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Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression
have long been recognized and extensively reviewed. Recent studies on the generation
of induced pluripotent stem cells (iPSCs) have established the connections among
EMT, energy metabolism, DNA methylation, and histone modification. Since energy
metabolism, DNA methylation, and histone modification are important for cancer
development and there are common characteristics between cancer cells and stem
cells, it is reasonable to identify mechanisms that have been established during
both reprogramming and cancer progression. In the current review, we start from
a brief review on EMT and related processes during cancer progression, and then
switch to the EMT during somatic cell reprogramming. We summarize the connection
between EMT and metabolic switch during reprogramming, and further review the
involvements of DNA methylation and cell proliferation. The connections between
EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA
methylation, histone modification and energy metabolism may provide potential new
targets for cancer diagnosis and treatment.

Keywords: EMT, cancer, reprogramming, energy metabolism, glycolysis, OXPHOS

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is defined as a biological process in which epithelial
cells lose their characteristics and acquire mesenchymal features. During EMT, epithelial cells lose
cell-cell junctions, apical-basal polarity, epithelial markers, and acquire cell motility, a spindle-cell
shape, and mesenchymal markers. The concept of EMT was initially proposed as the epithelial-
mesenchymal transformation by Elizabeth Hay in 1968 (Hay, 1968) as to describe the important
cell changes in embryogenesis; it was later renamed EMT to distinguish it from neoplastic
transformation (Nieto et al., 2016; Yang et al., 2020). EMT and its reverse process mesenchymal-
epithelial transition (MET), display fundamental principles in diversified physiological and
pathological progresses. During metazoan development, cells may sequentially undergo rounds of
EMT and MET, as is seen in somite formation and heart development. EMT also occurs during
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wound healing in adults. Additional evidences related to
development and wound healing has previously been reviewed
extensively (Thiery et al., 2009; Lim and Thiery, 2012; Nieto et al.,
2016). EMT also plays important roles in cancer progression
and tissue fibrosis (Nieto et al., 2016; Pastushenko and Blanpain,
2019; Williams et al., 2019). Interestingly, during the processes
of embryonic stem cells (ESCs) differentiation and induced
pluripotent stem cells (iPSCs) formation, EMT, and MET are
highly relevant to the loss and acquisition of pluripotency (Pei
et al., 2019). EMT and MET are widely involved in various
biological scenarios and display highly plastic and dynamic
manners during cell fate transitions (Figure 1).

Epithelial-mesenchymal transition is regulated at different
levels by multiple factors, including cell signaling, transcriptional
control, epigenetic modification, and post-translational
modifications (Figure 1). Epithelial cells receive EMT-inducing
signals from their niches. For example, cytokines such as
transforming growth factor-β (TGF-β), fibroblast growth factor
(FGF) family, epidermal growth factor (EGF), and hepatocyte
growth factor (HGF) can induce or promote the EMT process
(Zavadil and Bottinger, 2005; Thiery and Sleeman, 2006; Nieto
et al., 2016; Williams et al., 2019). These EMT-inducing signals
up-regulate specific transcription factors called EMT-TFs (e.g.,
SNAI, TWIST, and ZEB; Thiery and Sleeman, 2006; Nieto
et al., 2016; Williams et al., 2019). EMT-TFs usually cooperate
with miRNAs as well as epigenetic and/or post-translational
regulators to control EMT (Ye and Weinberg, 2015; Nieto
et al., 2016). For example, the miR-200 family, which includes
miR-200a, miR-200b, miR-200c, miR-141, and miR-429 play
important roles in repressing EMT by repressing the translation
of ZEB1 and ZEB2 (Korpal et al., 2008; Park et al., 2008).
Moreover, overexpression of miR-200 family members can
upregulate E-cadherin expression (Park et al., 2008). miR-
200 family expression is regulated by DNA methylation;
hypermethylation of miR-200 loci lead to the silencing of
miR-200 family expression, which promotes the EMT process
and causes human tumors (Davalos et al., 2012). The miR-34
family is also known as to regulate EMT and suppress early
phases of tumor metastasis. Ectopic expression of miR-34a
prevents TGF-β-induced EMT, and miR-34a/b/c regulate SNAI1
expression by its 3’-UTR. miR-34a also suppresses SLUG and
ZEB1. Conversely, SNAI1, and ZEB1 also regulate miR-34a/b/c
expression by binding their promoters (Siemens et al., 2011).
Additional details on EMT regulation by miRNA have been
reviewed in multiple papers (Zaravinos, 2015; Suzuki, 2018;
Asadzadeh et al., 2019).

