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Abstract: The skin is the largest organ of the human body and is the first line of defense against
physical and biological damage. Thus, the skin is equipped to self-repair and regenerates after
trauma. Skin regeneration after damage comprises a tightly spatial-temporally regulated process of
wound healing that involves virtually all cell types in the skin. Wound healing features five partially
overlapping stages: homeostasis, inflammation, proliferation, re-epithelization, and finally resolution
or fibrosis. Dysreguled wound healing may resolve in dermal scarring. Adipose tissue is long known
for its suppressive influence on dermal scarring. Cultured adipose tissue-derived stromal cells (ASCs)
secrete a plethora of regenerative growth factors and immune mediators that influence processes
during wound healing e.g., angiogenesis, modulation of inflammation and extracellular matrix
remodeling. In clinical practice, ASCs are usually administered as part of fractionated adipose tissue
i.e., as part of enzymatically isolated SVF (cellular SVF), mechanically isolated SVF (tissue SVF), or as
lipograft. Enzymatic isolation of SVF obtained adipose tissue results in suspension of adipocyte-free
cells (cSVF) that lack intact intercellular adhesions or connections to extracellular matrix (ECM).
Mechanical isolation of SVF from adipose tissue destructs the parenchyma (adipocytes), which results
in a tissue SVF (tSVF) with intact connections between cells, as well as matrix. To date, due to
a lack of well-designed prospective randomized clinical trials, neither cSVF, tSVF, whole adipose
tissue, or cultured ASCs can be indicated as the preferred preparation procedure prior to therapeutic
administration. In this review, we present and discuss current literature regarding the different
administration options to apply ASCs (i.e., cultured ASCs, cSVF, tSVF, and lipografting) to augment
dermal wound healing, as well as the available indications for clinical efficacy.

Keywords: adipose derived stromal cells; lipografting; wound healing; stem cells; stromal vascular
fraction; skin

1. Introduction

The skin is a physical barrier and the largest self-repairing organ of the human body and serves
multiple physiological functions, such as protection against dehydration and thermal, chemical,
or physical stress [1,2]. Repair of physical skin damage requires effective wound healing, which is
a dynamic process that involves five overlapping stages: homeostasis, inflammation, proliferation,
re-epithelization, and finally fibrosis [3]. These stages of wound healing are regulated by platelets
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and immune cells, such as monocytes and neutrophils, which secrete chemokines and cytokines that
attract and instruct other locally present cell types in the skin [4–7]. The skin consists of multiple layers
starting from the outside with the epidermis (consist of stratum corneum, -lucidum (only present in
hairless skin), -granulosum, -spinosum, and -basale), dermis, and a subcutaneous layer (a layer of
adipose tissue containing adipocytes embedded in the stromal vascular fraction (SVF)). The epidermis
is organized into hair follicles containing the interfollicular epidermis as well as sebaceous glands.
The interfollicular epidermis is maintained by hair follicle stem cells and associated progenitor cells,
which are also responsible for hair regrowth [8,9]. After physical damage of the epidermis, hair
follicle stem cells migrate to the wound area to regenerate this damaged tissue [9]. Besides hair
follicle stem cells and associated progenitor cells, the epidermis consists mainly of keratinocytes in
various stages of differentiation, starting at the stratum basale as basal keratinocytes [3]. During
life, basal keratinocytes continuously migrate upwards to the stratum corneum. At the base of the
stratum corneum, keratinocytes undergo apoptosis, which adds to layers of the stratum corneum
and functions to establish and maintain the physical barrier of the skin compromising environmental
factors [3]. The dermis comprises vasculature and nerves, as well as specialized extracellular matrix.
In this, elastin and collagen are pivotal, which provide, respectively, elasticity and tear-resistance to
the dermis [10]. Finally, the subcutaneous layer comprises adipocytes and SVF. The SVF consist of
all non-parenchymal (adipocyte) cell types i.e., fibroblasts, immune cells, endothelial cells, pericytes,
and adipose tissue-derived stromal cells (ASCs) [11,12].

Cultured ASCs secrete a plethora of angiogenic, anti-fibrotic, and anti-apoptotic growth
factors [13–15]. The isolation and characterization of ASCs from lipoaspirates was first described
by Zuk et al. in 2001 [13]. The possibility to isolate ASCs resulted in an increased rate of publications
that described the behavior and regenerative effects of ASCs with regard to important processes
related to dermal wound healing, such as angiogenesis and fibroblast migration [16,17]. Thus far,
however, the use of ASCs as a cellular therapy for dermal wound healing has only obtained the
status of a clinical experimental treatment modality. Although there are several reports and studies
indicating a regenerative effect of the use of ASCs, sound scientific evidence is lacking: there are
no prospective randomized clinical trials that support the postulated influence of ASCs. Moreover,
the harvesting and processing procedures of ASCs are highly variable while randomized clinical
trials warrant uniform procedures. Firstly, a single-cell suspension of ASCs can only be efficiently
isolated enzymatically. The use of enzymes, such as collagenase, to disassemble intact adipose tissue
or lipoaspirates to prepare a cell suspension-based SVF (cSVF) is legally forbidden in many countries.
Secondly, intraoperative enzymatic isolation procedures are time-consuming and expensive [12].
In clinical perspective, the most relevant hurdle of enzymatic methods is the poor retention of cells
after administration of single-cell suspensions of ASCs. This is relevant in skin applications, in which
the ubiquitous lymphatics may rapidly drainage via lymphatics that are abundantly present in skin,
in particular, in wound beds [18]. Nowadays, it is proven that also ASCs can be found concentrated in
SVF that is mechanically isolated from adipose tissue while these procedures are significantly simpler
and faster than enzymatic procedures [12].

In this overview, we present current literature regarding the different options to administrate
ASCs (i.e., cultured ASCs, SVF, and lipografting) to augment dermal wound healing, as well as the
thus far available indications for clinical efficacy.

2. Adipose Derived Stromal Cells as Cellular Therapy for Dermal Wound Healing

In dermal wounds, the parenchymal tissue of the skin is damaged and needs to be remodeled
in order to regenerate tissue. Regeneration of damaged parenchymal tissue is postulated to be
under the control of autologous stromal cells i.e., ASCs. ASCs are mesenchymal stromal cells that
are present in SVF of adipose tissue, attached around vessels as pre-cursor cells (i.e., pericytes
and periadventitial cells) [19,20]. In vitro, ASCs have the ability to differentiate into multiple cell
lineages, like ectodermal, endodermal, as well as mesenchymal lineages [13,21,22]. Despite their



Bioengineering 2018, 5, 91 3 of 13

lack of self-renewal, their differentiation capacity persuaded investigators to name ASCs adipose
derived stem cells [23–26]. In vitro, ASCs have a limited lifespan, with a limited proliferation potential,
and undergo senescence at higher passages. Nevertheless, this is probably irrelevant for therapeutic
use of ASCs for wound healing because irrespective of proliferation, ASCs are able to differentiate (be
constructive), secrete growth factors and cytokines (be instructive), and can remodel the extracellular
matrix (be reconstructive) [27].

