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For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into 
specific effector T helper (Th) cell subsets following activation by antigen presented by 
dendritic cells (DCs). Next to T  cell receptor and cytokine signals, membrane-bound 
Notch ligands have an important role in orchestrating Th cell differentiation. Several 
studies provided evidence that DC activation is accompanied by surface expression of 
Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain 
the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to 
this model it has also been hypothesized that Notch signaling acts as a general amplifier 
of Th cell responses rather than an instructive director of specific T cell fates. In this 
alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic 
signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand 
expressing DCs in the induction of Th cell differentiation is further challenged by evidence 
for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, 
and follicular Th cells. In this review, we will discuss the two opposing models, referred 
to as the “instructive” and the “unbiased amplifier” model. We highlight both the function 
of different Notch receptors on CD4+ T cells and the impact of Notch ligands on anti-
gen-presenting cells.
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inTRODUCTiOn

Following signals from both antigen-presenting cells (APCs) and the micro-environment, activated 
CD4+ T cells are triggered to initiate secretion of specific effector cytokines. Since the original obser-
vation in 1986 upon antigenic stimulation naive CD4+ T cells can differentiate into T helper 1 (Th1) 
or Th2 effector T cells depending on polarizing cytokine signals (1), various additional Th subsets 
have been recognized. These include Th9, Th17, Th22, follicular T helper cells (Tfh), and regulatory 
T cells (Tregs), each characterized by a unique cytokine production profile and a key transcription 
factor [see for recent review Ref. (2)]. These Th subsets play a crucial role in appropriate immune 
responses during host defense, but are also involved in the pathogenesis of inflammatory diseases 
(3, 4).

Th1 cells mainly produce IFN-γ and TNF-α and are associated with the elimination of intracel-
lular pathogens. Th1 development is facilitated either by IL-12 and STAT4 or by IFN-γ, STAT1, 
and the key Th1 transcriptional regulator T-box-containing protein (T-bet), encoded by Tbx21 
(5). Th2 cells control helminth infections and are implicated in allergic immune responses such 
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as allergic asthma. They are potent producers of Th2 cytokines 
that induce IgE synthesis (IL-4), recruit eosinophils (IL-5), and 
cause smooth muscle hyperreactivity and goblet cell hyperplasia 
(IL-13). Therefore, Th2 cells are central in the orchestration and 
amplification of inflammatory events in allergic asthma. The 
master transcription factor Gata3 is necessary and sufficient for 
Th2 cytokine gene expression in Th2 cells (6). Because Th2 dif-
ferentiation is driven by IL-4, this raises the paradox that IL-4 is 
required to generate the cell type that is its major producer. But 
the origin of the first IL-4 required for Th2 cell induction remains 
unclear. While a range of cell types are able to produce IL-4, Th2 
cell responses can still be generated when only T cells can make 
IL-4, arguing against an essential role for an external source of 
IL-4 (7, 8).

An accumulating number of studies suggest that the Notch 
signaling pathway, which also plays a crucial role in early 
hematopoietic development and at multiple steps of T lineage 
development, is essential for Th cell differentiation [for recent 
review see Ref. (9)]. Currently, two opposing models have 
been proposed that explain how Notch ligands can influence 
Th subset differentiation. According to the “instructive” 
model, Jagged and delta-like ligands (DLL) on APCs induce 
Th2 and Th1 differentiation, respectively (10). Alternatively, 
the “unbiased amplifier” model proposes that Notch ligands 
are not instructive but rather function to generally amplify Th 
cell responses (11). In this review, we will discuss these two 
contrasting hypotheses on the role of Notch signaling. We will 
focus on both Notch receptor expressing T  cells and Notch 
ligand-expressing cells.

