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Analysis on gene modular network reveals
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Luonan Chen 1,3,4,5 and Yun Zhao1,4,6

Abstract
Genetic robustness is an important characteristic to tolerate genetic or nongenetic perturbations and ensure
phenotypic stability. Morphogens, a type of evolutionarily conserved diffusible molecules, govern tissue patterns in a
direction-dependent or concentration-dependent manner by differentially regulating downstream gene expression.
However, whether the morphogen-directed gene regulatory network possesses genetic robustness remains elusive. In
the present study, we collected 4217 morphogen-responsive genes along A-P axis of Drosophila wing discs from the
RNA-seq data, and clustered them into 12 modules. By applying mathematical model to the measured data, we
constructed a gene modular network (GMN) to decipher the module regulatory interactions and robustness in
morphogen-directed development. The computational analyses on asymptotical dynamics of this GMN demonstrated
that this morphogen-directed GMN is robust to tolerate a majority of genetic perturbations, which has been further
validated by biological experiments. Furthermore, besides the genetic alterations, we further demonstrated that this
morphogen-directed GMN can well tolerate nongenetic perturbations (Hh production changes) via computational
analyses and experimental validation. Therefore, these findings clearly indicate that the morphogen-directed GMN is
robust in response to perturbations and is important for Drosophila to ensure the proper tissue patterning in wing disc.

Introduction
All of the multicellular organisms display specific body

patterns, which is a result of the systemic incorporation of
individual tissues or organs. Therefore, correct tissue
patterns are essential for body pattern formation. Tissue
patterns are well organized in early development process
in both vertebrates and invertebrates, and are mainly
determined by the morphogen gradients, which could

further subdivide the tissue into different regions to fulfill
the specific function1–3.
Morphogens are evolutionarily conserved, diffusible and

long-range signaling molecules that govern the tissue
pattern formation by regulating the expression of down-
stream genes in a distance-dependent and/or
concentration-dependent manner1–4. Because of the dif-
fusible property, different concentrations of morphogens
thus form the morphogen gradient, which results in dif-
ferential gene expression profiles carrying tissue posi-
tional information5–10. The morphogen gradient plays an
indispensable role in tissue patterning and is widely
investigated in the mouse neural tube, the limb bud, the
blastoderm, the anterior–posterior (A–P) and
dorsal–ventral (D–V) axes of Drosophila imaginal discs,
especially in the wing imaginal disc2,7,11.
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The Drosophila wing imaginal disc is one of the most
typical models to investigate the morphogen-mediated
tissue patterning in development4,7,12–14. In the wing
imaginal disc, there exist two axes, the A–P and D–V axes
(Fig. 1a)7,11,12,15. The tissue patterning of wing disc in both
axes is precisely guided by different morphogen gradients
and is critical for the wing growth and proper morphol-
ogy2,16,17 (Fig. 1a, c). Generally, tissue patterning in the
D–V direction is determined by the Wingless signaling
whereas the Hedgehog (Hh) and Decapentaplegic (Dpp)
gradients play important roles in tissue patterning along
the A–P direction9,13,18,19.
In wing discs, Hh is exclusively produced and post-

translationally modified by adding the cholesterol and
palmitic acid in P compartment cells7,11,12, indicating the
help of lipoprotein or extracellular structures in Hh
transport8. Previous reports have shown that Hh patterns
the central part of the wing7,8, and acts as a morphogen to
A compartment cells11. When Hh diffuses into A com-
partment, it binds to Patched (Ptc), the receptor of Hh,
and alleviates the inhibition of Smoothened (Smo), and
then Ci is changed into active form, which could activate a
series of downstream target genes, including dpp and ptc.
Therefore, there exists a secondary effect of Hh gradient
in wing disc patterning, which is achieved by activating
the expression of Dpp in cells in A compartment near the
A/P boundary11. In addition, the graded upregulation of
Ptc could further restrict the spread of Hh via endocy-
tosis1. Moreover, neither the dysfunction nor over-
expression of Hh could result in normal adult wing,
indicating that Hh gradient is critical for the proper wing
disc patterning in Drosophila7,20.
In addition, organisms are always facing various genetic

and/or nongenetic perturbations/alterations during the
development and long-time evolution, which have the
potential to cause abnormality of tissue patterning and
even organism lethality21,22. To avoid those detrimental
changes, organisms usually possess genetic robustness to
tolerate those variations to maintain the phenotypic and
functional stability21,23. Although it is well known that
those morphogen-mediated differential position-related
gene expression (PGE) profiles form a tissue-specific gene
regulatory network to determine proper tissue pattern,
whether morphogen-directed gene expression network
possesses genetic robustness remains an open question
without systematic investigations.
In the current study, we used the Drosophila wing disc

as a model system, in which cells established their spa-
tially specific gene expression profiles under the direction
of morphogen gradients. We adopted the geographical
position sequencing method (Geo-seq) to analyze the
regulatory architectures in different positions along the
A–P axis. By exploiting the modular and binary features
of the measured RNA-seq data, we constructed a

morphogen-directed gene modular network (GMN)
based on the Boolean model, which is an effective
approach for inferring and analyzing biological net-
works24,25. Through in silico and in vivo experiments, we
demonstrated that the morphogen-directed GMN is
robust in response to various genetic perturbations.
Moreover, by combining computational analyses and
experimental validations, we demonstrated that this
morphogen-directed GMN can also tolerate Hh produc-
tion changes. Interestingly, Hh production increase seems
more likely to be tolerated by this GMN compared to Hh
production decrease.