Metabolic changes occur during development and cancer
progression. For example, both ESCs and tumor cells prefer
glycolysis, this similarity between stem cells and cancer cells
indicate the intrinsic mechanism of stemness maintenance
and metabolism. More recently, metabolic pathways including
glycolysis, the TCA cycle, and amino acid and lipid metabolism
have been reported as being involved in EMT, especially in
tumor progression (Kang et al., 2019; Georgakopoulos-Soares
et al., 2020; Sun and Yang, 2020). During tumor progression,
cells prefer to obtain energy by increasing glucose conversion
into lactate, even in oxygen-rich condition (Fischer and Bavister,

1993; Zhou et al., 2012; Setty et al., 2016). This specific energy
metabolism pathway is called aerobic glycolysis. It was first
observed in tumors and described by Otto Warburg in the
1920s, and thus, was named the Warburg effect (Warburg,
1956). This metabolic reprogramming depends upon an increase
in glucose uptake and highly activated glycolysis. Glucose
transporters GLUT1 and GLUT3 can be induced by hypoxia-
inducible factor 1α (HIF-1α), which contributes to glucose uptake
and promote EMT and tumor progression (Macheda et al.,
2005). Enzymes participate in glycolysis, such as hexokinase
2 (HK2), phosphofructokinase (PFK), and pyruvate kinase
M2 (PKM2) participate in glycolysis, play positive roles in
glycolysis flux, and induce EMT (Luo et al., 2011; Patra et al.,
2013; Kim et al., 2017). Tumor cells also show abnormal
lipid metabolism, such as increased lipogenesis (Swinnen et al.,
2006). Enzymes that participate in lipogenesis, such as acetyl-
CoA carboxylase (ACC), fatty acid synthase (FASN), and acyl-
CoA synthetase long chain family member (ACSL), all show
a close relationship with cancer and EMT (Georgakopoulos-
Soares et al., 2020). For example, FASN, which synthesizes of
palmitate from acetyl-CoA and malonyl-CoA, has been widely
reported in various types of cancer. FASN reportedly promotes
EMT through TGF-β signaling in lung cancer (Yang et al., 2016)
and ErbB receptors in breast cancer (Zaravinos, 2015). Lipids
are also important components of the plasma membrane. CTP-
phosphocholine cytidylyltransferase (CTT), which is involved
in phosphatidylcholine synthesis, is contributes to EMT in
intestinal epithelial cells (Arsenault et al., 2013). Furthermore,
amino acid metabolism is critical in EMT progression. Glutamine
also plays important roles in energy supply. Glutaminase 1
(GLS1) and GLS2, which are involved in glutaminolysis can
act as positive regulators of Snai1 (Choi and Park, 2018;
Eiriksson et al., 2018). The important role of metabolism-
related enzymes in cancer and EMT has resulted in many
being selected as therapeutic targets. Additionally, metabolites
from the pathways mentioned above can also regulate EMT
through EMT-TFs and other epigenetic regulators, as we will
discuss in this review.

This review discusses EMT progress and its regulators
during cancer progression and iPSCs formation. We will also
explore the relationship between metabolism and epigenetics in
connection with EMT.

EMT IN CANCER AND STEM CELLS

EMT Plays Critical Roles in the Cancer
Metastatic Process
The important roles of EMT during tumorigenesis and metastasis
have been demonstrated for decades. Most lethal human
malignancies are derived from epithelial tissues, including the
breast, colon, pancreas, and liver (Ye and Weinberg, 2015).
Approximately about 90% of cancer-associated deaths are caused
by metastatic disease rather than primary tumors (Lambert
et al., 2017). The EMT program confers upon these epithelial
cells properties critical to invasion and metastatic dissemination
including notably increased motility, invasiveness, and the ability
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FIGURE 1 | A brief view of EMT and MET. EMT and its reverse process MET occur during physiological and pathological progresses and display a spectral
characteristic. During EMT, epithelial cells lost its apical-basal polarity and connections between cells and basement membrane. EMT is regulated by multiple factors,
such as transcription factors, cell signaling and epigenetic modification. TJ, tight junction; AJ, adherens junction; DS, desmosome; and HDS, hemidesmosome.

to degrade components of the extracellular matrix (ECM)
components (Nieto et al., 2016). These complex metastatic
cascades are orchestrated and coordinated by a series of master
EMT-TFs that have been extensively explored (Craene and
Berx, 2013; Lamouille et al., 2014). EMT-TFs facilitate the EMT
process, but it is unclear whether EMT is indispensable for
migration. Inhibiting EMT by overexpressing miR-200 did not
affect lung metastasis when using an EMT lineage-tracing system
in a spontaneous breast-to-lung metastasis model (Fischer et al.,
2015). Furthermore, suppressing EMT by deleting Snai or Twist
in a primary tumor did not decrease the invasion and metastasis
of pancreatic carcinoma cells (Zheng et al., 2015). However, two
subsequent have reports pointed out the shortcomings in these
experiments (Aiello et al., 2017; Ye et al., 2017). These opposing
opinions reflect the complexity of the EMT processes that must
to be carefully investigated both in vivo and in vitro.