THe nOTCH SiGnALinG PATHwAY

There are five Notch ligands: two Jagged (Jagged1 and Jagged2) 
and three DLL (DLL1, DLL3, and DLL4), which are bound by 
four receptors, Notch1–4. For these ligands to be functional, 
their ubiquitination by Mindbomb1 or Neuralized within the 
cell is required (12). Details of the Notch signaling pathway are 
discussed in various excellent reviews (13, 14). Briefly, following 
ligand–receptor binding, the Notch intracellular domain (NICD) 
is cleaved by a γ-secretase complex and translocates to the nucleus 
and binds to the transcription factor recombination signal bind-
ing protein for immunoglobulin Jκ region (RBPJκ; Figure  1). 
Finally, additional co-activating proteins are recruited, such 
as mastermind-like proteins (MAML1-3) and p300 to induce 
transcription of target genes. Notch signaling does not only 
induce Th lineage-defining transcription factors and cytokines 
(described below) but also general pathways critical for T  cell 
activation, including IL-2 production, upregulation of the IL-2 
receptor, and glucose uptake (15–18). Notch signaling potentiates 
phosphatidylinositol 3-kinase-dependent signaling downstream 
of the T cell receptor (TCR) and CD28 by inducing activation of 
Akt kinase and mammalian target of rapamycin, which enhances 
T cell effector functions and survival and allows them to respond to 
lower antigen doses (16, 19, 20). Notch signaling can be enhanced 
by the protein kinase PKCθ, which is crucial for TCR and CD28 
signaling and regulation of the actin cytoskeleton (21). Moreover, 
upon TCR stimulation NICD interacts with other proteins in the 

cell in a non-canonical, RBPJκ-independent pathway that leads to 
NFκB activation (22, 23).

inDUCTiOn OF nOTCH LiGAnDS On 
APCs

T helper 2-promoting stimuli including helminth eggs, 
prostaglandin E2, cholera toxin, and allergens, such as house 
dust mite (HDM), birch pollen, and cockroach allergens, were 
shown to induce Jagged expression on APCs, as summarized 
in Table  1. Conversely, microbial Th1-inducing stimuli, e.g., 
dengue virus, respiratory syncytial virus (RSV), bacterial LPS, 
and the TRL9 ligand CpG, up regulate the Notch ligands DLL1/
DLL4 on APCs (Table 1). Other studies, however, do not show 
exclusive upregulation of either DLL or Jagged molecules, but 
rather upregulation of Notch ligands of both families upon 
stimulation (10, 24–33). Interestingly, whereas surface induc-
tion of DLL requires MyD88, this is not the case for Jagged 
induction (10, 34–38). LPS can promote both Th1 and Th2 
responses, which are MyD88 dependent and Myd88 independ-
ent, respectively, but the molecular mechanisms responsible 
for Jagged induction by LPS are unknown (39–41). Together, 
although there is also evidence that particular stimuli can 
induce both Th1 and Th2 differentiations, many studies sup-
port an instructive role of DLL and Jagged expression on APCs.

THe ROLe OF nOTCH LiGAnDS in Th2 
AnD Th1 DiFFeRenTiATiOn AnD 
FUnCTiOn

Th2 Cells
Notch signaling can initiate Th2 cell differentiation by direct 
activation of (i) a 3ʹ enhancer of the Il4 gene and (ii) an 
upstream promoter of Gata3 (10, 53–55). Several studies using 
mice expressing a dominant negative (DN) MAML transgene 
have demonstrated that Notch signaling is essential for Th2 cell 
differentiation and function (54, 56). When γ-secretase inhibi-
tors (GSI) were used to block Notch signaling in OVA-induced 
asthma or food allergy models, Th2 cytokine production by 
T  cells was inhibited while IFN-γ production was increased 
(57–59). Moreover, upon gene ablation of Notch1/Notch2 or 
RBPJκ, IL-4 production was abrogated and functional responses 
against parasitical pathogens were reduced (10). At the same 
time, IFN-γ expression was unaffected, supporting an instructive 
role for Notch signaling. In line with an instructive model, DLL4 
was demonstrated to have a regulatory role in Th2 responses 
to cockroach allergen, OVA, RSV, or Schistosoma mansoni egg 
antigen (Table 1) and in an experimental autoimmune encepha-
lomyelitis (EAE) model (49). A protective Th1 response to RSV 
in the lungs was converted into an allergic Th2 response by 
DLL4-neutralization in vivo (36).