Results
In vivo samples acquired by Geo-seq fit the morphogen
gradients
To simplify our investigation on the morphogen-

mediated genetic robustness, we chose to analyze the
PGE profiles exclusively along A–P direction. For this
purpose, we developed a GFP reporter fly (ptcGal4-uas-
GFP) in which GFP expression is driven by patched (ptc)
promoter that responds to Hh gradient. As a result, the
cells in A/P boundary is marked with GFP (Fig. 1d–d‴).
We then collected the PGE information by adopting Geo-
seq approach26, a method combining laser capture
microdissection27,28 with tiny-sample RNA-seq, and per-
formed a series of bioinformatic analyses (Fig. 1q). To
precisely collect tissue samples along A–P direction, the
GFP-labeled wing imaginal discs were first consecutively
cut into 4 μm-thick sections via frozen section along the
A–P axis (Fig. 1b), and these 4 μm microdissections were
then subjected to precise laser capture to collect tiny
tissue masses from the defined section areas (Fig. 1e–k′).
This sample collection procedure greatly ensures the PGE
profiles derived from those samples faithfully reflecting
morphogen gradients along the A–P axis but not the
Wingless gradient along the D–V axis. Following this
sample collection procedure, we collected a set of frozen
sections in the A/P boundary region in the direction of A
to P compartment and conducted the laser microdissec-
tion to acquire the defined areas (Fig. 1e–k′). The samples
are then named with B1–B7 sequentially according to the
position of frozen sections from A to P compartment
(sample set B). The following qPCR assays demonstrated
that hh was exclusively expressed in position B7 and ci
expression was restricted in the region from positions B1
to B6, indicating that position B7 is in the P compartment
while the region from B1 to B6 is in the A compartment
(Fig. 1l, m). Consistent with previous studies7,15, both ptc
and dpp showed morphogen-mediated dynamic level
changes. The expression of ptc peaked at the A/P
boundary (B6) and gradually declined at the positions of A
compartment remote from the A/P boundary, and dpp
was exclusively expressed in the A compartment and
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Fig. 1 (See legend on next page.)
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reached its expression peak at position B4 (Fig. 1n, o).
More importantly, the expression pattern of gfp was lar-
gely matched with that of ptc, which was highly enriched
at the A/P boundary region (Fig. 1p). Therefore, these
results indicate that the sample collection procedure is
proper to investigate PGE profile changes in response to
the morphogen gradients along A–P axis.
Following this sample collection procedure, we then

collected another set of wing imaginal disc samples from
position A1 to A6 in the direction of A to P compartment
(sample set A). Because of the diffusible property of
morphogen, we hypothesized that genes affected directly
by morphogen gradient would show a monotonous trend.
Thus, we screened out 4524 genes from sample set A and
5396 genes from sample set B whose expression showed a
monotonous trend at least in four consecutive intervals
(positions) and defined those genes as putative
morphogen-responsive genes (MRGs) (Fig. 2a). After
comparison of them, we screened out 4217 common
MRGs from both sample sets, which comprise 93.21% and
78.15% of MRGs in sample sets A and B, respectively,
indicating the reliability of our RNA-seq data (Fig. 2a).
Because the frozen section step of the sample collection
procedure carries subjective judgment of operators, it is
impossible to collect two sets of samples from exactly the
same positions. Instead, each set of samples should be in a
staggered position pattern. This staggered pattern
between different sample sets actually provided us a good
rationale to integrate them into a single sample set, which
will carry more refined PGE profile information. Before
integrating two sample sets A and B, we first removed
batch effect between two datasets by using R package
“limma”29. Then according to the expression of hh, ci, and
dpp, we integrated the A and B sample sets and ordered
them as A1, B1, A2, B2, B3, A3, B4, A4, B5, A5, B6, A6,
and B7 in the direction of A to P compartment along the
A–P axis (Fig. 2b).

Gene modules derived from MRGs showed a binary
expression mode
The position order (A1, B1…to B7) in this integrated

sample set was further confirmed by principal component
analysis of the 4217 common MRGs (Fig. 2c). To explore

the spatial expression patterns of those 4217 common
MRGs, we performed hierarchical clustering analysis and
found that the activation of them was in a position-
dependent manner, i.e., they showed differential respon-
ses to the morphogen gradients along A–P axis (Fig. 2d).
According to the differential PGE patterns of those 4217
MRGs, we grouped them into 12 modules (M1–M12)
(Fig. 2d). Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis by DAVID30,31 of the 12
modules showed that genes involved in the Hh signaling
pathway were enriched in the M8 and M9 (Fig. 2d). More
importantly, the activation of M8 and M9 was detected at
positions B5 and A5, a region close to the A/P boundary,
further suggesting the reliability of our RNA-seq data
(Fig. 2d). Here we also found that M1, M4 and M6 are
mostly enriched with genes involved in the amino acid
metabolism, M2 and M4 are enriched with genes linked to
glycometabolism, while M11 and M12 are enriched with
genes related to purine metabolism, pyrimidine metabo-
lism, and post-translational modification, which are all
essential for the basic life activities. However, the genes in
M7 and M10 are not specified to given pathways (Fig. 2d).
Two models, binary and graded (or continuous), can be

adopted for studying the mechanism of eukaryotic gene
induction32,33. However, in contrast to the graded
induction or continuous dynamics of each individual gene
among 4217 MRGs, the activation of all the 12 modules
was found to be well presented in a binary manner along
the A–P axis based on the RNA-seq data (Fig. 2d, e). The
binary pattern of modules implied the effectiveness of the
Boolean model in studying this process. Boolean network
is one of the simple but effective approaches for con-
structing various networks and recently has been suc-
cessfully applied to infer with gene regulatory networks
and study the behavior of such binary dynamic net-
works24,34,35. Here, to explore the binary dynamics of
modules, we used the Boolean model to study the wing
disc development by constructing the GMN.
Boolean network consists of Boolean variables and

