hour−1 pAKT transit rate constant 0.08517 (1.54)

SmpAKT nM−1 pAKT stimulatory coefficient 0.5079 (0.989)

kdpmTOR Hour−1 pmTOR degradation rate constant 0.01434 (3.16)

kdBcl-2 Hour−1 Bcl-2 degradation rate constant 0.01094 (6.19)

γBcl-2 – Bcl-2 power coefficient 5.000*

ktpJNK Hour−1 pJNK transit rate constant 0.07654 (0.127)

SmpJNK nM−1 pJNK stimulatory coefficient 2.757 (0.256)

kdpp53 Hour−1 pp53 degradation rate constant 0.3222 (9.70)

kdp21 Hour−1 p21 degradation rate constant 4.709 (289)

γp21 – p21 power coefficient 2.500*

ktpBAD Hour−1 pBAD transit rate constant 0.08116 (2.99)

kdCas8 Hour−1 Caspase 8 degradation rate constant 0.3287 (3.17)

kdCas9 Hour−1 Caspase 9 degradation rate constant 0.9148 (11.0)

γCas9 – Caspase 9 power coefficient 1.278 (0.689)

kg Hour−1 Myeloma cell growth rate constant 0.01882 (0.0856)

kd Hour−1 Myeloma death rate constant 0.003776 (3.19)

σ2Protein – Error coefficient for proteins 0.4724 (0.00210)

σ2MMcell – Error coefficient for myeloma cell 0.3645 (0.155)

RPMI8226

ktpNFκβ Hour−1 pNFκβ transit rate constant 0.07685 (10.9)

SmpNFκβ nM−1 pNFκβ stimulatory coefficient 0.04046 (13.3)

ktpAKT Hour−1 pAKT transit rate constant 0.04528 (0.311)

SmpAKT nM−1 pAKT stimulatory coefficient 1.011 (0.064)

kdpmTOR Hour−1 pmTOR degradation rate constant 0.0007853 (0.676)

kdBcl-2 Hour−1 Bcl-2 degradation rate constant 0.008890 (10.9)

kdpJNK Hour−1 pJNK degradation rate constant 0.07269 (2.70)

SmpJNK nM−1 pJNK stimulatory coefficient 0.2965 (0.602)

kdpp53 Hour−1 pp53 degradation rate constant 0.04395 (3.14)

γpp53 – pp53 power coefficient 1.746 (0.348)

kdp21 Hour−1 p21 degradation rate constant 0.01834 (0.911)

γp21 – p21 power coefficient 5.000*

ktpBAD Hour−1 pBAD transit rate constant 0.2257 (72.6)

γpBAD – pBAD power coefficient 0.3705 (2.41)

kdCas8 Hour−1 Caspase 8 degradation rate constant 0.1656 (34.8)

γCas8 – Caspase 8 power coefficient 5.640 (16.2)

kdCas9 Hour−1 Caspase 9 degradation rate constant 0.008027 (9.52)

γCas9 – Caspase 9 power coefficient 5.000*

kg Hour−1 Myeloma cell growth rate constant 0.01680 (0.116)

kd Hour−1 Myeloma death rate constant 0.05166 (11.0)

σ2Protein – Error coefficient for proteins 0.4324 (0.042)

σ2MMcell – Error coefficient for myeloma cell 0.4118 (0.187)

MM.1S

ktpNFκβ Hour−1 pNFκβ transit rate constant 0.09507 (0.154)

SmpNFκβ nM−1 pNFκβ stimulatory coefficient 5.054 (0.236)

ktpAKT Hour−1 pAKT transit rate constant 0.1503 (1.32)

SmpAKT nM−1 pAKT stimulatory coefficient 0.5823 (0.498)

kdpmTOR Hour−1 pmTOR degradation rate constant 0.01159 (0.561)

kdBcl-2 Hour−1 Bcl-2 degradation rate constant 0.09135 (0.104)

γBcl-2 – Bcl-2 power coefficient 5.000*

ktpJNK Hour−1 pJNK transit rate constant 0.5659 (0.161)

(Continues)
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observed and was characterized by stimulation via the up-
stream regulator, pAKT.21