However, defective Th2 responses against the intestinal 
helminth Trichuris muris in DN-MAML transgenic mice were 
restored when mice received anti-IFN-γ antibodies, indicating 
that Notch functions to optimize rather than to initiate the Th2 
response (11). Moreover, decreased Th2 responses were found 
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FiGURe 1 | Schematic overview of the two models describing the role of notch signaling in T helper (Th) cell differentiation. (A) According to the 
instructive model, Th1-stimuli and Th2-stimuli induce delta-like ligands (DLL) and Jagged ligand expression on antigen-presenting cells (APCs), respectively. Upon 
receptor–ligand binding, Th1 differentiation is induced by Notch intracellular domain binding and activating transcription of the Th1 transcription factor gene Tbx21 
and signature cytokine Ifng. For Th2 differentiation, Notch induces transcription of Gata3 and Il4. (B) Notch ligands act as an unbiased amplifier, thereby sensitizing 
cells to the environment to ensure that activated CD4+ T cells overcome a Th cell commitment threshold. Notch induces activation, proliferation, enhances 
anti-apoptotic signals, and is simultaneously recruited to Th1, Th2, and Th17 genes. So, in this hypothesis Notch acts as an enabler of differentiation, whereby the 
outcome depends on signals of the environment, such as cytokines.
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when DLL4 was blocked in a mouse model for RSV-mediated 
allergic asthma exacerbations (60). Finally, we very recently 
found that whereas mice with RBPJκ-deficient T cells failed to 
develop HDM-driven allergic airway inflammation (AAI) and 
airway hyperreactivity, mice with a DC-specific conditional 
deficiency of both Jagged1 and Jagged2 developed normal AAI 
following in  vivo HDM-exposure (32). Although most studies 
using bmDCs would support an instructive role for Jagged in the 
induction of Th2 cell differentiation and function (Table 1), our 
studies indicate that induction of Th2 responses in HDM-driven 
AAI is dependent on Jagged expression on other cell types than 
DCs or alternatively on cooperation between Jagged and DLL on 
DCs.

Taken together, although several lines of evidence indicate that 
DCs use the Notch pathway to instruct Th cell fates, Notch may 
also act as an unbiased amplifier of Th cell differentiation.

Th1 Cells
The signature Th1 genes Ifng and Tbx21 were identified as direct 
Notch targets (11, 61). Mice in which T cells were Notch1/Notch2 
double-deficient showed impaired IFN-γ secretion by Th1  cells 
during in  vivo Leishmania major parasite infection, but reports 
employing DN-MAML transgenic or conditional RBPJκ knock-
out mice demonstrated that Th1  cell function was unaffected  
(32, 53, 54, 56, 62). Therefore, these findings suggest that signals 
that regulate Th1 differentiation involve RBPJκ-independent func-
tions of Notch. Studies using GSI showed that Th1 differentiation 
was impaired in an in vivo EAE model (11, 61). By contrast, an 
increase in Th1 differentiation (and a concomitant decrease in Th2 
cytokine production) was seen in an OVA-driven AAI model (58). 
The interpretation of these apparently conflicting findings remains 
complicated, because effects of GSI are not limited to Notch signal-
ing and, e.g., also involve HLA-A2 expression and cadherins (63).
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TABLe 1 | evidence supporting instructive roles for Jagged and DLL in Th2 and Th1 cell differentiation, respectively.