To date, two clinical trials directed at safety of revascularization after critical limb ischemia,
have investigated the use of cultured ASCs for critical limb ischemia (Table 1) [28,29]. In both
studies, cultured ASCs were injected intramuscularly to treat patients with non-healing ischemic
ulcers. In twelve patients the response rate of ulcer healing was 66.7% of the patients after six
months [29]. Moreover, an overall decrease in pain and improved walking distance in claudication as
compared to the baseline was noted after six months. The long-term outcome is unknown unfortunately.
In the other trial, only seven patients were treated, of which four patients underwent amputation
within five months after injection of ASCs [28]. Three non-amputated patients reported a decrease
of pain six months postoperative. Besides the amputations, no serious complications were reported
in both studies (Table 1) [28,29]. The improved ulcer healing, at least partly, appears to relate to the
augmented angiogenesis by the administered ASCs. Although the results from these non-controlled,
small-scaled studies are promising for part of the treated patients, the therapeutic effect needs to be
corroborated in randomized, placebo-controlled large trials. This is essential, if alone to distinguish
responders from non-responders and to determine optimal dosing, time-to-treat, frequency of dosing,
as well as to identify parameters that dictate efficient and effective wound healing in adipose tissue or
its constituents.

Large proportion of patients did not respond after administration of cultured ASCs. This lack
of effect of ASCs might relate to disturbed migration and/or disposal of ASCs via the circulation
and lymph system within the first 24 h after injection [18]. Other factors that influence the
therapeutic impact of ASCs are donor characteristics (e.g., age or co-morbidity, such as diabetes
mellitus), as well as the induction of senescence of ASCs after enzymatic isolation and culture [30–32].
The two studies on the therapeutic benefit of ASCs on critical limb ischemia, however, showed
that age or co-morbidity did not influence the therapeutic impact of ASCs [28,29]. Senescence
occurred when cells are cultured more than ten passages [32]. Senescent cells do not proliferate
or differentiate while these are pro-inflammatory and exhibit increased production of reactive oxygen
species (ROS) [33,34]. This senescent status is referred to as the senescence-associated secretory
phenotype (SASP), which impacts surrounding tissue cells. ROS accumulation inhibits proliferation
and proangiogenic capacities of ASCs which impairs their wound healing support [35]. Hyperglycemia
that is associated with diabetes may cause ROS accumulation in ASCs. Although we have shown that
ASCs are refractory to chronic hyperglycemia, their sensitivity to acute hyperglycemia is high [36,37].
Lee et al. used ASCs in passage 3, while Bura et al. did not mention the used passage number [28,29].
Furthermore, ASCs undergo phenotypic changes, other than senescence, upon several passages of
culture. During culture the phenotype and function of ASCs emerges, e.g., secretion of a plethora of
cytokines and growth factors, matrix metalloproteinases and extracellular matrix [19,38,39]. In vitro,
ASCs are a typical culture artefact that differs from their in vivo peers, which is an ill-conceived fact.
Therefore, the direct translation of in vitro characteristics of ASCs to their physiological function in
adipose tissue or SVF falls short of adequate scientific evidence. Therefore, the use of ASCs in their
natural habitation with their original function i.e., SVF or lipografting might result in a different
clinical outcome in comparison to cultured ASCs. This, however, does not preclude the study of the
therapeutic characteristics and benefits of cultured ASC.
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Table 1. Clinical studies of cultured adipose tissue-derived stromal cells (ASCs) as treatment of wound healing.

Reference Study Type Study Population Intervention Follow Up Results Complications

Bura et al. 2014

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with
non-healing ischemic
ulcers. Age of ulcers
was at least 2 weeks

(n = 7).

Intervention: 108 of
cultured ASCs

(0.5 mL) injected
intramuscular.

Ulcer healing was determined
by measuring the largest

diameter of the ulcer, pain was
assessed with a VAS score and
limb ischemia was assessed by
TcPO2 with laser Doppler and
ABI after 1, 3 and 6 months.

4 patients underwent
amputation within 5 months

after treatment. Pain was
decreased in 3 patients.

TcPO2 was increased after 6
months as compared to
preoperative, except for

one patient. *

No complications
reported.

Lee et al. 2012

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with critical
limb ischemia and

non-healing ulcers or
necrosis (n = 12).

Intervention:
5 × 106 of cultured

ASCs (0.5 mL)
injected

intramuscular.

Pain was evaluated with a
Wong Baker-FACES rating

score, an ABI was measured,
walking distances was

measured with a treadmill and
temperature changes were

measured with a
thermography after 6 months.

Ulcer healing occurred in 66.7%
of the patients. Pain was

decreased as compared to
the baseline. *

Claudication walking distances
improved, however maximum
walking distance did not (n =
5). * Temperature increased

after injection. ** No changes
in ABI were noted.

1 mild fever, 1 flu like
symptoms, 2 pain,

1 headache.

ASC = adipose derived stromal cells, VAS = visual analogue scale, TcPO2 = transcutaneous oxygen pressure, AB = ankle-brachial index. * Results were significant when p < 0.05. ** Results
were significant when p < 0.01.
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3. Cellular or Tissue Stromal Vascular Fraction as Treatment for Dermal Wound Healing

The legal ban on enzyme use to isolate SVF or ASCs is based on hypothetical increased risk of
animal-derived products, while these multistep procedures are considered undesirable manipulations.
Therefore, new intraoperative isolation procedures without the use of enzymes and animal derived
products have been developed, the so-called mechanical isolation procedures [12]. Mechanical isolation
procedures yield essentially intact tissue that is devoid of adipocytes, hence our proposed term:
tissue stromal vascular fraction (tSVF). In tSVF, the intact extracellular matrix with all of its bound
regenerative trophic factors, maintains the integrity of the stromal cells too [12,40]. In contrast,
enzymatic isolation procedures yield a SVF that comprises a suspension of cells (cSVF) that obviously
lack intercellular connections and extracellular matrix (ECM). The ECM is an important reservoir of
regenerative growth factors while ECM molecules and their degradation products also contribute
to the regenerative power of the ECM [12,41,42]. The predicted therapeutic capacity of cSVF,
therefore, is lower than of tSVF, which remains to be assessed in side by side comparative studies.
However, future therapies might comprise hybrids in which ECM is used to deliver and retain
ASCs in the wounds after injection. In this way, the ECM instructs ASCs to differentiate and secrete
their trophic factors to induce angiogenesis, remodel the native extracellular matrix, and reduce
inflammation for a longer time as compared to a single cell injection of ASCs [15,43]. Finally, ECM
components regulate proliferation and migration of cells as well as angiogenesis. An adequate
juxtracrine communication between different cell types e.g., pericytes and endothelial cells augments
angiogenesis [39]. Angiogenesis might even be further stimulated by the vasculature in tSVF,
which would result in reduced ischemia and thus reduced apoptosis [44]. This improves graft take
and survival of the transplanted tSVF as well as augmented dermal wound healing.