The pJNK stimulates the synthesis of the tumor suppres-
sor p53,22 which in turn stimulates the synthesis of the cell 
cycle inhibitor p21. These proteins are primarily activated 
under stress/DNA damage conditions in order to halt cellular 
proliferation. Thus, proliferative pathways (pAKT) also play a 
role in the inhibition of these proteins.18,22–26 The upregulation 
of pp53 and p21 was adequately described by the model; 
however, no expression of p21 was observed at 24 hours. 
One potential explanation is the relatively short activation 
half-life of p21 (minutes to a few hours) and protein stability 
in acidic media resulting from dead cells at 24 hours.27,28 The 
model was unable to capture the absence of p21 because 
the equation defining myeloma cell death is governed by 
the presence of p21 and caspases, which are needed to be 
active/present for maintaining continual cell death observed 
in in vitro experiments. This is the likely reason for the poor 
estimation of the p21 turnover parameter, kdp21.

Cas 8, the primary marker for the extrinsic apoptosis path-
way, is activated by stress-induced upregulation of pJNK 
and inhibited by cellular FLICE inhibitory protein (c-FLIP), an 
apoptosis regulatory protein stimulated by pNFκB.8,18,29,30 
The profiles suggest a similar time to activation as pJNK. 
Hence, the synthesis of Cas 8 was driven by pJNK and 
pNFκB. Bortezomib also activates the intrinsic mitochon-
drial pathway of apoptosis, which involves the Bcl-2 family 
of proteins and several caspases, such as Cas 9. Bcl-2 is 
an anti-apoptotic protein that resides on the mitochondrial 
membrane and inhibits release of cytochrome c, an activa-
tor of Cas 9 in the cytosol. BAD is a pro-apoptotic protein 
present in the cytosol, which upon Ser128 phosphory-
lation by JNK, translocates to the mitochondria to form a 
pro-apoptotic complex with Bcl-xL (another anti-apoptotic 
protein similar in function to Bcl-2), leading to the release 
of cytochrome c and activation of apoptosis.31 In this cur-
rent analysis, Ser112 phosphorylated BAD was measured, 
which is an inactive form of BAD that remains sequestered 

Parameter Unit Description Value (% CV)

SmpJNK nM−1 pJNK stimulatory coefficient 0.3985 (0.0272)

kdp21 Hour−1 p21 degradation rate constant 0.1072 (2.16)

Smp21 nM−1 p21 stimulatory coefficient 0.09941 (0.412)

γp21 – p21 power coefficient 1.200*

kdpBAD Hour−1 pBAD degradation rate constant 0.02842 (0.741)

kdCas8 Hour−1 Caspase 8 degradation rate constant 0.4254 (0.676)

γCas8 – Caspase 8 power coefficient 3.228 (0.0345)

kdCas9 Hour−1 Caspase 9 degradation rate constant 0.1439 (0.319)

kg Hour−1 Myeloma cell growth rate constant 0.01901 (0.0395)

kd Hour−1 Myeloma death rate constant 0.0003691 (2.95)

σ2Protein – Error coefficient for proteins 0.6237 (0.0162)

σ2MMcell – Error coefficient for myeloma cell 0.8254 (0.0721)

NCI-H929

ktpNFκβ Hour−1 pNFκβ transit rate constant 0.1123 (0.000363)

SmpNFκβ nM−1 pNFκβ stimulatory coefficient 3.808 (0.00102)

ktpAKT Hour−1 pAKT transit rate constant 0.1633 (0.275)

SmpAKT nM−1 pAKT stimulatory coefficient 0.4531 (0.0167)

kdpmTOR Hour−1 pmTOR degradation rate constant 0.005520 (0.0543)

kdBcl-2 Hour−1 Bcl-2 degradation rate constant 0.1105 (0.0888)

γBcl-2 – Bcl-2 power coefficient 6.167 (0.0200)

ktpJNK Hour−1 pJNK transit rate constant 0.1394 (0.0268)

SmpJNK nM−1 pJNK stimulatory coefficient 0.2635 (0.0216)

kdp21 Hour−1 p21 degradation rate constant 0.07804 (0.274)