APC Stimulant notch ligand Additional findings Reference

Jag1 Jag2 DLL1 DLL4

instruction of Th2 differentiation

GM-CSF bmDCs PGE2 or cholera toxin 0 ↑ 0 0 Jag1-expressing APC induces Th2 cytokines in CD4+ T cells (10)

GM-CSF bmDCs Endotoxin+ OVA ↑ 0 – ↑ Jag1-FC (but not siRNA-Jag1) enhances AHR, eosinophilia and Th2 cytokine production (30, 31)

GM-CSF bmDCs Cholera toxin – ↑ – 0 c-kit deficient DCs lack Jag2 (but not DLL4) and induce reduced Th2 inflammation and AAI (29)

CpG – 0 – ↑
GM-CSF bmDCs LPS + OVA/GP peptide – – – – DCs lacking Mib1 show impaired Th2 but not Th1 differentiation in vitro (28)

GM-CSF bmDCs CpG RSV – – – ↑ Blocking of DLL4 induces increased Th2 cytokine secretion and AHR (36)

GM-CSF bmDCs Cockroach allergen ↑ 0 ↑ ↑↑ DLL4 suppresses Th2 cytokines and blocking of DLL4 induces increased Th2 cytokine secretion and AHR (27)

GM-CSF bmDCs OVA 0 0 0 ↑ DCs, pretreated with DLL4, induce reduced AHR and AAI (42)

OVA + DLL4 ↑ 0 ↑ ↑
GM-CSF bmDCs Derp7 ↑↑ – – – Derp7 induces IL-4 secretion by CD4+ T cells (43)

LPS ↑ – – –

Human BDCA1+ mDCs – – – – – Jag1 expression correlated with IL-4 expressing T cells (44)

Human BDCA1+ mDCs Diesel-exhaust particles 
(DEP)

↑ 0 – L In a DC-CD4+ T cell co-culture anti-Jag1 decreases the IL-5/IFN-γ ratio (45)

Human GM-CSF moDCs APE 0 ↑ ↑ 0 In a DC-CD4+ T cell co-culture, APE increases IL-5 and IL-10 secretion (26)

APE/PGE2 + LPS 0 ↑ ↓ ↓

instruction of Th1 differentiation

– αCD28αCD3+ Delta1-Fc – – – – Delta1-Fc up regulates T-bet and IFN-γ expression in T cells (46)

GM-CSF bmDCs LPS ↑ 0 –/↑ ↑ DLL1 expressing APCs induce IFN-γ producing CD4+ T cells in vitro (10, 28)

CD11c+ GM-CSF bmDCs RSV 0 0 – ↑ MyD88−/− DCs have reduced DLL4 and cannot induce IFN-γ in CD4+ T cells (35)

GM-CSF bmDCs P. acnes CpG – – – ↑ DLL4 promotes Th1 development by inhibition of IL-4 production in T cells (38)

GM-CSF bmDCs TMEV – – – ↑ Blocking of DLL4 induces decreased Th1 cytokines in demyelinating disease (47)

Splenic DCs (CD11c+CD8−) LPS L L L ↑ DLL4 expressing APCs induce IFN-γ (but not IL-4) in CD4+ T cells in vitro (37)

CD11c+ DCs, CD19+ B cells MOG35-55 peptide in 
CFA

↑ – ↑ – DLL1-Fc increases Th1 cells, anti-Delta1 antibodies decrease Th1 cells; anti-Jag1 antibodies worsened EAE (24, 48)

0 – ↑ –

Unknown MOG(35–55)/CFA – – – – DLL4-blockade decreases IFN-γ and TNF-α, promotes IL-4 production by T cells and decreases CNS 
inflammation

(49, 50)

Human GM-CSF moDCs LPS ↑ L 0 ↑ Expression of DLL4 correlated with IFN-γ inducing capabilities of DCs (33)

Human BDCA1+ mDCs R-848 ↓ L L ↑ Jag1 expression negatively correlated with IFN-γ expressing T cells (44)

Human monocytes, 
macrophages, GM-CSF 
moDCs

Dengue virus L L ↑ 0 DLL1 induces IFN-γ but not IL-4 production by CD4+ T cells in vitro (51)

L L ↑ ↑
L L ↑ ↑

Human CD1c+ DCs and pDCs R-848 – – – ↑ DLL4-blockade decreases IFN-γ and IL-17 expressing CD4+ T cells in vitro (52)