To date, several clinical studies report the use of cSVF to increase dermal wound healing
(Table 2) [45–49]. As of yet, none of these studies used tSVF as control or as experimental treatment.
In total, seventy-three patients with ulcers were treated with cSVF, of which sixty-three showed
complete healing. One study mixed cSVF with fibrinogen and thrombin and compared this with only
fibrinogen and thrombin after applying to diabetic ulcers [47]. 62% of the patients showed complete
healing after treatment with fibrinogen and thrombin. 100% of the patients showed complete healing
of the diabetic ulcers after treatment with cSVF in combination with fibrinogen and thrombin [47].
All studies, except the aforementioned study, also showed a decrease in wound-associated pain after
injection of cSVF. In one prospectively controlled study, ten patients with peripheral arterial disease
and chronic non-healing ulcers were treated with cSVF [45]. As a control, ten patients received no
treatment. This study showed that six out of ten patients presented complete ulcer healing while four
patients did not respond to the treatment [45]. No complications were reported in any study (Table 2).
These studies show that cSVF seems to be partly effective in increasing wound healing rates after
injection. Complete ulcer healing in all patients only occurred when fibrinogen, an extracellular matrix
protein, and thrombin was added to cSVF, suggesting that the use of tSVF might be more effective
in closing dermal wounds as compared to cSVF. After activation with thrombin, fibrinogen forms a
dense fibrin network that entraps the cells in cSFV, which mimics a native stromal tissue structure.
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Table 2. Clinical studies of cellular stromal vascular fraction (SVF) as treatment of wound healing.

Reference Study Type Study Population Intervention Follow Up Results Complications

Marino et al. 2013

Prospective,
controlled,

non-blinded,
non-randomized

Patients with
peripheral arterial

disease and
non-healing chronic
ulcers of the lower

limb (n = 10 vs.
n = 10).

Intervention: 3 × 105 of cellular
SVF per ml (5 mL) injected at the

edge of the ulcers.
Control: non-treated

Results were evaluated
after 4, 10, 20, 60 and

90 days.

6 of the 10 patients treated with SVF
cells showed a complete healing of the
ulcer and a decrease of pain. 4 patients
treated with SVF cells did not respond.

No comparison data between
intervention group and control

group mentioned.

No complications
reported.

Del Papa et al. 2015

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with digital
ulcers. Age of the

ulcer was at least 5
months (n = 15).

Intervention: 0.5–1 mL of cellular
SVF injected at the base of

the fingers.

Time until the wounds
were closed was

measured. A VAS score
for pain, a nail fold video

capillary scope for
capillary density and

echo-Doppler for the RI
score were used after 1,

3 and 6 months.

The mean time for ulcers to heal was
4.23 weeks (range 2–7 weeks). No new

digital ulcers appeared during the
follow-up. VAS score for pain and RI

score were decreased after 6 months as
compared to preoperative. *** An
increase in capillary density was

observed after 6 months with respect
to the baseline. ***

No complications
reported.

Han et al. 2010

Prospective,
controlled,

single-blinded,
non-randomized

Patients with diabetic
foot ulcers. Ulcers

were non-responsive
for at least 6 weeks
(n = 26 vs. n = 26).

Intervention: 4 × 106–8 × 108 of
cellular SVF in 0.3–0.5 mL of
fibrinogen. Co-intervention:

debridement, thrombin,
Tegaderm™ foil. Control:
fibrinogen and thrombin.

Ulcer healing was
evaluated by a blinded

panel after 8 weeks.

Complete ulcer healing occurred in all
patients in the intervention group,

while complete ulcer healing occurred
in 62% of the patients in the

control group. *

No complications
reported.

Darinskas et al. 2017

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with critical
limb ischemia and

ulcers (n = 6).

Intervention 1: at least 20 × 106

of cellular SVF (20 mL) along the
arteries. Intervention 2 (after

2 months): at least 20 × 106 of
cellular SVF (20 mL).

Ulcer healing, pain,
changes in walking

distance as well as ABI
were evaluated after

12 months.

5 patients showed clinical
improvement, improvement in

walking distance, relief of pain and
ABI improvement. 1 patient

underwent a major amputation. No
ulcer recurrence was noted

during follow-up.

No complications
reported.

Konstantinow et al.
2017

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with chronic
lower limb ulcers.

Age of ulcers was at
least 6 months

(n = 16).

Intervention: cellular SVF (2.54
mL) injected into the border and

central area of the ulcer.
Co-intervention: Octenisept®,
debridement, collagen sponge,

silicon foil, semipermeable
transparent foil.

Reduction in wound size
was evaluated until 44
months postoperative

(9–44 months).
Postoperative pain was

evaluated within 2 weeks
after treatment.

11 patients showed complete
epithelialization within 71–174 days
postoperative. Postoperative pain

decreased from a mean value of 3.3
(range 1–5, median 3) to a mean value

of 0.6 (range 0–3.5, median 0.5).

No complications
reported.

SVF = stromal vascular fraction, VAS = visual analogue scale, RI = arterial resistivity index (resistance to blood flow caused by a microvascular bad distal to the measurement
site), ABI = ankle-brachial index. * Results were significant when p < 0.05. *** Results were significant when p < 0.001.
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4. Lipografting as a Treatment for Dermal Wound Healing