One of the difficulties in studying EMT arises because the
transitions between epithelial and mesenchymal states are not
binary. Instead, carcinoma cells often exhibit a spectrum of
epithelial-mesenchymal characteristics (Jolly et al., 2017; Mathieu
et al., 2017; Zhang and Weinberg, 2018). E-cadherin, occludins,
and cytokeratins are the most commonly used markers for the
epithelial traits, and N-cadherin and vimentin are the most
commonly used for the mesenchymal state (Thiery et al., 2009).
Recent studies have shown that some cancer cells, such as
breast, pancreatic, renal, lung, and colorectal cancers, express
both epithelial and mesenchymal markers (Bronsert et al., 2014;
Sampson et al., 2014; Zhang et al., 2014; Schliekelman et al., 2015;
Hiew et al., 2018). In fact, many cancer cells may not undergo
a complete EMT process, but rather steadily acquire these
intermediate, or hybrid epithelial/mesenchymal E/M phenotypes.

The partial EMT or hybrid E/M phenotypes have multiple
advantages compared to the complete EMT phenotype. It is
suggested that these collectively migrating cells are the primary
actors of metastasis (Jolly et al., 2015). To form distant metastases,
cancer cells dissociate from the primary tumor, invade adjacent
tissues, and intravasate into lymphatic and blood vessels to later
colonize lymph nodes and distant organs (Nieto et al., 2016).
Circulating tumor cells (CTCs) are defined as cancer cells that are
released from a solid tumor and enter the peripheral blood; they
are considered as biomarker of the metastatic process (Barcellos-
Hoff et al., 2013). Most CTCs show hybrid E/M markers,
suggesting an incomplete EMT. In addition, although EMT plays
important roles in tumor progression, its reverse process, MET,
also is significant in terms of dissemination. The last step of the
invasion-metastasis cascade is termed colonization and largely
depends on MET (Dongre and Weinberg, 2019).

Relationship Between Cancer Stem Cell
Plasticity, EMT, and Metabolic
Reprogramming
The concept of cancer stem cells (CSCs) is based on the
observation that not all cells in tumors are equal. A small
number of tumor cells display two key features that distinguish
them from the others: self-renewal and differentiation potential
(Foster and Archer, 1979; Zhang and Wang, 2008). With these
features, CSCs are hypothesized to play essential roles in tumor
metastasis, heterogeneity, drug resistance, and recurrence. Since
EMT and the metastatic cascade are inextricably linked, the
relationship between EMT and CSCs has been investigated.
A number of studies have now shown that EMT programs
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induce cancer cell stemness in many kinds of tissues (Dongre
and Weinberg, 2019) and that EMT-TFs displayed the capacity
to promote CSCs stemness in mouse and human models (Ye
et al., 2015). Development of the cancer stem cell concept
has been reviewed in several papers (Clevers, 2011; Batlle and
Clevers, 2017). The isolation of CSCs from cancer cells and
subsequent xenotransplantation assays provide evidence of the
existence of CSCs. In the 1990s, CSCs were identified in acute
myeloid leukemia (AML; Lapidot et al., 1994; Uckun et al.,
1995; Bonnet and Dick, 1997). In 2003, CSCs were proved to
be able to isolate from a solid tumor by a xenograft assay of
small numbers of CD44+CD24−/low cells which isolated from
human breast cancer (Al-Hajj et al., 2003). Interestingly, cancer
cells are observed exhibiting a plasticity that demonstrates the
ability to switch between CSCs and non-CSCs in different cancers
(Thankamony et al., 2020). For example, human basal breast
cancer cells can switch from non-CSCs to CSCs by regulating the
ZEB1 promoter (Chaffer et al., 2013). Another example for CSC
plasticity is from studies on colorectal cancer. LGR5 is a marker
of colorectal CSCs; a recent colorectal cancer study showed that
LGR5 negative cells can become CSCs and lead to metastasis
(Fumagalli et al., 2020).