AAI, allergic airway inflammation; AHR, airway hyperreactivity; APE, aqueous birch pollen extract; bmDC, bone marrow-derived DC; CFA, complete Freund’s adjuvant; CNS, central nervous system; DLL, delta-like ligand; EAE, 
experimental autoimmune encephalomyelitis; GP, viral glycoprotein peptide; Jag, Jagged; mDCs, myeloid immature DCs; Mib, Mindbomb; moDCs, monocyte-derived DCs; RSV, respiratory syncytial virus; TMEV, Theiler’s murine 
encephalomyelitis virus; ↑, increased; ↓, decreased; 0, unaffected, L, low expression; and –, not determined.
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The capacity of DLL1/DLL4 to induce Th1 cell differentiation 
is supported by many in vitro and in vivo experiments, as outlined 
in Table 1. For example, anti-DLL4 antibodies reduced IFN-γ and 
TNF-α secretion by T cells in vivo (47, 49, 50). DLL1-blockade 
decreased Th1 cell numbers in an allograft model (64). Conversely, 
Jagged1-Fc had no effect and anti-Jagged1 antibodies worsened 
EAE disease (24, 48). Gene ablation of Jagged1 or Mindbomb1, 
which is critical for expression of functional Notch ligands, did 
not affect Th1 differentiation in vitro (28, 30).

In conclusion, although most studies would support an 
instructive role for DLL1/DLL4 in Th1 induction, the role of 
Notch signaling in Th1 cell differentiation remains incompletely 
understood.

Other T Helper Cell Subsets
Given the increasing complexity of T  cell subset biology, it is 
not unexpected that the bipotential instructional model is not 
sufficient to fully explain the function of Notch signaling in Th 
cell differentiation. For example, Notch signaling cooperates 
with TGF-β to induce Th9 cell differentiation and IL-9 expres-
sion via Jagged2 ligation (65). The Rorc, Il17, and Il23r gene 
promoters are direct Notch targets and, accordingly, Th17 cell 
differentiation is impaired when Notch signaling is blocked 
(66–70). Hereby, DLL1, DLL3, and DLL4 ligands were found to 
be essential (49, 50, 52, 60, 71), but a role for Jagged1 remains 
controversial (72–74). Remarkably, addition of DLL3 enhanced 
Th17 differentiation in  vitro (75), although it was shown that 
DLL3 cannot activate Notch in adjacent cells, but inhibits signal-
ing when expressed in the same cell as the Notch receptor (76). 
Differentiation and function of Tregs require Notch signaling 
in T cells (77–80), whereby both DLL and Jagged ligands can 
promote Treg expansion (81–88). Although the key Treg tran-
scription factor Foxp3 is a direct Notch target (89), the role of 
Notch in Tregs seems rather complex, because targeting of DLL4 
or Treg-specific components of the Notch pathway was associ-
ated with an increase of Tregs in in  vivo autoimmune models  
(49, 90, 91). Moreover, hepatocytes and plasmacytoid DCs 
can induce IL-10 production in T cells via Jagged1 and DLL4, 
respectively (85, 92, 93). Finally, the finding that the absence of 
Notch receptors on T cells or DLL4 on lymph node stromal cells 
resulted in a deficiency of Tfh cells (94, 95), implicates Notch 
signaling in Tfh cell differentiation.

“inSTRUCTive” veRSUS “UnBiASeD 
AMPLiFieR” MODeL

As summarized in Table  1, considerable evidence supports an 
“instructive model” whereby pathogens direct Th1 and Th2 dif-
ferentiation via upregulation of DLL or Jagged ligands on DCs 
(Figure  1). This implies that different Notch ligands induce 
distinct cellular responses in T cells, largely by the same signal-
ing components. Although it has been speculated that different 
ligands might induce qualitatively different signals, e.g., RBPJκ-
dependent or independent, or signals that differ in strength or 
kinetics (96), the molecular mechanisms involved are currently 
unknown.