Lipografting, the transplantation of lipoaspirates i.e., fragmented adipose tissue, is widely
investigated in several clinical studies as a treatment to promote dermal wound healing [50–57].
Three prospective studies used lipografting in combination with platelet rich plasma (PRP) or cSVF to
treat lower extremity ulcers in ninety patients [53–55]. Cervelli et al., used PRP as additive to improve
cellular growth and differentiation of cells present in the lipograft as well as recipient cells [55]. As a
control, collagen and hyaluronic acid was used to treat lower extremity ulcers and vascular disease.
After 9.7 weeks on average, the ulcers of sixteen out of twenty patients (80%) had re-epithelialized
in the experimental group, while ulcers in five out of ten patients (50%) had re-epithelialized in
the control group after 8.4 weeks on average [55]. Although these differences suggest a therapeutic
impact of lipografts, the numbers were too low to allow for statistical significance. In a later study,
these authors treated patients with ulcers (n = 30) with PRP-enriched lipografts and showed complete
ulcer healing in 57% of the patients after three months [53]. In another follow-up, the same authors
compared cSVF enriched lipografting with hyaluronic acid as well as PRP-enriched lipografting with
bare PRP to treat posttraumatic lower extremity ulcers in forty patients [54]. This study showed similar
re-epithelialization rates for the cSVF enriched lipografting and PRP enriched lipografting groups,
respectively 97.9% ± 1.5% and 97.8% ± 1.5% after 9.7 weeks. The control groups showed similar
re-epithelialization rates as well with 87.8% ± 4.4% for the hyaluronic acid and 89.1% ± 3.8% for the
PRP group, which were significantly lower than for the cSVF and PRP enriched lipografting groups
(p < 0.05) [54]. These studies by the Cervelli group indicate that lipografting enriched with cSVF or
PRP promotes dermal wound healing. However, the comparison of cSVF or PRP enriched lipografting
to only lipografting, is required to assess the influence and necessity of the addition of cSVF or PRP to
lipografts in ulcer treatments.

Four other studies described the use of non-supplemented lipografts to treat non-healing ulcers
(n = 36). Two of these studies were case reports while none of the four studies had a control
group (Table 3). Van Abeelen et al. treated one patient with recurrent leaks from stoma and skin
excoriations with lipografting and prevented the stoma from leaking [50]. Another case report by
Caviggioli et al. used lipografting as a treatment for a posttraumatic leg ulcer in one patient. After one
month, the posttraumatic ulcer was closed [52]. One study was a prospective study by Stasch et al.
and described that lipografting augmented the complete healing of twenty-two out of twenty-five
non-healing diabetic ulcers, while one patient needed an additional lipografting session to finally
close the diabetic ulcer as well [57]. Klinger et al. retrospectively analyzed eight patients with
posttraumatic scars in combination with chronic ulcers and showed complete re-epithelialization
after lipografting [56]. Yet, without the comparison of lipografting with a placebo group the effect of
lipografting on dermal wound healing remains unclear. In all seven studies, a few minor complications
occurred, and, therefore, lipografting to promote dermal wound healing appears a relatively safe
procedure (Table 3).
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Table 3. Clinical studies of lipografting as treatment of wound healing.

Reference Study Type Study Population Intervention Follow Up Results Complications

van Abeelen et al.
2014 Case report

Patient with recurrent
leaks from her stoma
and skin excoriation.

Intervention: multiple layer
lipografting around the stoma.

Co-intervention:
Tegaderm™ foil.

Results were evaluated
after 12 months. No clinical recurrence occurred. No complications

reported.

Del Berne et al. 2014

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with Systemic
Sclerosis and digital

ulcers (n = 9, 15 ulcers).
Age of the ulcer was

2–8 months.

Intervention: lipografting at
the border of the ulcer.

Co-intervention: Iloprost
(intravenously), calcium

channel blockers, Bosentan,
Sildenafil, Aspirin
and debridement.

Results were evaluated
after 3 months. Another
6 months to 2 years of
follow-up was used to

evaluated any
ulcer recurrence.

10 of the 15 ulcers healed
completely in 8 to 12 weeks. In 2

patients (3 ulcers) amputation was
needed. In 2 patients, the ulcer size

decreased with 50%. All patient,
except of 2, reduced their

analgesics therapy.

No complications
reported.

Caviggioli et al. 2012 Case report Patient with a
posttraumatic leg ulcer.

Intervention: 5 mL of
centrifuged adipose tissue.
Co-intervention: wound

debridement, calcium
alginate dressing.

Results were evaluated
after 1 week, 2 weeks, 1, 3,

6 and 12 months.

Complete wound closure was
obtained after 1 month. Patient

satisfaction was excellent.
Not mentioned.

Cervelli et al. 2009

Prospective,
controlled,

non-blinded,
non-randomized

Patients with
lower-extremity chronic

ulcers and vascular
disease (n = 20).

Intervention: lipografting in
the bed around the margins of

the ulcers. Co-intervention:
PRP injection (25 interventions

in total). Control:
medication-based collagen and

hyaluronic acid.

Results were evaluated
after 2 and 5 weeks and 3,

6 and 12 months.

16 of the 20 ulcers re-epithelialized
after 9.7 weeks on average in the
intervention groups compared to
5 of 10 ulcers re-epithelialized in
the control group after 8.4 weeks
on average. 13 patients needed
1 treatment, 5 patients needed

2 treatments. In 4 patients of the
intervention group ulcer

recurrence occurred.

Not mentioned.

Cervelli et al. 2010

Prospective,
non-controlled,

non-blinded,
non-randomized

Patients with ulcers or
substance loss of the
lower limb (n = 30).

Intervention: lipografting in
the wounds. Co-intervention:

PRP injection, hyaluronic acid.

Results were evaluated
every week until 1 month

postoperative, then
follow-up was done 3,

6 and 12 months
postoperative. Biopsies

were taken intra-operative
and 15 days postoperative.

Complete healing occurred in
57% of the patients after 3 months.
Postoperative biopsies showed an

increased cell proliferation as
compared to intra-operative

biopsies. No quantitative data
was shown.

2 infections.
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Table 3. Cont.

Reference Study Type Study Population Intervention Follow Up Results Complications

Cervelli et al. 2011

Prospective,
controlled,

non-blinded,
non-randomized

Patients with
post-traumatic lower

extremity ulcers
(n = 40).

Intervention 1: SVF enriched
lipografting into the bed of the

ulcer and peri-lesional.
Intervention 2: PRP enriched

lipografting into the
perilesional area. Control 1:

hyaluronic acid into the bed of
the ulcer. Control 2: PRP gels

into the bed of the ulcer.

Results were evaluated up to
16 weeks postoperative.

Biopsies were taken from a
small sample size (numbers
not mentioned) preoperative

and 3, 7 and 16 weeks
postoperative.

After 9.7 weeks,
re-epithelialization of the wound

occurred for 97.9% ± 1.5% for
intervention 1, 87.8% ± 4.4% for

control 1 *, 97.8% ± 1.5% for
intervention 2 and 89.1% ± 3.8%

for control 2. * No biopsy
comparison data between the four

groups was presented.

2 hematoma,
1 infection, 1 edema,

1 edema and infection,
1 edema and

hematoma, 1 edema,
infection and
hematoma.

Klinger et al. 2010 Retrospective,
non-controlled

Patients with chronic
ulcers within the scar

area (n = 8).
Non-healed ulcers for

15.4 weeks
on average.

Intervention: lipografting in
the dermal-subdermal junction

of the scar and edge and
central region of the ulcer.

Results were evaluated after
2 weeks.