Smp21 nM−1 p21 stimulatory coefficient 3.627 (0.00830)

kdpBAD Hour−1 pBAD transit rate constant 0.3298 (0.829)

γpBAD – pBAD power coefficient 1.103 (0.0217)

kdCas8 Hour−1 Caspase 8 degradation rate constant 0.2219 (0.0710)

γCas8 – Caspase 8 power coefficient 3.163 (0.0116)

kdCas9 Hour−1 Caspase 9 degradation rate constant 1.544 (5.89)

kg Hour−1 Myeloma cell growth rate constant 0.02278 (0.000380)

kd Hour−1 Myeloma death rate constant 0.004006 (19.2)

σ2Protein – Error coefficient for proteins 0.7509 (0.000995)

σ2MMcell – Error coefficient for myeloma cell 0.2987 (0.000831)

% CV, percentage of coefficient of variation; JNK, Jun NH2-terminal kinase; pAKT, proliferative protein kinase B; pmTOR, phosphorylated mammalian target 
of rapamycin; pNFκB, phosphorylated nuclear factor-kappa B.

Table 1  (Continued)
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by the 14-3-3 family of proteins. JNK is also known to phos-
phorylate 14-3-3ς, releasing the sequestered Ser112 BAD 
to promote apoptosis.31,32 Hence, pJNK was used to stim-
ulate the degradation of Ser112 BAD in the model, and the 
delay in its inhibition was achieved by incorporating two 
transit compartments. Bcl-2 dynamics is primarily governed 
by pBAD (BAD being the direct regulator), pNFκB (direct 
transcription), and pp53 (via PUMA),33–36 and these profiles 
were characterized reasonably well by the model (Figure 2). 
Finally, the marker for intrinsic apoptosis (i.e., Cas 9) is reg-
ulated by Bcl-2 (inhibiting activation of Cas 9), Cas 8, and 
pNFκβ (via XIAP) in the model. Cas 8 cleaves cytosolic BID, 
and its fragment (tBID) translocates to the mitochondria and 
oligomerizes with BAX (Bcl-2-associated X protein) or BAK 
(Bcl-2 homologous antagonist/killer), causing release of cy-
tochrome c from mitochondria and subsequent activation of 
Cas 9.35 The dynamics of Cas 9 was also adequately cap-
tured by the model (Figure 2).

RPMI8226
The relative stimulation of direct drug targets (pJNK 
and pNFκB) was lower than U266 cells, with smaller 
values of the estimated linear stimulatory coefficients 
(Table 1). Proteins that were similarly stimulated or inhib-
ited in RPMI8226 and U266 cells included pAKT, pmTOR, 
pp53, p21, Bcl-2, and pBAD. Unlike U266 cells, the fold-
change in expression of Cas 8 and 9 (twofold) was rel-
atively less. Similar to p21 in U266 cells, the model was 
unable to characterize the loss of Cas 9 at 24 hours (due 
to short half-life of active caspases37,38) because contin-
ued presence of Cas 9 was essential to sustain in vitro 
cell death until 96 hours and prevent the prediction of re-
growth at later time points.

Pharmacodynamic systems models of “more 
sensitive” cells
The U266 and RPMI8226 models served as base model 
structures for MM.1S and NCI-H929 models. One of the key 
differences between the more sensitive and less sensitive 
myeloma cells was the lack of activation of pp53 upon bor-
tezomib treatment as compared to untreated-controls in 
MM.1S and NCI-H929 cells. Although this could result from 
counteracting stimulatory and inhibitory signals, this re-
quired removal of the pp53 compartment from the models 
for these cells. However, the model then required inclusion 
of a pp53 independent stimulation of p21. Evidence sug-
gests a direct activation of p21 by bortezomib via regulation 
of microRNA-29b and HDAC in myeloma cells.39,40 Hence, 
a direct stimulation of p21 by bortezomib was included in 
the models for MM.1S and NCI-H929 cells with respective 
linear stimulatory coefficients. In addition, given the high 
relative expression change in select proteins in MM.1S cells 
(e.g., pNFκB), two protein-protein interactions had to be 
removed to reconcile model fitting to the data: (i) pNFκB 
mediated stimulation of Bcl-2, and (ii) pAKT mediated in-
hibition of p21. The absence of these two interactions may 
not affect the response outcome (i.e., cell proliferation).