Epithelial-mesenchymal transition-TFs are often found
accompanied by features of stemness. Slug (also known as Snai2)
is proved to be a key inducer of stemness (Guo et al., 2012;
Nassour et al., 2012). Other EMT-TFs, such as Twist, Snai1,
and Six1 also induce stemness in various breast cancer models
(McCoy et al., 2009; Morel et al., 2012; Ye et al., 2015). ZEB1 is
required for stemness in pancreatic cancer; it inhibits members of
the miR-200 family to maintain a stem-like phenotype (Wellner
et al., 2009). EMT-related cell signaling factors, such as TGF-β,
can be secreted in tumor stromal cells. This boosts metastatic
potential and causes a poor-prognosis in colorectal cancer (Calon
et al., 2015). Although the EMT process is associated with CSC
characteristics, the relationship between EMT and stemness is
still a controversial issue in tumorigenesis. Uncoupling EMT and
stemness has been discussed in several studies and explained
by the two events may occur in parallel (Nieto et al., 2016;
Batlle and Clevers, 2017). EMT-TFs which critical in both EMT
and CSCs are also provided evidence of uncoupling of the two
events. For example, a study on Twist1 shows it is essential
for initiate of skin tumorigenesis, however, Twist1 controlled
tumor stemness independently of its EMT function (Beck et al.,
2015). Recent studies have shown that cells with a hybrid E/M
feature are much more likely to gain stemness (Bierie et al., 2017;
Pastushenko et al., 2018). These studies may provide new insights
for cancer therapy.

Metabolic reprogramming is one of the hallmarks of tumor
progression. As discussed in the introduction, cancer cells change
cell metabolism in diverse ways to gain energy and meet the
requirements for proliferation. Glucose metabolism is considered
the most studied metabolic change in CSCs. However, the glucose
metabolism phenotype of CSCs, whether glycolysis or oxidative
phosphorylation (OXPHOS), depends on both the tumor origin,
and microenvironment (Thankamony et al., 2020). CSCs also
show an interplay between glycolysis and OXPHOS (Yu et al.,
2017). These metabolic characteristics increase the difficulty in

providing effective cancer therapies; other metabolic pathways
and metabolites must be investigated further.

EMT-MET Processes in Physiological
and Pathological Stem Cells
Stemness or stem cells are functionally defined as cells with the
ability to self-renew and differentiate. In addition to cancer stem
cells, other kinds of stem cells are isolated during development
and in adults. One well accepted classification is that of ESCs
and adult stem cells (ASCs). ESCs are derived from the inner
cell mass of blastocysts and can differentiate into three germ
layers and form chimeras (Evans and Kaufman, 1981; Martin,
1981), while ASCs are isolated from adult tissues in special
niches and are capable of differentiating into several cell types
depending on their origins (Shyh-Chang et al., 2013; Clevers,
2015). Although ESCs, ASCs, and CSCs are all considered
as stem cells, their stemness is displayed in different ways.
For example, both ESCs and ASCs show their differentiation
abilities by forming normal tissues or cells. However, CSCs
displayed their differentiation potential by promoting tumor
heterogeneity (Clarke et al., 2006). These stem cells differ in
terms of their gene expression profiles, transcriptional regulatory
networks, and epigenetic modifications; however, they show
their stemness in their consecutive EMT-MET changes. During
embryonic development, early mesoderm cells are formed by
EMT and migrate to generate intermediate mesoderm, chorda-
mesoderm, paraxial mesoderm, and lateral plate mesoderm.
These mesoderm cells then undergo MET to give rise to
the urogenital system, notochord, somite, and somatopleure
(Nieto, 2013). In contrast, CSCs caused by EMT undergo
MET upon reaching an appropriate niche to become a new
tumor (Nieto, 2013). Intriguingly, this EMT-MET progress has
also been reported in pluripotency setup (Liu et al., 2013).
Mouse embryonic fibroblasts (MEFs) can be reprogrammed
into iPSCs by introducing exogenous Oct4, Sox2, Klf4, and c-
Myc. Furthermore, reprogramming efficiency can be improved
by sequentially expressing these transcriptional factors. All
these phenomena imply that epithelial or even mesenchymal
cells can reach a more active mesenchymal state to promote
their plasticity.

EMT IN REPROGRAMMING

Early EMT Promotes Reprogramming
Direct reprogramming of somatic cells into iPSCs by defined
factors is known as reprogramming (Takahashi and Yamanaka,
2006). A noticeable change that occurs during reprogramming
is the transformation of MEF cells from a mesenchymal
morphology into tightly packed colonies (Shu and Pei, 2014).
This transition is defined as MET and is a critical step in
acquiring pluripotency (Li et al., 2010; Samavarchi-Tehrani et al.,
2010). Exogenous transcription factors Oct4, Sox2, and c-Myc are
orchestrated to suppress Snai1, Tgfb, and Tgfbr to retain the non-
mesenchymal characteristics of MEFs; Klf4 induces epithelial
properties by directly up-regulating E-cadherin (Li et al., 2010).
Activating BMP signaling or repressing TGF-β signaling is
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beneficial for iPSC generation by promoting MET progress (Li
et al., 2010; Samavarchi-Tehrani et al., 2010). Not long after the
discovery of the essential role of MET during reprogramming,
another publication revealed that a sequential EMT–MET
mechanism at the beginning of reprogramming can enhancer
reprogramming efficiency (Liu et al., 2013). Briefly, the sequential
introduction of Oct4 and Klf4 first, followed by c-Myc, then
Sox2 (OK+M+S), can induce Snai2 up-regulation and inhibit E-
cadherin expression in the early stage of reprogramming. Further
analysis revealed that this temporary EMT can generate iPSCs
with a high efficiency of about 600% of basal level (Liu et al.,
2013). Coincidentally, transient exogenous C/EBPα expression
followed by the activation of Yamanaka factors (OSKM) in mouse
primary B cells is capable of initiating EMT, which induces a 100-
fold increase in reprogramming efficiency (Stefano et al., 2014).
Hence, although MET is an essential event for reprogramming,
having a more mesenchymal state at the early stage may provide
a more facilitated state for cell fate transition.