Complete re-epithelialization
occurred in all patients after 2

weeks. Patient satisfaction was
excellent. Results were stable after

1-year follow-up.

No complications
reported.

Stasch et al. 2015

Prospective,
non-controlled,

non-blinded,
non-randomized

Diabetic patients with
non-healing lower
limb ulcers (n = 25).

Age of the ulcer was
>2 months.

Intervention: sublesional
lipografting into the bottom of
the ulcer and the wound edges.
Co-intervention: debridement,
VAC dressing, sterile silicone
wound dressing, Octenisept®

and Suprasorb H® plates.

Time until wounds closed
and time until wounds

closed by 50% was measured.
Photographic evaluation of

the healing process.

22 of the 25 ulcers healed
completely after 68 days on
average. Mean wound size

reduction of 50% was achieved 4
weeks postoperative. One patient

needed a repeated lipografting
session and complete wound
healing was achieved within

another 4 weeks.

No complications
reported.

PRP = platelet-rich plasma, SVF = stromal vascular fraction, VAC = vacuum assisted closure. * Results were significant when p < 0.05.
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The clinical efficacy of lipografting is usually ascribed to ASCs in the stromal vascular fraction,
more than to the adipocytes that comprise most of the lipograft’s volume. However, the ischemia that
occurs in lipoaspirates upregulates regenerative factors, such as fibroblast growth factors and vascular
endothelial growth factor, in particular in adipocytes. These growth factors promote angiogenesis and
proliferation of skin cells while these suppress apoptosis, thus could contribute to the wound repair
effect of lipografts [14]. Alternatively, one could envisage lipografting as a method to deliver ASCs
to the damaged skin to kick-start regeneration. This does not preclude that other regenerative cells
in adipose tissue such as the precursors of ASCs contribute to the therapeutic benefit of lipografts.
Moreover, the administration of ASCs as present in cSVF or tSVF, might be more beneficial in the early
phase of healing of chronic wounds because only a small volume is required. In this phase, cells with
regenerative capacity rather than large volume cells i.e., adipocytes, are warranted. In this way, (small)
chronic wounds can be treated already in the early phase which also restricts the risk of infection.

5. Conclusions

The administration of ASCs is promising as new therapy for the treatment of non-healing dermal
wounds. There is a variety of formulations of ASCs that can be injected i.e., as cultured cells, cSVF,
tSVF, or lipografts to augment dermal wound healing. However, due to the lack of well-designed
randomized placebo-controlled clinical trials, none of these formulations can be designated as optimal
to treat dermal wounds.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Menon, G.K. New insights into skin structure: Scratching the surface. Adv. Drug Deliv. Rev. 2002, 54, S3–S17.
[CrossRef]

2. Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17,
1063–1072. [CrossRef] [PubMed]

3. Gaur, M.; Dobke, M.; Lunyak, V.V. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications
for Dermatological Indications and Skin Aging. Int. J. Mol. Sci. 2017, 18, 208. [CrossRef] [PubMed]

4. Roupe, K.M.; Nybo, M.; Sjobring, U.; Alberius, P.; Schmidtchen, A.; Sorensen, O.E. Injury is a major inducer
of epidermal innate immune responses during wound healing. J. Investig. Dermatol. 2010, 130, 1167–1177.
[CrossRef] [PubMed]

5. Kim, M.H.; Liu, W.; Borjesson, D.L.; Curry, F.R.; Miller, L.S.; Cheung, A.L.; Liu, F.T.; Isseroff, R.R.; Simon, S.I.
Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence
imaging. J. Investig. Dermatol. 2008, 128, 1812–1820. [CrossRef] [PubMed]

6. Acosta, J.B.; del Barco, D.G.; Vera, D.C.; Savigne, W.; Lopez-Saura, P.; Guillen Nieto, G.; Schultz, G.S.
The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int. Wound J. 2008, 5, 530–539.
[CrossRef] [PubMed]

7. Suga, H.; Sugaya, M.; Fujita, H.; Asano, Y.; Tada, Y.; Kadono, T.; Sato, S. TLR4, rather than TLR2, regulates
wound healing through TGF-beta and CCL5 expression. J. Dermatol. Sci. 2014, 73, 117–124. [CrossRef]
[PubMed]

8. Clayton, E.; Doupe, D.P.; Klein, A.M.; Winton, D.J.; Simons, B.D.; Jones, P.H. A single type of progenitor cell
maintains normal epidermis. Nature 2007, 446, 185–189. [CrossRef] [PubMed]

9. Mascre, G.; Dekoninck, S.; Drogat, B.; Youssef, K.K.; Brohee, S.; Sotiropoulou, P.A.; Simons, B.D.; Blanpain, C.
Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012, 489, 257–262.
[CrossRef] [PubMed]

10. Makrantonaki, E.; Zouboulis, C.C. Molecular mechanisms of skin aging: State of the art. Ann. N. Y. Acad. Sci.
2007, 1119, 40–50. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0169-409X(02)00121-7
http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x
http://www.ncbi.nlm.nih.gov/pubmed/19043850
http://dx.doi.org/10.3390/ijms18010208
http://www.ncbi.nlm.nih.gov/pubmed/28117680
http://dx.doi.org/10.1038/jid.2009.284
http://www.ncbi.nlm.nih.gov/pubmed/19727116
http://dx.doi.org/10.1038/sj.jid.5701223
http://www.ncbi.nlm.nih.gov/pubmed/18185533
http://dx.doi.org/10.1111/j.1742-481X.2008.00457.x
http://www.ncbi.nlm.nih.gov/pubmed/19006574
http://dx.doi.org/10.1016/j.jdermsci.2013.10.009
http://www.ncbi.nlm.nih.gov/pubmed/24252748
http://dx.doi.org/10.1038/nature05574
http://www.ncbi.nlm.nih.gov/pubmed/17330052
http://dx.doi.org/10.1038/nature11393
http://www.ncbi.nlm.nih.gov/pubmed/22940863
http://dx.doi.org/10.1196/annals.1404.027
http://www.ncbi.nlm.nih.gov/pubmed/18056953


Bioengineering 2018, 5, 91 11 of 13

11. Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.;
Yoshimura, K.; Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and
culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation
for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
Cytotherapy 2013, 15, 641–648. [CrossRef] [PubMed]

12. Van Dongen, J.A.; Tuin, A.J.; Spiekman, M.; Jansma, J.; van der Lei, B.; Harmsen, M.C. Comparison of
intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes:
A systematic review. J. Tissue Eng. Regen. Med. 2017, 12, e261–e274. [CrossRef] [PubMed]

13. Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H.
Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7,
211–228. [CrossRef] [PubMed]