Boolean functions. For a GMN, each module represents a
variable and its value is 1 or 0, which means that the
module is active or inactive. The Boolean function indi-
cates the regulatory relations between variables (or

(see figure on previous page)
Fig. 1 In vivo samples acquired reflecting the morphogen gradients. a The Drosophila wing imaginal disc diagram. The expression patterns of Ci
and Hh specify the A (red region) and P (blue region) compartment of wing imaginal disc, respectively. b The diagram of the adult wing. The whole
adult wing is derived from the wing pouch region (red and blue colored region) in wing imaginal disc. There are five veins in the wing. Among them,
the first three veins (L1–L3) are developed from the A compartment cells and the other two (L4 and L5) are from the P compartment cells. c Diagram
of the wing imaginal disc section view in A compartment. The dot-line circled region is the area subjected to laser capture. d–d‴ Immunostaining of
a ptcGal4-uas-GFP wing imaginal disc. GFP signals (d and green in d‴), Ptc signals (d′ and red in d‴) and Ci signals (d′ and blue in d‴). Scale bar,
50 μm. e–k′ The wing disc sections were cut along A–P axis (bright filed). The circled areas were obtained by laser capture. The wing disc sections
before laser capture (e–k). The wing disc sections after laser capture (e′–k′). l–p Real-time qPCR results showing the expression levels of the indicated
genes at different positions along A–P axis in a wing imaginal disc. q Workflow of Geo-RNA-seq to acquire PGE profiles along A–P axis and
bioinformatics analysis.
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Fig. 2 Sample-set integration and binary spatial module state construction. a A brief diagram of the sample data collection. Data A is
composed of gene information of different positions in wing disc A. There are 4524 MRGs in Data A. Data B is composed of gene information of
different positions in wing disc B. There are 5396 MRGs in Data B. There are 4217 common genes in both data sets. b Expression dynamics of hh, ci
and dpp in sample set integrated with sample sets A and B from RNA-seq data. The Fragments Per Kilobase Million (FPKM) value on the left Y-axis
represents the expression of ci and dpp, and the FPKM value of the right Y-axis represents the expression of hh. c PCA of the hierarchical clustering
results. The arrow indicates the direction of positions from A to P compartment (A1–B7). d Heat map of the expression of 4217 MRGs in integrated
sample set. Heat map shows clear position-based modularization of the active genes. e Binary module states according to the heat map (Blue
indicates inactive and red indicates active).
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modules). To construct the GMN, we first discretized the
gene expression data into binary states for each module.
We assumed that si(j) is the state of module i in position j,
where si(j)= 0 (if module i is inactive in position j) or 1 (if
module i is active in position j). In each module, if the
expression value of gene k in position j (denoted as gkj) is
greater than the average expression of gene k across
positions, then we set gkj= 1, otherwise gkj= 0. We set
si(j)= 1 if more than half of the genes in position j are 1
for module i, otherwise si(j)= 0. Then we obtained a
vector S(j)= (s1(j),s2(j),...,s12(j)), which is the spatial state
of all 12 modules for position j in the system, where the
position j= 0, 1, 2, …, N with N+ 1= 13 positions.
Hence, S= (S(0),S(1),...,S(N)) represents the states for all
the modules across different positions (Fig. 2e and Sup-
plementary Table S1). However, given the fact that the
concentration of the major A–P axis morphogen, Hh, is
almost the same in the P compartment7,12, we assumed
that the module pattern at the position right next to the
B7 would be constant. Hence, we added B7*, a duplication
of B7, on the spatial diffusion data as the final state, and
analyzed the dynamic process of the binary module map
by using S*= (S(0),S(1),...,S(N),S(N+ 1)) to represent the
binary spatial module states along the A–P direction
(Supplementary Table S2).

The GMN constructed by Boolean model reflects the
dynamic interactions between modules
To analyze whether morphogen-directed development

possesses genetic robustness, we first constructed a GMN
based on this established binary module states along the
A–P axis by Boolean model36–38 (Supplementary
Table S2). For this purpose, we set the concentrations
along Hh gradient as time variables in Boolean model.
Thus the spatial development patterns of wing disc can be
considered as a time-based dynamic process of modules.
In this respect, each position j represents a time point,
while a module pattern S(j) is the state of that time point.
Specifically, we used the direction from A to P compart-
ment as the direction of time, and regarded the positions
from A1 to B7* as time j from 0 to 12+ 1 due to the
additional B7*39. Then we used the binary module spatial
data S* (Supplementary Table S2) to construct a GMN
based on Boolean model (i.e., fi in Eq. (1)) to reveal the
dynamic process of the transcriptome along the A–P axis
as follows24,34,40–42. There are 12 modules (M1,…,M12),
and for module i, we have the following modular
dynamics

siðjþ 1Þ ¼ fiðs1ðjÞ; s2ðjÞ; � � � ; smðjÞÞ; ð1Þ

where module i= 1,…,m (m= 12 is the number of the
modules), and position j= 0,…,N+ 1 (N+ 1= 13), and fi
is the Boolean function or modular interaction to module