EMT and Metabolic Regulation Play
Multiple Roles During Reprogramming
The generation of iPSCs is a multi-step process. In addition to
MET, another important change is the metabolic switch that
occurs during reprogramming. Unlike somatic cells that use
OXPHOS to gain energy, pluripotent stem cells, including ESCs
and iPSCs, and prefer glycolysis (Zhang et al., 2012). Using
small molecules to activate glycolysis and inhibit OXPHOS or
upregulate glycolytic gene expression can promote the metabolic
switch from oxidative phosphorylation to glycolysis (OGS) and
accelerate reprogramming (Folmes et al., 2011; Zhang et al.,
2012; Prigione et al., 2014; Cao et al., 2015). Since both OKSM-
induced EMT-MET processes and facilitated OGS accelerate
reprogramming, it remains an open question whether EMT and
OGS cooperate to regulate iPSCs.

A recent study explored the relationship between early EMT
and OGT (Sun et al., 2020). This study used 5C medium,
a chemically-defined medium (He et al., 2015), to promote
reprogramming by inducing a sequential EMT-MET process.
Further analysis revealed that 5C medium increases glycolysis,
inhibits OXPHOS, and accelerates the OGS process compared
to a serum-containing medium. Early EMT and OGS may help
cells overcome epigenetic barriers during reprogramming by
upregulating five epigenetic factors, Bmi1, Ctcf, Ezh2, Kdm2b,
and Wdr5, which have been proven to facilitate reprogramming
in previous studies (Ang et al., 2011; Moon et al., 2011; Wang
et al., 2011, 2017; Onder et al., 2012; Figure 2). The barriers
that trapped cells at the pre-iPSC stage during reprogramming
in serum containing medium (Chen et al., 2013b) may be
overcome by the five epigenetic factors present in 5C medium.
However, because the positive feedback loop between early EMT
and facilitated OGS is too strong, further reprogramming is
inhibited at the late stage by the induction of EMT and glycolysis
to a level that is too high for further reprogramming and by
preventing necessary MET (Sun et al., 2020). These findings are
consistent other works showing that EMT induced at the late
stage of reprogramming significantly impairs the generation of

pluripotency (Liu et al., 2013). Furthermore, HIF2α, which is
upregulated in 5C medium, represses reprogramming at later
stages (Mathieu et al., 2014).

In addition to glycolysis, other metabolic pathways and
metabolites are involved in EMT during reprogramming.
A recent report showed that phospholipid remodeling is
important for acquiring pluripotency by facilitating MET (Wu
et al., 2019). This study demonstrated that the CDP-ethanolamine
(CDP-Etn) pathway mechanically promotes reprogramming at
the early stage through the CDP-Etn-Pebp1 axis to inhibit
mesenchymal genes. Since metabolic regulation plays critical
roles in EMT regulation and tumor progression, additional
metabolic and EMT-MET connections in reprogramming
need to be studied.

Metabolism Regulates EMT and
Reprogramming Through Histone
Modification
As discussed above, while OGS upregulates five epigenetic
factors in an HIF1α-dependent manner, early EMT promotes
the expression of EMT-TFs that are enriched by both the five
epigenetic factors and glycolytic genes (Sun et al., 2020). These
reveal that the mesenchymal state may act as a link between
metabolic and epigenetic regulation. Since metabolites generated
during multiple metabolic processes are utilized in enzymatic
reactions leading to epigenetic modifications and transcriptional
regulation as previously reviewed (Ryall et al., 2015), we will focus
on the crosstalk between EMT-MET, metabolism and epigenetic
regulation during somatic cell reprogramming.