14. Rehman, J.; Traktuev, D.; Li, J.; Merfeld-Clauss, S.; Temm-Grove, C.J.; Bovenkerk, J.E.; Pell, C.L.;
Johnstone, B.H.; Considine, R.V.; March, K.L. Secretion of angiogenic and antiapoptotic factors by human
adipose stromal cells. Circulation 2004, 109, 1292–1298. [CrossRef] [PubMed]

15. Spiekman, M.; Przybyt, E.; Plantinga, J.A.; Gibbs, S.; van der Lei, B.; Harmsen, M.C. Adipose tissue-derived
stromal cells inhibit TGF-beta1-induced differentiation of human dermal fibroblasts and keloid scar-derived
fibroblasts in a paracrine fashion. Plast. Reconstr. Surg. 2014, 134, 699–712. [CrossRef] [PubMed]

16. Kim, W.S.; Park, B.S.; Sung, J.H.; Yang, J.M.; Park, S.B.; Kwak, S.J.; Park, J.S. Wound healing effect of
adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci.
2007, 48, 15–24. [CrossRef] [PubMed]

17. Meruane, M.A.; Rojas, M.; Marcelain, K. The use of adipose tissue-derived stem cells within a
dermal substitute improves skin regeneration by increasing neoangiogenesis and collagen synthesis.
Plast. Reconstr. Surg. 2012, 130, 53–63. [CrossRef] [PubMed]

18. Parvizi, M.; Harmsen, M.C. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of
Abdominal Aortic Aneurysm. Stem Cells Dev. 2015, 24, 1493–1505. [CrossRef] [PubMed]

19. Corselli, M.; Chen, C.W.; Sun, B.; Yap, S.; Rubin, J.P.; Peault, B. The tunica adventitia of human arteries and
veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012, 21, 1299–1308. [CrossRef] [PubMed]

20. Lin, G.; Garcia, M.; Ning, H.; Banie, L.; Guo, Y.L.; Lue, T.F.; Lin, C.S. Defining stem and progenitor cells
within adipose tissue. Stem Cells Dev. 2008, 17, 1053–1063. [CrossRef] [PubMed]

21. Ferroni, L.; Gardin, C.; Tocco, I.; Epis, R.; Casadei, A.; Vindigni, V.; Mucci, G.; Zavan, B. Potential for neural
differentiation of mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 2013, 129, 89–115. [CrossRef]
[PubMed]

22. Baer, P.C. Adipose-derived stem cells and their potential to differentiate into the epithelial lineage.
Stem Cells Dev. 2011, 20, 1805–1816. [CrossRef] [PubMed]

23. Pincus, D.W.; Goodman, R.R.; Fraser, R.A.; Nedergaard, M.; Goldman, S.A. Neural stem and progenitor cells:
A strategy for gene therapy and brain repair. Neurosurgery 1998, 42, 858–867. [CrossRef] [PubMed]

24. Liew, C.G.; Moore, H.; Ruban, L.; Shah, N.; Cosgrove, K.; Dunne, M.; Andrews, P. Human embryonic stem
cells: Possibilities for human cell transplantation. Ann. Med. 2005, 37, 521–532. [CrossRef] [PubMed]

25. Ho, P.J.; Yen, M.L.; Yet, S.F.; Yen, B.L. Current applications of human pluripotent stem cells: Possibilities and
challenges. Cell Transplant. 2012, 21, 801–814. [CrossRef] [PubMed]

26. Kuang, S.; Gillespie, M.A.; Rudnicki, M.A. Niche regulation of muscle satellite cell self-renewal and
differentiation. Cell Stem Cell 2008, 2, 22–31. [CrossRef] [PubMed]

27. Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? Comparison of
adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev.
2012, 21, 2724–2752. [CrossRef] [PubMed]

28. Bura, A.; Planat-Benard, V.; Bourin, P.; Silvestre, J.S.; Gross, F.; Grolleau, J.L.; Saint-Lebese, B.; Peyrafitte, J.A.;
Fleury, S.; Gadelorge, M.; et al. Phase I trial: The use of autologous cultured adipose-derived stroma/stem
cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 2014, 16, 245–257.
[CrossRef] [PubMed]

29. Lee, H.C.; An, S.G.; Lee, H.W.; Park, J.S.; Cha, K.S.; Hong, T.J.; Park, J.H.; Lee, S.Y.; Kim, S.P.; Kim, Y.D.; et al.
Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia:
A pilot study. Circ. J. Off. J. Jpn. Circ. Soc. 2012, 76, 1750–1760. [CrossRef]

http://dx.doi.org/10.1016/j.jcyt.2013.02.006
http://www.ncbi.nlm.nih.gov/pubmed/23570660
http://dx.doi.org/10.1002/term.2407
http://www.ncbi.nlm.nih.gov/pubmed/28084666
http://dx.doi.org/10.1089/107632701300062859
http://www.ncbi.nlm.nih.gov/pubmed/11304456
http://dx.doi.org/10.1161/01.CIR.0000121425.42966.F1
http://www.ncbi.nlm.nih.gov/pubmed/14993122
http://dx.doi.org/10.1097/PRS.0000000000000504
http://www.ncbi.nlm.nih.gov/pubmed/25357030
http://dx.doi.org/10.1016/j.jdermsci.2007.05.018
http://www.ncbi.nlm.nih.gov/pubmed/17643966
http://dx.doi.org/10.1097/PRS.0b013e3182547e04
http://www.ncbi.nlm.nih.gov/pubmed/22418720
http://dx.doi.org/10.1089/scd.2014.0517
http://www.ncbi.nlm.nih.gov/pubmed/25706330
http://dx.doi.org/10.1089/scd.2011.0200
http://www.ncbi.nlm.nih.gov/pubmed/21861688
http://dx.doi.org/10.1089/scd.2008.0117
http://www.ncbi.nlm.nih.gov/pubmed/18597617
http://dx.doi.org/10.1007/10_2012_152
http://www.ncbi.nlm.nih.gov/pubmed/22899379
http://dx.doi.org/10.1089/scd.2011.0086
http://www.ncbi.nlm.nih.gov/pubmed/21495915
http://dx.doi.org/10.1097/00006123-199804000-00103
http://www.ncbi.nlm.nih.gov/pubmed/9574651
http://dx.doi.org/10.1080/07853890500379463
http://www.ncbi.nlm.nih.gov/pubmed/16278165
http://dx.doi.org/10.3727/096368911X627507
http://www.ncbi.nlm.nih.gov/pubmed/22449556
http://dx.doi.org/10.1016/j.stem.2007.12.012
http://www.ncbi.nlm.nih.gov/pubmed/18371418
http://dx.doi.org/10.1089/scd.2011.0722
http://www.ncbi.nlm.nih.gov/pubmed/22468918
http://dx.doi.org/10.1016/j.jcyt.2013.11.011
http://www.ncbi.nlm.nih.gov/pubmed/24438903
http://dx.doi.org/10.1253/circj.CJ-11-1135