The temporal profiles of protein expression between 
MM.1S and NCI-H929 cells were similar in onset and extent 
of stimulation/inhibition, with the exception of a few proteins 

(e.g., Cas 8 and pNFκB), which exhibited significantly 
greater stimulation in MM.1S cells. The cell lines were also 
similar in cell proliferation responses, suggesting similar sig-
naling interactions for regulating drug response. The mod-
els for MM.1S and NCI-H929 cells (Figure 1c,d) described 
the quantitative profiles of protein expression and myeloma 
cell proliferation simultaneously. A comparison of the exper-
imentally observed data and model fitted profiles are shown 
in Figure 3 (line plots depicting the model fits of the proteins 
are provided in Figures S3 and S4 in Data S1). All system 
parameters associated with the protein and myeloma cell 
dynamics were estimated with good precision (Table 1).

MM.1S
The model for MM.1S cells included stimulation of pJNK,18 
pNFκB,12 pAKT,19,20 and p2139,40 directly by bortezomib. A 
low value for the stimulatory coefficient for p21 (Table 1) 
suggests a relatively lower stimulation of the protein, which 
was adequately characterized, although no expression of 
the protein was observed after 6 hours. This could be due 
to the proposed explanation of a short half-life and stability 
issues with the protein.27,28 Delay in stimulation of pJNK, 
pNFκB, and pAKT required the incorporation of transit 
compartments (two each for pJNK and pNFκB, and one for 
pAKT). The mild stimulation of pmTOR mediated by pAKT 
was characterized well.8,21

MM.1S cells exhibited a high magnitude of stimulation of 
Cas 8 (about 150-fold), and the model was able to describe 
the profile well via regulation by pJNK and pNFκB.8,18,29,30 
The earlier onset and steeper inhibition of pBAD and 
Bcl-2 in comparison to the less sensitive cells were char-
acterized well. A ~10–20-fold stimulation in expression of  
Cas 9 at 6 hours was also adequately described by the 
model. However, the model was unable to characterize the 
observed absence of Cas 9 at later time points, similar to 
RPMI8226 cells. The strong stimulation of Cas 8 in compar-
ison to Cas 9 suggests that bortezomib relies more on the 
extrinsic apoptotic pathway activation in this cell line.

NCI-H929
Bortezomib stimulation of three direct targets (i.e., pJNK, 
pNFκB, and pAKT) in NCI-H929 cells was quantitatively 
similar to that of MM.1S cells, which explains the sim-
ilarly estimated values of the linear stimulatory coeffi-
cients (Table 1). The coefficient for stimulation of p21 was 
greater in NCI-H929 cells (Smp21 = 3.63 nM−1), as reflected 
in the greater relative expression of p21 in this cell line at 
6 hours; however, the overall trend in p21 expression over 
time was unclear, possibly due to stability issues. Several 
proteins (pJNK, pAKT, pNFκB, pmTOR, Bcl-2, and pBAD) 
were similarly stimulated or inhibited in the more sensi-
tive cells, and the model described the dynamics of these 
proteins satisfactorily. Distinct from MM.1S cells, NCI-
H929 cells exhibited less stimulation of Cas 8 and 9. The 
model underestimated the profile of Cas 9 considerably, 
likely due to the lack of more time intensive data around 
the 6-hour time point when the stimulation signal is most 
evident. Similar to MM.1S cells, the model for NCI-H929 
cells also fitted a sustained presence of Cas 9 and p21 at 
later time points.
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Global Sobol sensitivity analysis
The results of the sensitivity analysis are shown in 
Figure 4. The sensitivity analysis for the U266 model was 
performed on turnover parameters for nine proteins, with 
the turnover rate of p21 fixed to its estimated value (due 
to uncertainty in its estimation). Interestingly, both U266 
and RPMI8226 cells show the turnover rate constants of 
pJNK, pNFκB, and pAKT as the most significant param-
eters governing cell death. In addition, the rank-order of 
the first five proteins was also similar in these cell lines. 
The total-order sensitivity indices are essentially the sum 
of first-order, second-order, and further interaction orders 
of sensitivity indices.17 The total-order and first-order sen-
sitivity index values were close for U266, suggesting ab-
sence of protein-protein interactions regulating the output. 