i from other modules, which is derived from the observed
dataset. Specifically, fi is composed by three opera-
tions39,43, AND, OR, NOT, which determine the regula-
tion rules of other modules to module i, such as f1 for M1
is (NOT M9) AND M10 AND (NOT M12), or
f1 ¼ M9 \M10 \M12. Based on the Eq. (1) and the
observed data, we can get the solution or regulation rule
for each fi by using R package BoolNet36, and obtain the
whole regulation rules, which are given in Supplementary
Table S3. Then, we can construct the GMN based on
Supplementary Table S3.
In this GMN, M3 is the regulatory terminus of the

network (Fig. 3a). Interestingly, M3 has been classified as
a module with enriched genes related to extracellular
matrix–receptor interaction (Fig. 2d), which have been
reported to make important contributions to wing disc
development44. More importantly, systematical analysis
showed that three modules, M7, M8, and M9, form a
regulatory triangle that is at the central position of this
GMN (Fig. 3a), and both M8 and M9 are hubs with more
than six links in the network, further indicting the
importance of these modules in the network (Fig. 3a).
Among the central regulatory triangle, M7 and M8 can
regulate each other directly and M8 can also indirectly
regulate the M7 via M9 (Fig. 3a), in which the gene reg-
ulatory interactions are supported by previous studies
(Fig. 3b–d). These further suggested the reliability of our
GMN result. This regulatory triangle shows that there
exists internal reciprocal regulation, which may con-
tribute to the stability of the GMN and buffer the fluc-
tuations in the regulatory network. In addition, given that
genes involved in the Hh signaling pathway are enriched
in both M8 and M9 (Fig. 2d), this GMN also indicates that
Hh signaling is under precise regulation during the
development of Drosophila wing discs. Moreover, the
importance of such precise regulation on Hh signaling has
been confirmed by our experimental data, in which
abnormal adult wings were formed in the circumstances
of artificial upregulation, knockdown, expression of active
or inactive mutants of ci or smo (Supplementary Fig. S1).

There exist three attractors in the GMN
To further study the behavior and dynamic properties of

the GMN, we performed the attractor analysis of this
GMN by BoolNet package45. The attractor represents a
steady state/states of the Boolean network, toward which
the network tends to evolve (Supplementary Table S4 for
details). The number of states converging to an attractor
is called the basin size of this attractor, and the larger
basin size indicates the more stable network of this
attractor34. Here, the basin of an attractor is all of those
states which leads to this attractor (Supplementary
Table S4). Since we have 12 modules, the GMN has 212

possible states. Attractor analysis showed that total
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212= 4096 possible initial states S(0) converged to three
attractors: 3696 (90.23%) in normal (attractor SN=
000000000111), 382 (9.33%) in abnormal 1 (attractor
SabN1= 000000000000) and 18 (0.44%) in abnormal 2
(attractor SabN2= 000110001000) (Fig. 4a). More impor-
tantly, the module pattern of attractor SN is exactly the
same with that of the P compartment in wing disc,
whereas the patterns of SabN1 and SabN2 are not. In
addition, there are not significant correlations between
those two abnormal attractors with specific module
alterations after analysis of the module patterns of all
possible initial states S(0) which led to SabN1 and SabN2

(Supplementary Fig. S2a, b). The above indicates that
most (>90%) of the 212= 4096 possible initial states S(0)
converge to a single attractor SN corresponding to the
normal physiological module pattern of Drosophila wing
disc, suggesting that this GMN is robust.

The genetic robustness of the GMN
To determine the robustness of this GMN, we analyzed

the dynamic properties of the GMN via the state-
transition tree for all possible initial states (212=
4096)34,41,46. Here, the state-transition tree of an attractor
is all of those trajectories which lead to this attractor
(Supplementary Table S4), and each node in the tree
indicates a state of GMN, while the directed lines repre-
sent transitions between two states. We acquired three
state-transition trees along A–P direction, corresponding
to three attractors, respectively. Among them, the biggest

one converged to the attractor SN (000000000111)
(Fig. 4b), whereas the other two converged to SabN1 and
SabN2, respectively (Supplementary Fig. S2c, d). Interest-
ingly, the total 13 states on the major trajectory of the
biggest tree are concordant with the physiological data,
i.e., A1,B1,…,B7 (Supplementary Table S4; Fig. 4b, the red
dots connected with blue lines) and we then named the
major trajectory (or major path) as physiological trajec-
tory hereafter. Note that a trajectory of the GMN corre-
sponds to a wing disc developmental path, which is also a
path of states from an initial state to an attractor.
To further strength the evidence for the robustness of

this GMN, we made random perturbations on state-
transition table of the GMN in the original spatial diffu-
sion table (Supplementary Table S2). We randomly flip-
ped two bits in the original diffusion table (Supplementary
Table S2) and calculated the attractor and the transition
tree for the perturbed GMN, we did this perturbation
1000 times. These perturbations will not alter the struc-
ture of the Boolean network but may change the trajec-
tory47. We found that 99.92% of the 1000 perturbed GMN
have the same attractors as the original GMN, which were
000000000111 (3658 states on average, 89.31%),
000000000000 (420 states on average, 10.25%) and
000110001000 (18 states on average, 0.44%) (Supple-
mentary Fig. S3a). More importantly, similar to the ori-
ginal GMN, almost 90% of the possible initial states S(0)
in the perturbed GMN are on a state-transition tree,
including the major trajectory, which is concordant with