It has been shown that DLL4 induces a stronger Notch 
signal than DLL1 or Jagged1 (86). Also, the ability of ligands to 
induce Notch signaling is dependent on the glycosylation status 
of the extracellular domain of Notch: Notch receptors carrying 
N-acetylglucosamine preferentially signal via delta ligands, while 
Jagged binding is inhibited (97). Absence or overexpression of 
Fringe glycosyltransferase proteins alters Th1 and Th2 differentia-
tion (60, 98). Another possibility would be that different ligands 
preferentially activate different Notch receptors, which may each 
have unique downstream nuclear targets to induce distinct cel-
lular programs. Indeed, it has been reported that whereas Notch1 
and Notch2 activate Th2 differentiation, Notch3 promotes Th1 
differentiation and IFN-γ production (46, 53). The expression of 
all these Notch receptors is induced on T cells upon TCR stimula-
tion (62, 99, 100). Because different NICDs have different target 
gene preferences (101), distinct ligand–receptor combinations 
may produce quantitatively or qualitatively distinct signals (102). 
However, this is not supported by the findings that both Th1 and 
Th2 differentiation is affected in T cells that are Notch1/Notch2 
double-deficient (53, 62) and that retroviral expression of Notch1 
as well as Notch3 was associated with increased Th1 responses 
(46, 61). This issue is further complicated by the observation 
that individual Notch receptors are up regulated with different 
kinetics (103). It is, therefore, conceivable that they have distinct 
functions depending on the phase of the response.

Several studies are in apparent conflict with the “instructive 
model.” For example, DLL were reported to promote Th2 responses 
or Jagged ligands were implicated in Th1 induction (60, 104). 
Neither Jagged1 nor DLL1 could instruct Th2 or Th1 cytokine dif-
ferentiation in vitro in the absence of polarizing cytokines (105). 
Importantly, Bailis et al. showed that Notch signaling simultane-
ously induced Th1, Th2, and Th17 gene transcription, also under 
polarizing conditions that were described to favor only one of 
the differentiation outcomes (11). In addition, Notch signaling 
via DLL4 was shown to boost antigen sensitivity of CD4+ T cells 
via promoting co-stimulatory signals in T  cells (16). Together, 
this would suggest that Notch acts as a co-stimulating factor 
that orchestrates multiple Th cell programs by sensitizing cells 
to exogenous cytokines, thereby ensuring that activated CD4+ 
T  cells overcome a Th cell commitment threshold. In support 
of a role for Notch as an unbiased amplifier (Figure 1), Notch 
signaling was shown to be required for optimal T cell expansion, 
CD25 and IL-2 induction in  vitro of both Th1 and Th2 cells  
(15, 16, 18, 105). Finally, Notch signals promote survival by 
enhancing anti-apoptotic signals and glucose uptake (17, 106).

It is conceivable that minor differences in experimental design 
or conditions form the basis of the discrepant results that support 
one of the two opposing models for Notch function in Th differ-
entiation. Many studies on Notch ligands on APCs have employed 
GM-CSF cultured bmDCs (Table 1), which were recently shown 
to contain not only DCs, but also monocyte-derived macrophages 
(107). In our own studies, we found that Jagged expression was 
required for the induction of a Th2 response in the lung when 
in  vitro HDM-pulsed bmDCs were used for allergen sensitiza-
tion, but not when mice were in vivo sensitized by endogenous 
airway DCs (32). Moreover, studies are complicated by the 
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finding that Notch ligands are not only induced on DCs, but also 
on macrophages, B and T cells, or lymph node stromal cells (24, 
95, 99, 108). Stimulation via CD46 and CD3 was shown to up 
regulate Jagged1 on human T cells (109), suggesting that T cells 
can provide Notch signals to each other. However, it is of note 
that normally several mechanisms, including lateral inhibition, 
are used to regulate Notch activity when similar cell types express 
both ligand and receptor. By lateral inhibition signal-sending 
cells actively repress their Notch signaling pathway (110), which 
would hamper concerted Notch-mediated differentiation and 
polarization of adjacent T helper cells. Finally, Notch receptors 
can become activated independent of ligand binding (111). 
Indeed, spontaneous Notch cleavage has been observed upon 
TCR triggering (15, 18, 22). Ligand-independent Notch signal-
ing would also be supported by the recent identification of a 
PKCθ-dependent mechanism that enhances Notch activation 
(21). More experiments targeting Notch ligands in various cells 
types are required to determine how the Notch signaling pathway 
is activated in T cell subsets in vivo.