Bioengineering 2018, 5, 91 12 of 13

30. Fossett, E.; Khan, W.S.; Longo, U.G.; Smitham, P.J. Effect of age and gender on cell proliferation and cell
surface characterization of synovial fat pad derived mesenchymal stem cells. J. Orthop. Res. Off. Publ. Orthop.
Res. Soc. 2012, 30, 1013–1018. [CrossRef] [PubMed]

31. Pozzi, A.; Zent, R.; Chetyrkin, S.; Borza, C.; Bulus, N.; Chuang, P.; Chen, D.; Hudson, B.; Voziyan, P.
Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions. J. Am.
Soc. Nephrol. 2009, 20, 2119–2125. [CrossRef] [PubMed]

32. Gruber, H.E.; Somayaji, S.; Riley, F.; Hoelscher, G.L.; Norton, H.J.; Ingram, J.; Hanley, E.N., Jr.
Human adipose-derived mesenchymal stem cells: Serial passaging, doubling time and cell senescence.
Biotech. Histochem. Off. Publ. Biol. Stain Comm. 2012, 87, 303–311. [CrossRef] [PubMed]

33. Turinetto, V.; Vitale, E.; Giachino, C. Senescence in Human Mesenchymal Stem Cells: Functional Changes
and Implications in Stem Cell-Based Therapy. Int. J. Mol. Sci. 2016, 17, 1164. [CrossRef] [PubMed]

34. Liu, M.; Lei, H.; Dong, P.; Fu, X.; Yang, Z.; Yang, Y.; Ma, J.; Liu, X.; Cao, Y.; Xiao, R. Adipose-Derived
Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with
Senescent Properties. Cell. Transplant. 2017, 26, 1505–1519. [CrossRef] [PubMed]

35. Peng, Z.; Yang, X.; Qin, J.; Ye, K.; Wang, X.; Shi, H.; Jiang, M.; Liu, X.; Lu, X. Glyoxalase-1
Overexpression Reverses Defective Proangiogenic Function of Diabetic Adipose-Derived Stem Cells in
Streptozotocin-Induced Diabetic Mice Model of Critical Limb Ischemia. Stem Cells Transplant. Med. 2017, 6,
261–271. [CrossRef] [PubMed]

36. Hajmousa, G.; Przybyt, E.; Pfister, F.; Paredes-Juarez, G.A.; Moganti, K.; Busch, S.; Kuipers, J.; Klaassen, I.;
van Luyn, M.J.A.; Krenning, G.; et al. Human adipose tissue-derived stromal cells act as functional pericytes
in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells.
Diabetologia 2018, 61, 2371–2385. [CrossRef] [PubMed]

37. Hajmousa, G.; Elorza, A.A.; Nies, V.J.; Jensen, E.L.; Nagy, R.A.; Harmsen, M.C. Hyperglycemia Induces
Bioenergetic Changes in Adipose-Derived Stromal Cells While Their Pericytic Function Is Retained.
Stem Cells Dev. 2016, 25, 1444–1453. [CrossRef] [PubMed]

38. Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.;
Nagase, T.; Koshima, I.; et al. Characterization of freshly isolated and cultured cells derived from the fatty
and fluid portions of liposuction aspirates. J. Cell. Phys. 2006, 208, 64–76. [CrossRef] [PubMed]

39. Traktuev, D.O.; Prater, D.N.; Merfeld-Clauss, S.; Sanjeevaiah, A.R.; Saadatzadeh, M.R.; Murphy, M.;
Johnstone, B.H.; Ingram, D.A.; March, K.L. Robust functional vascular network formation in vivo by
cooperation of adipose progenitor and endothelial cells. Circ. Res. 2009, 104, 1410–1420. [CrossRef]
[PubMed]

40. Van Dongen, J.A.; Stevens, H.P.; Parvizi, M.; van der Lei, B.; Harmsen, M.C. The fractionation of adipose
tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair Regen. Off.
Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2016, 24, 994–1003. [CrossRef] [PubMed]

41. Van Dongen, J.A.; Stevens, H.P.; Harmsen, M.C.; van der Lei, B. Mechanical Micronization of Lipoaspirates:
Squeeze and Emulsification Techniques. Plast. Reconstr. Surg. 2017, 139, 1369e–1370e. [CrossRef] [PubMed]

42. Mescher, L.A. Junquira’s Basic Histology Text and Atlas, 12th ed.; The McGraw-Hill Companies: New York, NY,
USA, 2010; p. 480.

43. Spiekman, M.; van Dongen, J.A.; Willemsen, J.C.; Hoppe, D.L.; van der Lei, B.; Harmsen, M.C. The power
of fat and its adipose-derived stromal cells: Emerging concepts for fibrotic scar treatment. J. Tissue Eng.
Regen. Med. 2017, 11, 3220–3235. [CrossRef] [PubMed]

44. Zhao, J.; Yi, C.; Li, L.; Zheng, Y.; Wu, K.; Liang, L.; Xia, W.; Guo, S. Observations on the survival and
neovascularization of fat grafts interchanged between C57BL/6-gfp and C57BL/6 mice. Plast. Reconstr Surg.
2012, 130, 398e–406e. [CrossRef] [PubMed]

45. Marino, G.; Moraci, M.; Armenia, E.; Orabona, C.; Sergio, R.; De Sena, G.; Capuozzo, V.; Barbarisi, M.;
Rosso, F.; Giordano, G.; et al. Therapy with autologous adipose-derived regenerative cells for the care
of chronic ulcer of lower limbs in patients with peripheral arterial disease. J. Surg. Res. 2013, 185, 36–44.
[CrossRef] [PubMed]