A vital role for metabolism in regulating cell fate has
been derived from studies documenting rapid and dynamic
changes in substrate utilization. Metabolites, including α-
ketoglutarate (αKG), acetyl-coA, S-adenosyl methionine (SAM),
and flavin adenine dinucleotide (FAD), regulate many of the
important cell fate conversions by epigenetic catalytic reactions
(Ryall et al., 2015; Wu et al., 2016; Figure 3). For example,
glycolysis-produced acetyl-coA have been reportedly controls the
early differentiation of ESCs by regulation histone acetylation
(Moussaieff et al., 2015).

S-adenosyl methionine, which functions as a methyl donor
for both DNA and histone methylation, is important for
the maintaining of pluripotency in both mouse and human
ESCs (Ng et al., 2013; Shiraki et al., 2014). The cellular
αKG/succinate ratio contributes to the ability of ESCs to suppress
differentiation (Carey et al., 2015). αKG/succinate ratios are
involved in the regulation of a large family of αKG-dependent
dioxygenases, such as Jumonji C (JmjC)-domain-containing
histone demethylases (Carey et al., 2015; Figure 4). JHDM1A
and JHDM1B (also known as KDM2A and KDM2B, respectively)
belong to the Jumonji family of proteins and have been shown
to demethylate H3K36me2/3 (He et al., 2008). Early studies
showed that JHDM1A/1B inhibit Ink4a/Arf and activate miR-
302/367 to promote reprogramming (Wang et al., 2011). A recent
investigation showed that JHDM1B works as a component
of the PRC1.1 complex and cooperates with BMP signaling
to upregulate reprogramming efficiency by promoting MET

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 August 2020 | Volume 8 | Article 760

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00760 August 4, 2020 Time: 15:48 # 6

Lai et al. EMT in Cancer and Reprogramming

FIGURE 2 | Regulation of EMT–MET during reprogramming. Induced pluripotent stem cells (iPSCs) can be accelerated by sequential EMT–MET process. Early EMT
can be induced by sequential expression of Yamanaka factors, adding TGF-β or inhibiting of LSD1. These treatments up-regulation of EMT-TFs and also proved
metabolic switch from OXPHOS to Glycolysis (OGS). EMT and OGS coordinate to facilitate the reprogramming through an epigenetic regulation way.

FIGURE 3 | Crosstalk between metabolic and epigenetic regulation. Metabolites from different metabolic pathways participate epigenetic regulation as cofactors.
Dioxygenases such as HMTs and DNMTs use SAM as methyl group donor and the reverse demethylation reactions use αKG or FAD to receive the methyl groups.
Acetylation of histones is achieved by HATs which transfer acetyl groups from acetyl-CoA. To remove acetyl group from histone proteins, NAD+ is used as a cofactor
to support the SIRT activities which belongs to histone deacetylases (HDACs). SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine; NAD+, oxidized
nicotinamide adenine dinucleotide; NAM, nicotinamide; FAD, flavin adenine dinucleotide; αKG, α-ketoglutarate; HMT, histone methyltransferase; HAT, histone
acetyltransferase; and SIRT, Sirtuin.

(Zhou et al., 2017). Consistently, histone demethylases JMJD1
and JMJD2 (also known as KDM3A and KDM4A, respectively)
function as the on/off switch for pre-iPSC fate by regulating
H3K9 methylation status at core pluripotency loci (Chen et al.,
2013b). In addition, lysine-specific demethylase 1 (LSD1, also
known as KDM1A) functions through an FAD-dependent
oxidative reaction to specifically catalyze the demethylation of
H3K4me1/2 or H3K9me1/2 (Shi et al., 2004; Amente et al.,
2013). Accordingly, inhibiting LSD1 by shRNA or a small
molecular inhibitor can promote reprogramming at the early

stage by increasing both OGS and exogenous transcriptional
factors expression (Sun et al., 2016).

Histones can also be acetylated and deacetylated by histone
acetyltransferases (HATs) and histone deacetylases (HDACs),
respectively. HATs mediate the acetyl group transfer from
acetyl-CoA, a metabolite from glycolysis. A higher level of
acetyl-CoA is found in mouse ESCs compared to that of
differentiated cells (Wang et al., 2020) and reportedly controls
the early differentiation of ESCs by regulating histone acetylation
(Moussaieff et al., 2015). In addition to histone acetylation,
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FIGURE 4 | DNA demethylation and histone demethylation regulate MET process during reprogramming. TET and TDG are essential for early MET through
demethylating miR-200 loci and TET1 plays different roles in reprogramming in condition of the present or absent of vitamin C. Passive DNA demethylation through
knockdown the expression of Dnmt1 also promote MET. Histone demethylases also regulate MET process in different ways.