However, the values differed for RPMI8226 indicating a 
significant pJNK and pAKT second-order interaction term, 
although the confidence on this interaction index was poor 
(46%).

Turnover rate constants of pJNK, pNFκB, and pAKT were 
identified as significant sensitivity indices for the MM.1S 
model, whereas the NCI-H929 model identified pNFκB and 
pJNK turnover rate constants as significant. Although only 
the first few parameters have significant Sobol sensitivity 
indices in both models, the rank-order of all parameters dif-
fered between the two cell lines. Additionally, for the NCI-
H929 model, the total-order and first-order index values 
were similar, except for one significant second-order inter-
action between pJNK and pNFκB (SI = 0.0834; 31% confi-
dence). Similarly, for the MM.1S model, the values differed 

Figure 3  Model-fitted time-course of protein dynamics and cell proliferation in MM.1S (a,b) and NCI-H929 (c,d) cells. (a,c) The left 
panel depicts the experimentally observed and model fitted data. Log relative expression of the 10 proteins are on the y-axis, and time 
(in hours) is on the x-axis. The dark red color denotes maximum activation and the dark blue denotes maximum inhibition. (b,d) Solid 
symbols represent experimentally observed cell proliferation for untreated-control (black) and 20 nM bortezomib treatment (blue). 
Solid lines are model-fitted curves for untreated-control (black) and 20 nM bortezomib treatment (blue).
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indicating a significant pJNK and pNFκB second-order in-
teraction term, although the confidence on this interaction 
index was poor (31%). Another second-order interaction 
that came close to significance was between pAKT and 
pNFκB (SI = 0.0457).

Correlation analysis between drug sensitivity and 
biomarker activation
This analysis was not powered for statistical significance 
owing to the small sample size of only four cell lines. The 
Spearman’s rank correlation coefficients and a scatter 

Figure 4  Sobol sensitivity indices of protein turnover parameters for all pharmacodynamic systems models and the correlation 
between drug sensitivity and biomarker activation. Total-order (dark blue bar) and first-order (light blue bar) sensitivity indices are 
shown for (a) U266, (b) RPMI8226, (c) MM.1S, and (d) NCI-H929 models. The model is more sensitive to perturbations in parameters 
with greater sensitivity indices, and proteins are ordered on the basis of decreasing total-order sensitivity indices.
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plot showing the association between drug sensitivity and 
model-fitted protein expression AUEC values for pNFκB, 
pAKT, and Cas 8 are shown in Figure 5a,b. The results 
suggest inverse correlations (i.e., protein expression as-
sociated with decreasing cell viability) with proteins pAKT, 
pNFκB, and Cas 8. Cas 9, Bcl-2, pBAD, and pmTOR exhib-
ited moderate inverse correlations with cell viability. pJNK 
showed a slight positive correlation with viability (Figure 5), 
and cell viability was not correlated with model-fitted p21 
AUEC values (data not shown). A correlation with pp53 
could not be assessed due to the sample size of only two 
cell lines. Although the correlations were not statistically 
significant (due to a small sample size of only four myeloma 
cell lines), they agree with the sensitivity analysis results 
and support the model-based approach to identification of 
potential protein biomarkers.