Another concern is that some gain-of-function approaches, 
involving overexpression of Notch receptors or ligands, may be 
associated with strong or prolonged, less physiological Notch 
signals. In this context, it is interesting that variable Notch signal 
strength allows induction of distinct responses by the same 
signaling pathway (112, 113), paralleling previous experiments 
demonstrating Th1 or Th2 cells are induced by strong or weak 
TCR signals, respectively (114, 115). Therefore, in studies on the 
effects of Notch ligands on Th differentiation, it may be critical 
to use a range of antigen doses. Finally, since it has recently 
been shown that Th2 inflammation also crucially involves IL-4-
producing Tfh cells (116, 117), findings of impaired in vivo Th2 
cell differentiation may point at Tfh rather than Th2 defects and 
should, therefore, be interpreted with care.

COnCLUSiOnS AnD FUTURe 
DiReCTiOnS

Given the increasing number of characterized Th subsets, it is 
unlikely that Notch signaling simply acts as a bimodal molecular 
switch for the induction of either Th1 and Th2 differentiation, 
based on DLL and Jagged expression on DCs, respectively. 
Nevertheless, many studies described above support the notion 
that individual Notch ligands have differential effects on Th 
cell differentiation, which cannot be explained by the unbiased 
amplifier model. The two models, however, may not necessarily 
be mutually exclusive. Effects of Notch signaling could be quite 
different during induction and during maintenance of Th subset 

differentiation. Moreover, the finding that there is quite some 
plasticity between Th subsets (2) and that Th2 differentiation may 
involve a Tfh phase has further complicated the role of Notch 
signaling in Th differentiation. We also conclude that the elucida-
tion of the role of Notch ligands on particular cell types requires 
comprehensive in  vivo studies, using cell-specific knockout of 
individual Notch ligands or combinations.

Since Notch signaling is involved in the differentiation of 
basically all Th subsets, it could serve as a potential therapeutic 
target, for example, by inhibiting Th2 responses in allergies or 
Th1/Th17 responses in autoimmune diseases. However, because 
effects of GSI are not limited to Notch signaling, it will be valuable 
to develop more specific compounds targeting Notch signaling 
components. Indeed synthetic, cell-permeable stabilized pep-
tides that target a critical protein–protein interface in the Notch 
transactivation complex (118–120) as well as specific antibodies 
that target Notch receptors (121–123) or Notch ligands (24, 124) 
have been designed. Promising results were obtained with Notch 
pathway blocking antibodies in cancer patients (125) and future 
studies should explore whether these antibodies are beneficial for 
allergic or autoimmune patients.

Interestingly, GSI administration during only the challenge 
in asthma models was sufficient to decrease Th2 cytokine 
production (58, 59). These findings imply that Notch signal-
ing is not likely critical to initiate IL-4 production in activated 
T cells and thus the initial source of IL-4, for example in AAI, 
remains unclear. While several cells including basophils, 
Tfh cells, NKT  cells, and ILC2 are capable of producing IL-4  
(55, 116, 126–131), mice deficient for NKT cells, ILC2, or baso-
phils are still capable of inducing Th2 responses (132–134), sug-
gesting that IL-4 production by Tfh cells could be crucial for Th2 
cell induction. Nevertheless, the finding that in animal models 
allergic disease symptoms are reduced by GSI administration 
during challenge only indicates that Notch signaling is impor-
tant in maintaining rather than inducing Th2 cell responses. This 
makes Notch signaling an interesting target for development of 
therapeutic strategies in allergic asthma.
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