Fig. 3 GMN constructed by Boolean model. a The GMN based on Boolean model. M3 is the regulatory terminus of the network, which is directly
regulated by the M1, M8, and M9. M7, M8, and M9 form a regulatory triangle at the center of the GMN (the triangle with red outline). b–d The
identified gene regulatory interactions among M7, M8, and M9 from previous reports.
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the physiological trajectory. This result means that the
perturbation does not alter the original major trajectory
(Fig. 4b and Supplementary Fig. S3b). This result also
demonstrated that the GMN is stable or dynamically
robust to various alterations47. To further illustrate
robustness of the trajectory, we calculated and compared
the distribution of the states converging to the attractor
SN. Computational analysis of the distribution of states
between the physiological trajectory and other possible
trajectories (i.e., the trajectory from other possible initial
state to attractor SN) displayed nearly the same distribu-
tion patterns between the original GMN and the per-
turbed one with P-value of 1.9903e−18 (Fig. 4c, red line
vs. green line; detailed method can be found in Supple-
mentary methods). In other words, these findings collec-
tively indicate that the pattern formation governed by
morphogen-directed GMN in Drosophila wing discs is
significantly robust because the random perturbations in
the GMN may frequently lead to organ patterns similar to
the physiological one.
To validate the robustness of the GMN experimentally,

we performed state perturbation (biological) tests by
randomly changing the expression of 30 genes (genes
were selected from Supplementary Table S5). Those

alterations would change the physiological initial state
(A1) (000000100100) to 9 possible initial states S(0) (the
module patterns of the nine possible initial states S(0)
were presented in Supplementary Fig. S4). Compared with
the physiological initial state (A1) (000000100100), each
of those nine possible initial states S(0) carries only one
module state difference (ON or OFF) (Supplementary
Fig. S4). By employing the tubGal80ts; ciGal4 to specifi-
cally turn on (overexpression) or off (RNAi knockdown)
those genes in A compartment in the third instar larvae
stages, we introduced the nine possible initial states S(0)
into the wing disc and examined whether those alterations
could change the Drosophila wing pattern. Before we
detected the adult wing phenotype, RNAi or over-
expression efficiency in the third instar larvae stage was
confirmed (Supplementary Figs. S5–S8). We then detec-
ted the adult wing phenotype, and found that most per-
turbations would not change the vein pattern and the
morphology of the adult wing. Finally our biological
validation demonstrated that only 3 out of 30 (10%) gene
expression alterations resulted in abnormal adult wing
phenotypes (Supplementary Figs. S9 and S10), indicating
that the morphogen-directed GMN is robust in response
to genetic perturbations.

Fig. 4 Computational analyses and biological validation of the GMN robustness of Drosophila wing imaginal disc. a The attractors of GMN.
There are three attractors: attractor normal (SN, 90.23%), attractor abnormal 1 (SabN1, 9.33%) and attractor abnormal 2 (SabN2, 0.44%). b The biggest
state-transition tree converged to the attractor SN. The major (physiological) trajectory is labeled with blue lines connected with 13 physiological
states along A–P axis. c The distribution of the state overlap ratios between all the other possible trajectories and the major trajectory. The red line is
for the original network. Green line is for the randomly perturbed network.
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Since we have tested the GMN robustness in the con-
dition of genetic alterations (Supplementary Figs. S9 and
S10), we then sought to analyze the GMN robustness in
response to nongenetic alterations, such as the Hh level
changes. Here, we used the M8 as a readout of the levels of
Hh production because genes related to the Hh signaling
pathway are enriched in this module (Fig. 2d). When the P
compartment cells produce more Hh ligands, the range of
Hh gradient in the A compartment of wing disc should be
much wider than the physiological one, which will lead to
M8 induction at the positions far away from the A/P
boundary (Fig. 5a). By contrast, when the Hh production is
low in the P compartment, the range of Hh gradient is
supposed to be narrow, which will subsequently turn off
M8 at the positions close to the A/P boundary (Fig. 5a,
detailed in Supplementary methods). By computing the
percentage of possible initial states S(0) that converged to
the normal attractor (attractor SN), we found that more
than 50% of possible initial states S(0) converged to
attractor SN in the condition of slight or moderate Hh
production changes (Fig. 5b, c). In this analysis, we also
found that this GMN is friendly to Hh production increase
rather than production decrease. As shown in Fig. 5b, c, Hh
production increase led to a gradual decline in the per-
centage of possible initial states S(0) which could converge
to attractor SN, whereas severe Hh production decrease
somehow completely abolished the convergence of possible
initial states S(0) to attractor SN. Therefore, these findings
indicate that the GMN is also robust in response to non-
genetic perturbations such as Hh production alterations.
To experimentally confirm the GMN robustness in Hh

production alterations, we adopted the hhGal4 to drive
Hh overexpression or knockdown to respectively increase
or decrease the Hh production in P compartment in third
instar larvae stage. We first detected the Ptc and Ci levels
in different Hh conditions (Fig. 5d–f″). The Hh produc-
tion increase widened the Ptc-positive region along the
A–P axis, whereas the Hh production decrease narrowed
it compared with the wild-type (WT) control (Fig. 5d–f″),
indicating the stretching or shrinkage of the Hh gradient.
Correspondingly, Ci levels were increased or decreased in
response to Hh gradient changes (Fig. 5d′–f′). As we
expected, the adult wing showed no obvious morphology
changes despite the apparent Hh gradient alterations,
which further underlines the robustness of the
morphogen-directed GMN in response to nongenetic
alterations (Fig. 5g–i).