DISCUSSION

The final pharmacodynamic models were constructed 
using intensive time-series biomarker measurements of 10 
important signaling proteins to explain myeloma cell growth 
and death under bortezomib exposure. Initially, temporal 
dynamics of proteins until 72 hours were included in model 
development. The observed data showed no expression 
of proteins p21, Cas 8, and Cas 9 at later time points (48–
72 hours) along with sustained cell death until 96 hours in 
the treatment group. Cell growth inhibition and cell death 
were governed by p21 and Cas 8 and 9 in the model, and 
this led to misspecifications in model fits for p21, Cas 8, and 
Cas 9 (sustained activation of these proteins at later time 
points was noted) and the prediction of regrowth at later 
time points. Complete in vitro cell death was observed by 
24–30 hours, and the observation of sustained cell death 
until 96 hours was actually an artifact of the experimental 
system because these studies permit evaluation of a limited 
number of cells. Viable intracellular protein signaling only 

happens until all the cells are dead (24–30 hours), and any 
protein signaling observed at later time points has uncer-
tainty associated with its origin. Factors such as inherent 
stability of proteins in acidic media containing dead cells 
and activation half-lives of proteins may play a role. Hence, 
protein signaling data were truncated at 24 hours for model 
development purposes. This change allowed for better 
characterization of protein profiles. The overall rich tempo-
ral profiles (data until 24 hours) allowed for the inclusion of 
a number of mechanisms pertaining to cell growth, stress, 
cytostasis, and apoptosis (intrinsic and extrinsic) pathways. 
In addition, the data provided confidence in the estimation 
of parameters simultaneously and precluded the need for 
fixing model parameters.

The final models (Figure 1) provide a detailed mechanistic 
framework and highlight critical biomarkers that may regu-
late bortezomib-mediated drug response. The cell growth 
function (Eq. 1) includes pAKT, pmTOR, and p21 on cell pro-
liferation and Cas 8 and Cas 9 on cell death in a multiplica-
tive manner. However, one limitation of the model is that the 
individual contributions of these factors cannot be identified 
using the current data. It was assumed that these signaling 
proteins act independently (and therefore multiplicative) in 
order to avoid additional unidentifiable model parameters. 
The quantitative determination of individual factor contribu-
tions will require further testing.

The expression (or lack thereof) of pp53 was a noteworthy 
distinction between the more and less sensitive cell lines. In 
contrast to the mutated TP53 isoform in U266 and RPMI8226 
cells, MM.1S and NCI-H929 cells contain the wild-type TP53 
gene.41,42 Exposure to increasing concentrations of nutlin 
(inhibitor of the MDM2-p53 interaction) in myeloma cells 
expressing Wild Type-TP53 (MM.1S and NCI-H929) caused 
an induction in the expression of p53, which was not ob-
served in myeloma cells expressing mutated-TP53 (U266 
and RPMI8226 cells).42,43 In addition, MM.1S and NCI-H929 
cells also overexpress MDM2 mRNA.41 These observations 

Figure 5  Correlation analyses of protein expression and multiple myeloma cell viability. (a) Spearman rank correlation coefficients 
between cell viability under bortezomib treatment at 24 hours and model-fitted area under the protein expression-time curves (AUEC) 
until 24 hours are shown across the four myeloma cell lines. Negative and positive correlations are shown in red and blue bars. 
Correlation coefficients for pp53 and p21 are not shown. (b) Scatter plot showing the association between myeloma cell viability under 
bortezomib treatment at 24 hour and model-fitted AUEC values until 24 hours for pNFκB, pAKT, and Cas 8. Cell lines are differentiated 
by color: U266 (red), RPMI8226 (blue), MM.1S (pink), and NCI-H929 (dark green).
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suggest an MDM2-associated inhibition of p53 expression in 
MM.1S and NCI-H929 cells.41–44 Another mechanism for the 
lack of expression of p53 in these cells could be microRNA 
(miR-25 and miR-30d)-based inhibition of p53 expression. 
NCI-H929 cells exposed to an anti-miR-25 and anti-miR-30d 
show increased expression of p53.45 These mechanisms 
might explain the absence of pp53 stimulation in the more 
sensitive cells. Thus, the node for pp53 and its associated 
interactions were removed from the system models in these 
cell lines. Ideally, a unified model structure with cell line-
specific parameters would be preferable; however, discor-
dance in p53 signaling precluded the development of such 
a model. It is unclear whether a unified model structure is 
possible, and more research is needed to address this issue.