46. Del Papa, N.; Di Luca, G.; Sambataro, D.; Zaccara, E.; Maglione, W.; Gabrielli, A.; Fraticelli, P.; Moroncini, G.;
Beretta, L.; Santaniello, A.; et al. Regional implantation of autologous adipose tissue-derived cells induces
a prompt healing of long-lasting indolent digital ulcers in patients with systemic sclerosis. Cell Transplant.
2015, 24, 2297–2305. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jor.22057
http://www.ncbi.nlm.nih.gov/pubmed/22228598
http://dx.doi.org/10.1681/ASN.2008080900
http://www.ncbi.nlm.nih.gov/pubmed/19608705
http://dx.doi.org/10.3109/10520295.2011.649785
http://www.ncbi.nlm.nih.gov/pubmed/22250760
http://dx.doi.org/10.3390/ijms17071164
http://www.ncbi.nlm.nih.gov/pubmed/27447618
http://dx.doi.org/10.1177/0963689717721221
http://www.ncbi.nlm.nih.gov/pubmed/29113467
http://dx.doi.org/10.5966/sctm.2015-0380
http://www.ncbi.nlm.nih.gov/pubmed/28170200
http://dx.doi.org/10.1007/s00125-018-4713-0
http://www.ncbi.nlm.nih.gov/pubmed/30151615
http://dx.doi.org/10.1089/scd.2016.0025
http://www.ncbi.nlm.nih.gov/pubmed/27473785
http://dx.doi.org/10.1002/jcp.20636
http://www.ncbi.nlm.nih.gov/pubmed/16557516
http://dx.doi.org/10.1161/CIRCRESAHA.108.190926
http://www.ncbi.nlm.nih.gov/pubmed/19443841
http://dx.doi.org/10.1111/wrr.12482
http://www.ncbi.nlm.nih.gov/pubmed/27717133
http://dx.doi.org/10.1097/PRS.0000000000003372
http://www.ncbi.nlm.nih.gov/pubmed/28207564
http://dx.doi.org/10.1002/term.2213
http://www.ncbi.nlm.nih.gov/pubmed/28156060
http://dx.doi.org/10.1097/PRS.0b013e31825dbfd3
http://www.ncbi.nlm.nih.gov/pubmed/22575853
http://dx.doi.org/10.1016/j.jss.2013.05.024
http://www.ncbi.nlm.nih.gov/pubmed/23773718
http://dx.doi.org/10.3727/096368914X685636
http://www.ncbi.nlm.nih.gov/pubmed/25506730


Bioengineering 2018, 5, 91 13 of 13

47. Han, S.K.; Kim, H.R.; Kim, W.K. The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate
cells: A pilot study. Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 2010, 18, 342–348.
[CrossRef] [PubMed]

48. Darinskas, A.; Paskevicius, M.; Apanavicius, G.; Vilkevicius, G.; Labanauskas, L.; Ichim, T.E.; Rimdeika, R.
Stromal vascular fraction cells for the treatment of critical limb ischemia: A pilot study. J. Transplant. Med.
2017, 15, 143. [CrossRef] [PubMed]

49. Konstantinow, A.; Arnold, A.; Djabali, K.; Kempf, W.; Gutermuth, J.; Fischer, T.; Biedermann, T. Therapy of
ulcus cruris of venous and mixed venous arterial origin with autologous, adult, native progenitor cells from
subcutaneous adipose tissue: A prospective clinical pilot study. J. Eur. Acad. Dermatol. Venereol. 2017, 31,
2104–2118. [CrossRef] [PubMed]

50. Van Abeelen, M.H.; Ulrich, D.J. Lipofilling of skin contour defects in a leaking stoma: A new method to
solve a difficult problem. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 139–140. [CrossRef] [PubMed]

51. Bene, M.D.; Pozzi, M.R.; Rovati, L.; Mazzola, I.; Erba, G.; Bonomi, S. Autologous fat grafting
for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis.
Handchir.·Mikrochir.·Plast. Chir. 2014, 46, 242–247. [CrossRef] [PubMed]

52. Caviggioli, F.; Klinger, F.M.; Vinci, V.; Cornegliani, G.; Klinger, M. Treatment of chronic posttraumatic leg
injury using autologous fat graft. Case Rep. Med. 2012, 2012, 648683. [CrossRef] [PubMed]

53. Cervelli, V.; De Angelis, B.; Lucarini, L.; Spallone, D.; Balzani, A.; Palla, L.; Gentile, P.; Cerulli, P. Tissue
regeneration in loss of substance on the lower limbs through use of platelet-rich plasma, stem cells from
adipose tissue, and hyaluronic acid. Adv. Skin Wound Care 2010, 23, 262–272. [CrossRef] [PubMed]

54. Cervelli, V.; Gentile, P.; De Angelis, B.; Calabrese, C.; Di Stefani, A.; Scioli, M.G.; Curcio, B.C.; Felici, M.;
Orlandi, A. Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in
post-traumatic lower extremity ulcers. Stem Cell Res. 2011, 6, 103–111. [CrossRef] [PubMed]

55. Cervelli, V.; Gentile, P.; Grimaldi, M. Regenerative surgery: Use of fat grafting combined with platelet-rich
plasma for chronic lower-extremity ulcers. Aesthet. Plast. Surg. 2009, 33, 340–345. [CrossRef] [PubMed]

56. Klinger, M.; Caviggioli, F.; Vinci, V.; Salval, A.; Villani, F. Treatment of chronic posttraumatic ulcers using
autologous fat graft. Plast. Reconstr. Surg. 2010, 126, 154e–155e. [CrossRef] [PubMed]

57. Stasch, T.; Hoehne, J.; Huynh, T.; De Baerdemaeker, R.; Grandel, S.; Herold, C. Debridement and Autologous
Lipotransfer for Chronic Ulceration of the Diabetic Foot and Lower Limb Improves Wound Healing.
Plast. Reconstr. Surg. 2015, 136, 1357–1366. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1524-475X.2010.00593.x
http://www.ncbi.nlm.nih.gov/pubmed/20492632
http://dx.doi.org/10.1186/s12967-017-1243-3
http://www.ncbi.nlm.nih.gov/pubmed/28629476
http://dx.doi.org/10.1111/jdv.14489
http://www.ncbi.nlm.nih.gov/pubmed/28750144
http://dx.doi.org/10.1016/j.bjps.2014.08.073
http://www.ncbi.nlm.nih.gov/pubmed/25240407
http://dx.doi.org/10.1055/s-0034-1376970
http://www.ncbi.nlm.nih.gov/pubmed/25162242
http://dx.doi.org/10.1155/2012/648683
http://www.ncbi.nlm.nih.gov/pubmed/23319957
http://dx.doi.org/10.1097/01.ASW.0000363551.82058.36
http://www.ncbi.nlm.nih.gov/pubmed/20489388
http://dx.doi.org/10.1016/j.scr.2010.11.003
http://www.ncbi.nlm.nih.gov/pubmed/21195687
http://dx.doi.org/10.1007/s00266-008-9302-z
http://www.ncbi.nlm.nih.gov/pubmed/19156458
http://dx.doi.org/10.1097/PRS.0b013e3181e3b585
http://www.ncbi.nlm.nih.gov/pubmed/20811205
http://dx.doi.org/10.1097/PRS.0000000000001819
http://www.ncbi.nlm.nih.gov/pubmed/26273734
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Adipose Derived Stromal Cells as Cellular Therapy for Dermal Wound Healing 
	Cellular or Tissue Stromal Vascular Fraction as Treatment for Dermal Wound Healing 
	Lipografting as a Treatment for Dermal Wound Healing 
	Conclusions 
	References