Discussion
Precise tissue patterning is essential for normal biolo-

gical function and phenotypic stability in multicellular
organisms, and the morphogen gradient plays an indis-
pensable role in the proper tissue patterning. Although the
mechanisms of morphogen-directed signal transduction

have been extensively interpreted, the mechanism of how
morphogen achieves constant and precise tissue pattern-
ing remains unclear. A recent study indicates that the
double-negative regulatory logic and the negative feedback
of Hh signaling receptor Ptch1 are important for Hh
gradient formation and robustness to variations of mor-
phogen production48, suggesting that morphogen-directed
precise tissue patterning can be established through reg-
ulating extracellular morphogen signal inputs. Instead of
those extracellular regulatory mechanisms to ensure cells
to receive stable and constant morphogen signals in the
situation of morphogen production changes, there is a
long-standing but yet not fully validated “common sense”
believing that morphogen-directed intracellular genetic
network may possess robustness to guarantee proper tis-
sue patterning in response to various perturbations
including morphogen production variation and genetic
alterations. Here, we combined Geo-seq, mathematical
model and biological validation to investigate whether
morphogen-directed genetic network possesses robustness
in Drosophila wing disc. We demonstrated that the mor-
phogen gradient-directed genetic network along A–P axis
of wing disc is robust in response to either genetic or
nongenetic alterations.
In this study, we found that the activation of gene

modules that contain clusters of the MRGs showed a
binary dynamics from A to P compartment via Geo-seq.
Thus, we used Boolean model to construct the whole
GMN by exploiting this binary modular pattern according
to the data heatmap. The advantage of this GMN is able
to identify the core regulators among thousands of genes
because Boolean model can act as Occam’s Razor to
simplify the network structure by exploiting such binary
modular dynamics, but we caution that this method is still
subject to a potential pitfall that the Boolean model-based
modules may inevitably lose the details of the gene–gene
interaction.
Moreover, the GMN based on the Boolean model

showed that there is a central regulatory triangle, which is
composed of M7, M8 and M9 (Fig. 3a). KEGG pathway
enrichment analysis further showed that several pathways
important for wing disc patterning such as Hh signaling,
JAK-STAT pathway, ubiquitination and autophagy, are
enriched in this regulatory triangle. Furthermore, the
activation of these three modules is mainly located near
the A/P boundary (Fig. 2d, e, positions from B5 to A6),
indicating that the activation of these signal transductions
is critical for the wing disc development. In addition, the
mutual regulations in the regulatory triangle showed that
there are internal self-regulations to keep the proper tis-
sue pattern in the development, which may be the source
of the robustness in Drosophila wing disc.
We then performed the attractor analysis to investigate

the dynamical properties (or asymptotical properties) of
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this GMN. We first analyzed the attractor in the direction
from compartment P to A in line with the diffusion
direction of the Hh ligand. Consequently, we computed a
sole attractor, 000000000000, which means that all
modules are silenced in the A compartment. This module
pattern is apparently not consistent with the biological
status in the A compartment. Then, we computed the
GMN attractor at the direction from A to P compartment.

There are three attractors including SN, SabN1, and SabN2

generated from this GMN. The module pattern of
attractor SN is exactly the same as its physiological
counterpart of the P compartment whereas the patterns of
SabN1 and SabN2 are not. In other words, through this
GMN, most (>90%) of the 4096 initial states S(0) converge
to a single attractor SN corresponding to the normal
physiological pattern of Drosophila wing disc, indicating

Fig. 5 Attractor analysis in response to Hh production changes. a Hypothesis model of how Hh production changes affect the induction status
of M8 along A–P axis. b In response to Hh production changes, the ON or OFF status of M8 at different positions is changed accordingly. Percentage
of the normal attractor (attractor SN) was calculated based on the corresponding M8 changes. c The histogram of the percentage of normal attractor
SN in response to Hh production changes. The vertical coordinate indicates the variations of M8 in response to different Hh levels. The asterisk
indicates the physiological state of M8. The upper states of M8 representing the Hh level decrease. The lower states of M8 representing the Hh level
increase. The X axis showed the percentage of SN. d–f″ Wing discs with the indicated genotypes were immunostained with anti-Ptc (blue) antibody
or anti-Ci (red) antibody. Ptc and Ci signals were presented in Drosophila wing discs with WT (d–d″), Hh overexpression (hhGal4-uas-Hh) (e–e″), or Hh
knockdown (hhGal4-Hh RNAiV1402) (f–f″) genotypes. The width changes of Ptc-positive regions (between two white arrows) indicate the
corresponding Hh gradient alterations (d–f), which is also in accordance with the Ci change (d′, e′ and f′). g–i Morphology of Drosophila adult wings
with the indicated genotypes. An adult wing of WT control (g), an adult wing of Drosophila with Hh overexpression that is driven by hhGal4 in third
instar larvae stage (h), an adult wing of Drosophila with reduced Hh production that is achieved by hhGal4-Hh RNAiV1402 in third instar larvae stage (i).
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the robustness of the GMN. Here, we have to admit that
the attractor analyses in either A-to-P or P-to-A direc-
tions may not fully and physiologically reflect the biolo-
gical process of wing disc development because the
gene–gene regulatory interaction in response to the Hh
gradient during wing disc development is still an open
question.
Moreover, we further analyzed the dynamic properties