non-histone acetylation is also related to pluripotency. A recent
study showed that the inhibition of CBP/EP300, which is
closely related HATs, can repress the expression of mesenchymal
transcription factor PRRX1 and promote reprogramming
(Ebrahimi et al., 2019). HDACs are grouped into four classes.
Class I (HDACs 1–3 and 8), class II (HDACs 4–7, 9, and 10), and
class IV (HDAC 11) are zinc-dependent metalloproteins; class
III (SIRT1-7) are NAD+-dependent proteins (Emmett and Lazar,
2019). Class I HDAC1-HDAC2 can form multiprotein complexes
named SIN3A, NuRD, and CoREST, respectively. These HDAC
containing complexes play different roles in establishing and
maintaining pluripotency in a context-dependent manner.
For example, the SIN3A/HDAC2 complex cooperates with
NANOG to promote reprogramming (Saunders et al., 2017).
However, HDAC2 reportedly acts as a barrier to reprogramming
in other studies (Anokye-Danso et al., 2011; Wei et al.,
2015). Interestingly, we noticed that miR-302/367 can promote
reprogramming by inhibiting HDAC2 (Anokye-Danso et al.,
2011), but in a contemporaneous study by Liao et al., miR-
302/367 accelerated MET by inhibiting TGFBR2 and promoting
E-cadherin expression (Liao et al., 2011). These studies indicate
that the relationship between HDACs and EMT, and indeed,
deacetylation by HDACs, can occur without histones. Snai1
interaction with HDAC1 and HDAC2 is dependent upon its
SNAG domain and can mediate E-cadherin repression (Peinado
et al., 2004). Sirtuins (SIRT1–7) belong to class III HDACs
and depend on NAD+ to exhibit their enzyme activity. SIRT1
enhances reprogramming via SOX2 hypoacetylation (Mu et al.,
2015), as well as through the miR34a-SIRT1-p53 axis (Lee et al.,
2012). STRT7 reportedly reverse metastatic phenotypes in tumors
(Malik et al., 2015) and may affect MET during reprogramming
(Hsu et al., 2018).

DNA Methylation Regulates EMT-MET
During Reprogramming
DNA methylation is another area of crosstalk between
metabolism and epigenetics that also plays critical roles in
regulating EMT-MET during reprogramming (Figure 2). In
mammals, methyl groups supplied by SAM are added at the

5-carbon of cytosines by the catalysis of DNA methyltransferases
(DNMTs; Wu and Zhang, 2014). DNA methylation can be
removed by both TETs-mediated active DNA demethylation
and cell cycle-dependent passive DNA demethylation (Wu
and Zhang, 2014, 2017). Since reprogramming occurs along
with DNA demethylation in pluripotency-related loci, the
mechanisms of DNA demethylation during iPSCs formation
has been invested. TET proteins belong to αKG-dependent
dioxygenases and require Fe2+ and vitamin C (Vc) as assistant
(Ngo et al., 2019). Both TET1 and TET2 promote reprogramming
(Doege et al., 2012; Costa et al., 2013; Gao et al., 2013), and under
certain conditions, Tet1 even could replace Oct4 (Gao et al.,
2013). Furthermore, active demethylation promoted by TETs
and TDG is essential to reactive the miR-200 family that
enables MET by inhibiting SNAI/ZEB in the reprogramming
process (Hu et al., 2014). Repressing DNA methylation by
shDnmt1 or promoting passive demethylation by shp53-
induced proliferation acceleration also promotes MET and
facilitates iPSCs generation (He et al., 2017b, 2019). Further
analysis has revealed that both shDnmt1-induced passive DNA
demethylation and TET1-induced active DNA demethylation
prefer hemi-methylated CpG sites that are enriched at the loci
of core pluripotency genes and epithelial markers (He et al.,
2019). The effects of DNA methylation on EMT-TFs were also
studied in several types of cancer (Lee and Kong, 2016). Thus,
metabolites from diverse metabolic pathways contribute to cell
fate conversions by modulating epigenetic properties and show a
high correlation with EMT-MET.