The dynamics of p21 was unclear in more sensitive cells 
(Figure 3). The cell lines presented an increase in expres-
sion at 6 hours, albeit with large variability, followed by no 
expression at later time points, possibly due to the stability 
concerns and short half-life of the protein.27,28 The increased 
expression of p21 was evident in MM.1S cell lines treated 
with 2 nM bortezomib,7 which strongly suggested an acti-
vation of p21 in these cells following bortezomib exposure. 
Accordingly, the observed p53 independent stimulation of 
p21 was specified in the model as direct bortezomib stim-
ulation, a mechanism supported by a bortezomib-mediated 
increase in expression of miR-29b downregulating HDAC 
and upregulating p21.39,40 The difference in the system 
models for MM.1S and NCI-H929 cells were specific to only 
minor secondary protein interactions, and the overall model 
structures were similar. Collectively, the models established 
that bortezomib mechanisms are fundamentally conserved, 
from a systems perspective, and are amenable to incorpo-
ration of functional differences due to the heterogeneity in 
signaling protein expression.

Global sensitivity analysis highlighted the importance of 
upstream proteins (e.g., pJNK, pNFκB, and pAKT; Figure 4) 
directly regulated by bortezomib, emphasizing the role of 
signal relay from upstream to downstream proteins eventu-
ally resulting in cellular apoptosis. The relay process intro-
duces several opportunities for the presentation of signaling 
heterogeneity. One of the possible reasons for observing 
the same proteins as sensitive across models could be 
the nature of the data. Relative expressions from untreated 
controls do not render estimation of real synthesis and deg-
radation rate constants.46 Absolute quantities of intracellular 
signaling proteins are difficult to measure due to their low 
abundance and challenges in isolating these proteins.

The exploratory Spearman rank correlation analysis be-
tween model-fitted protein activation AUCs and drug sen-
sitivity across all cell lines (Figure 5) supplemented the 
sensitivity analysis and highlighted similar proteins that 
are associated with differences in bortezomib sensitivity. 
Some of the key proteins include: pAKT, pNFκB, Cas 8, Bcl-
2, and pBAD. An increase in the expression of pAKT and 
pNFκB upon drug treatment is probably due to inherent 
cellular mechanisms that enhance prosurvival pathways. 
Decreasing cell viability is also a result of increasing expres-
sion of Cas 8 and increasing inhibition of Bcl-2 and pBAD. 
Both approaches suggest pAKT, pNFκB, and Cas 8 as key 
proteins associated with bortezomib pharmacodynamics 

despite heterogeneous expression among the cell lines. The 
proteins identified by these approaches could serve as po-
tential biomarkers, and their expression may be predictive of 
responses and provide an opportunity for directing therapy 
toward achieving a desired outcome.

The pharmacodynamic models were developed for a 
single bortezomib treatment concentration and cannot ac-
count for potential dose-dependent nonlinearities and de-
lays in signal transduction. The models also assume linear 
stimulation of proteins by bortezomib and other proteins. 
The models differed in the number of transit compartments 
for pJNK, pNFκB, pAKT, and pBAD, which could suggest 
unknown and/or dissimilar upstream processes. These pro-
cesses could affect responses at the in vivo translational 
stage, in the presence of combination therapy, and may 
affect the generalizability of the model across cell lines. 
However, these limitations do not preclude the hypothesis 
that biomarker-based modeling approaches can be used 
to explain pharmacological heterogeneity. The developed 
system models are mechanistic and provide a framework 
that enables comparison across cell lines. Bortezomib has 
been shown to exhibit a synergistic interaction when given 
sequentially with vorinostat (an HDAC inhibitor).47 The final 
bortezomib models (Figure 1) could be coupled with a 
mechanistic model of vorinostat pharmacodynamics48 to 
further explore the biomarkers associated with this com-
bination and may provide a platform for assessing other 
bortezomib-based chemotherapy combinations (e.g., 
Bcl-2 inhibitors49). In addition, the models can be poten-
tially extended to other myeloma cell lines and to include 
a range of doses for improving their translational potential.

Supporting Information. Supplementary information accompanies 
this paper on the CPT: Pharmacometrics & Systems Pharmacology web-
site (www.psp-journal.com).
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