of the constructed GMN via the state-transition trajectory
for all possible states. The biggest trajectory converged to
the attractor SN (000000000111), which is consistent with
the original biological status and its basin covers over 90%
of states, indicating the robustness of the GMN. Fur-
thermore, we also made random perturbations on states
in the original GMN to test the GMN robustness. Each
perturbed GMN has the same attractors, major trajectory
and similar distribution of the state overlap ratios to the
original physiological GMN (Fig. 4c and Supplementary
Fig. S3). Moreover, by randomly changing the gene
expression levels in nine possible initial states S(0) of this
GMN, we biologically confirmed that the GMN well tol-
erates most genetic alterations (Supplementary Figs. S4,
S9, and S10). However, each module contains hundreds of
genes, it is impossible to change the status of all genes
simultaneously, we also realized that the single gene
alteration including mutation, overexpression or down-
regulation is almost impossible to change the on or off
status of the indicated modules no matter how closely
connected with other genes or how important it is.
Nevertheless, we do see the development of Drosophila
wing can tolerate most of gene alterations suggesting the
robustness of gene network during Drosophila develop-
ment. In addition, by computing attractors in the condi-
tion of artificial Hh production changes, we demonstrated
that slight or moderate Hh production changes (either
decrease or increase) can be well tolerated by this GMN
(Fig. 5). Therefore, by combining computational analyses
and biological experiments, we for the first time demon-
strated that the morphogen-directed GMN in Drosophila
wing disc is robust in response to both genetic and non-
genetic alterations.
In summary, we adopted the Drosophila wing imaginal

disc as a model and combined Geo-seq method with
bioinformatic analysis to systematically analyze the
dynamics of morphogen-directed gene regulatory net-
works. Here, according to the spatially specific MRG
expression profiles of wing discs, we established a
morphogen-directed GMN. By both computational ana-
lyses and biological validation, we further demonstrated
that the GMN in Drosophila wing disc is robust in
response to various genetic perturbations, which ensures
the phenotypic stability of their wing discs and wings.
Moreover, by computationally mimicking the Hh pro-
duction changes, we demonstrated that this GMN can

well tolerate a certain range of Hh production changes.
Interestingly, this GMN seems more likely to tolerate Hh
production increase rather than production decrease
(Fig. 5), suggesting that deficiency of Hh production is
more detrimental for wing disc development in Droso-
phila. In addition, the Mathematics-Biology integrative
approach employed in the current study can also be
adopted to analyze the genetic robustness of other types
of tissues in diverse organisms.

Materials and methods
Wing disc sample preparation
We adopted the ptcGal4-uas-GFP transgenic fly to

indicate the A/P boundary in wing discs from the third
instar larvae13. All flies were raised in the standard med-
ium at 25 °C unless otherwise indicated. All tools and
reagents were RNase free. The third instar larvae were cut
in half and wing discs were dissected and fixed in ethanol
for 45 s, then imbedded into the OCT (Lecia) on the slide
at −80 °C overnight. On the second day, the wing disc
samples were imbedded again into the mold and frozen
overnight. After that we conducted the cryosection (Lecia
CM 3050s) and cut consecutive 4-μm-thick sections along
the A–P axis with the GFP fluorescence guidance. Then,
the disc pieces were fixed on the PEN membrane slide
(Cat# 50102, MMI), treated by 70% ethanol for 90 s, and
then 100% ethanol for 90 s. After these, the wing disc
pieces far away from the DV axis were cut by the CellCut
laser microdissection system (CellCut System, MMI), by
which we could get the correct samples in the defined
areas without the Wingless effect.
The samples obtained via the laser capture were then

prepared for the RNA extraction by dissolving in 50 μL of
4M GuSCN (Cat# 15577018, Invitrogen), incubated at
42 °C for 15min and centrifuged for 3 min at 4 °C. The
supernatant was transferred into a new 1.5 mL tube, and
771 μL precipitating buffer (78% ethanol, 0.04M sodium
acetate, pH 6.5, 20 μg Glycogen) was added and mixed
thoroughly. The samples were incubated at −80 °C
overnight. Then the samples were centrifuged, and the
pellet was washed by 70% ethanol once and redissolved in
solution buffer (1 μM 3′ CDS primer26, 1 mM dNTP and
2U RNase inhibitor dissolved in the nuclease-free water).
Purified RNA samples were then used for reverse tran-
scription using the SuperScript II reverse transcriptase
(Cat# 18064-014, Invitrogen). Acquired cDNA was fur-
ther amplified using the KAPA HiFi HotStart ReadyMix
(Cat# KK2601, KAPA Biosystems). The amplified cDNAs
were then sent for sequencing by Bohao Bio Company
after the qPCR quality evaluation26.
For the quality evaluation, 2 μL cDNA from each sample

were diluted by 20-fold with nuclease-free water and
further used for qPCR (1 μL diluted cDNA per 10 μL
reaction mix) to check the quality using the SYBR Green
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Mix (Cat# QPK-201, Toyobo) on BioRad CFX96 system.
2−ΔΔCt method was used for the relative quantification
with rpl32 as internal control. Data were presented as
means ± SEM, n ≥ 3. The primers used for qPCR were as
follows (5′ to 3′):
rpl32: CTAAGCTGTCGCACAAATGG; AGGAACTT

CTTGAATCCGGTG
dpp: GGCTTCTACTCCTCGCAGTG; TAATGCTGT

GCTGGTCGAGG
hh: CTCTTCATGGACCGCAACCT; AACGTGAGCT

TCTGGCTCTC
ci: CAAATGCACGTTTGAAGGCTG; ATCCCGGAT

ACTCGCAAGTG
ptc: TGGACAAGGAACTGGTGCTC; CAATTTGCCC

TGAGAAGCTCC
gfp: ACGTAAACGGCCACAAGTTC; AAGTCGTGCT

GCTTCATGTG

Clustering gene expression data and constructing gene
modules
We generated two datasets of gene expression, Data A

and Data B, from two independent biological experiments,
and both datasets contain 15,016 genes. In dataset A, we
detected six positions in the wing disc from A compart-
ment to P in sequence, which were A1, A2, A3, A4, A5, and
A6. Similarly, for dataset B, we detected seven positions in
order, namely B1, B2, B3, B4, B5, B6, and B7. Firstly, we
selected the genes which have the trend of monotonous-
ness in consecutive four positions. Particularly, we selected
gene k (denoted as gk) if the expression of gk satisfies the
following condition in consecutive four positions

gkðjÞ � 2gkðjþ 1Þ; or gkðjÞ � 2gkðjþ 1Þ;

where j represents position, j+ 1 represents the position
next to j from A to P compartment. Through the above
criterion, we screened out 4524 genes in dataset A and
5396 genes in dataset B. Finally, we selected 4217
common genes in both datasets. Thus, we used these
4217 genes for further analysis.
Before further study, we removed the batch effect of two

datasets using function removeBatchEffect in R package
“limma”29 and then integrated two datasets with the
expression of hh, ci, and dpp as described in the main text.
Thus, we obtained a combined dataset with 4217 genes
and 13 positions where we use j= 0,1, …, N (here N+ 1
= 13) to denote the positions A1, B1, A2, B2, B3, A3, B4,
A4, B5, A5, B6, A6, and B7 with a total of 13 positions. We
clustered the 4217 genes into 12 gene modules, named
M1, M2,…, M12, according to the hierarchical clustering
result. In each module, if the expression value of gene k in
position j (denoted as gkj) is greater than the average
expression of gene k across positions, then we set gkj= 1,
otherwise gkj= 0. Then the state of each module can be

estimated in a binary manner. Specifically, assume that si
(j)= 0 or 1, where i= 1, 2, …, m (here m= 12 modules)
and j= 0,1, …, N (here N+ 1= 13 positions), is the state
of module i in position j. We set si(j)= 1 if more than half
of the genes in position j are 1 for module i, otherwise si(j)
= 0. Then a vector S(j)= (s1(j),s2(j),…,sm(j)), where j= 0,
1, 2,…, N, is the state of all modules in position j. Let S=
(S(0),S(1),…,S(N)) represent the spatial states of all mod-
ules for the Hh gradient system and be also the combined
dataset of gene modules for further network analysis.

GMN based on Boolean model
For a set of variables fs1; s2; � � � ; smg, let each variable

si= 0 or 1 be binary, the GMN based on Boolean model
is defined as Eq. (1) or as follows:

siðjþ 1Þ ¼ fiðs1ðjÞ; s2ðjÞ; � � � ; smðjÞÞ;

where j= 0, 1,…, represents the time points, and fi is the
Boolean function or modular interaction to module i from
other gene modules, which can be derived from the
observed dataset. The Boolean equation above or Eq. (1)
means that the value of gene module si at time j+ 1 is
determined by the other variables at time j (including si at
time j) by means of Boolean function fi. Here we regarded
the position as time point due to the development process
of the wing from A to P compartment, and thus we can
utilize GMN to analyze the wing growth based on the gene
modules and their cross-position regulations. First of all,
based on the biological experiments, the Hh concentration
will be constant in the P compartment and the states of all
the modules on the right of B7 will be the same as in
position B7. Hence, we added B7* (S(N+ 1)), a duplication
of B7 (S(N)), on the spatial diffusion or development data
as the final state (Supplementary Table S2), and then the
dynamic process of modules would be from A1, B1, A2,…,
to B7 and B7*, which is thus as the observed sequence or
dataset of the gene modules (states) for the network
inference of the Hh gradient system. Then we used R
package BoolNet to construct the Boolean network or
GMN Eq. (1) based on the dataset of the gene modules.

Attractors and trajectories of GMN
To study the dynamic property of the modular network,

we calculated the trajectory of the GMN Eq. (1) from each
initial value S(0)= (s1(0),s2(0),…,sm(0)), and also its
attractor. If there is a time point T, and when time j is
equal or greater than T, for all the variables
si 2 fs1; s2; � � � ; smg, the following is true,

siðjþ 1Þ ¼ siðjÞ;

then, SðTÞ ¼ ðs1ðTÞ; s2ðTÞ; � � � ; smðTÞÞ is the attractor of
the GMN or Boolean network for gene modules.
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Intuitively, an attractor is a state of modules converged
from the initial state. A trajectory of the GMN is a path of
states from a specific S(0) to an attractor S(T) (details in
Supplementary Table S4).
We applied Eq. (1) by BoolNet on all possible 212=

4096 initial states as S(0). Finally, all of these 4096 states
converged to three stable stationary states, namely,
attractor SN= 000000000111, attractor SabN1=
000000000000 and attractor SabN2= 000110001000. The
basin sizes for these three attractors are 3696, 382, and 18,
respectively. In other words, among all 4096 states, there
are 3696 initial states S(0), in which all converge to the
same attractor SN, 382 initial states converged to the
attractor SabN1 and 18 initial states converged to SabN2.
Despite different initial values, clearly most (>90%) of the
states converge to the attractor SN= 000000000111,
which is the biggest stable stationary state and also cor-
responds to the normal state of wing disc. Through
applying Eq. (1) on all the possible 4096 states, we can also
obtain the state-transition table for three attractors
respectively, which are state-transition graphs or trees as
shown in Fig. 4 and Supplementary Fig. S2. Each red node
represents a state of 12 modules, and the directed line
represents the state transition from one state to the next.
Clearly, most initial states reach the major trajectory (i.e.,
the path of the normal wing disc development, as shown
in Fig. 4) which also leads to the biggest and main
attractor SN. This implies the robustness of the normal
wing disc development even with various perturbations.

Statistics
All of the statistical analyses are one-tailed, unpaired, t-

tests with equal variances. All of the experiments are
repeated three independent times with similar results
unless stated otherwise. Images shown are the repre-
sentative of images obtained, which are not less than 5.
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