Intriguingly, further study of TET1 found that the
physiological concentration of vitamin C increases TET1
activity, which in turn impairs the MET process and inhibits
reprogramming (Chen et al., 2013a). In the absence of
vitamin C, TET1 induces DNA demethylation on the loci
of core pluripotency genes and epithelial markers rather than
mesenchymal markers, which results in MET and accelerated
reprogramming. The DNA demethylation activity of TET1
is enhanced in the presence of vitamin C. Because DNA
methylation on the loci of core pluripotency genes and
epithelial markers is already at a low level, the expression of
core pluripotency genes and epithelial markers is not further
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affected. However, increased TET1 activity can induce DNA
demethylation on the loci of mesenchymal markers, which in
turn suppresses the expression of core pluripotency genes and
epithelial markers. In addition to their DNA demethylation
function, TET proteins also have important functions that are
independent of catalytic activity. For example, TET1 could
be recruited by Polycomb repressive complex 2 (PRC2) at
H3K27me3 positive regions in ESCs (Neri et al., 2013). TET1 also
interacts with SIN3A/HDAC complex (Vella et al., 2013) which
is reported to promote pluripotency (Saunders et al., 2017).
TET proteins including TET1, TET2, and TET3, are reported
associated with the O-GlcNAc transferase (OGT) (Deplus et al.,
2013; Vella et al., 2013; Chen et al., 2013c) in ESCs. OGT or
O-GlcNAcylation could further recruit SET/COMPASS (Deplus
et al., 2013) or modified transcription factors by O-GlcNAc, such
as Pou5f1 (Constable et al., 2017), that may promote somatic
cell reprogramming. Recent studies show that O-GlcNAcylation
effects EMT through multiple pathways and promote cancer
metastasis (Lucena et al., 2016; Harosh-Davidovich and Khalaila,
2018; Jiang et al., 2019; Feng et al., 2020), these may set up
the relationship between TET and EMT. Tsai et al. reports
TET1 could interacts with HIF-1α and HIF-2α to regulate
hypoxia-induced EMT (Tsai et al., 2014).

Therefore, regulation of DNA methylation can affect both
EMT and its reverse process, MET.

CONCLUDING REMARKS

Although the field of EMT research has developed rapidly, many
critical questions remain unanswered. For example, the driving
force initiating EMT and the manner by which dose metabolism
influences EMT, as well as the function of the mesenchymal
state during the EMT-MET process are still unknown. Since
transcription factors are important for cell identity, EMT-TFs
are considered critical for losing epithelial characteristics and
gaining mesenchymal phenotypes (Nieto, 2013). Hence, the
regulation of EMT-TFs cooperating with cell signaling in vitro
and transcriptional and epigenetic controls in vivo need to be
carefully considered when studying EMT.

Mesenchymal State Displays Plasticity of
Cells
The concept of EMT comes from studies on early embryogenesis
and is now widely investigated in cancer and stem cell biology.
The transitions between mesenchymal and epithelial states
demonstrate the plasticity of the cells. The sequential transition
of EMT-MET not only occurs during tumor metastasis and
somatic cell reprogramming as discussed above, but is also
observed in cell differentiation and transdifferentiation. For
example, a sequential EMT-MET drives the differentiation of
human ESCs toward hepatocytes (Li et al., 2017). Activin
A-induced formation of definitive endoderm (DE) accompanies
a synchronous EMT mediated by autocrine TGF-β signaling and
activates SNAI1 to initiate EMT followed by MET (Li et al.,
2017). In addition, a temporary EMT-MET can increase the
conversion efficiency of mouse astrocytes into induced dopamine

neurons (Cervo et al., 2017) and human gastric epithelial cells
into multipotent endodermal progenitors (Wang et al., 2016).
Interestingly, in the early study of 5C medium, sequential EMT-
MET was also observed during the transition of MEFs to
neuron-like cells (He et al., 2017a). All of this evidence suggests
that the mesenchymal state may be a necessary state for cell
fate transition.

Lessons From Somatic Cell
Reprogramming Provide New Insights
for Cancer Therapy
A recent study revealed the cooperation of EMT-MET and OGS
during reprogramming as discussed above (Sun et al., 2020).
However, coordinated regulation between EMT-MET and OGS
should be investigated in other types of cell fate transition for
common regulatory mechanisms. Metabolic shifts can control
EMT during tumor metastasis, and metabolites from different
metabolic pathways are involved in epigenetic regulation (Ryall
et al., 2015; Kang et al., 2019). Both cancer cells and ESCs
prefer to obtain energy through glycolysis, implying an intrinsic
connection between the two kinds of cells. Furthermore, lessons
can be learned from somatic cell reprogramming. For example,
AML can be caused by the mutation of isocitrate dehydrogenase
(IDH) IDH1 and IDH2 or TET2 (Figueroa et al., 2010; Quivoron
et al., 2011). TET2 is a dioxygenase and its activity depends upon
αKG, Fe2+, and Vc (Blaschke et al., 2013; Yin et al., 2013; Chen
et al., 2013a). IDH1 and IDH2 convert isocitrate to αKG, which
supports TET2 activity. A mutation in IDH1 or IDH2 causes the
accumulation of 2-hydroxyglutarate (2-HG) and inhibits TET2
enzyme activity, resulting increased DNA methylation that drives
AML progression (Lu et al., 2012). Previous studies on TETs
in ESCs and reprogramming have showed that Vc can activate
TETs as a cofactor, and a high dose of Vc has rescued TET2
deletion in a mouse model of leukemia (Agathocleous et al., 2017;
Cimmino et al., 2017).

Prospects for Cancer Therapy
Recent studies on CSCs focusing on their plasticity and resistance
to therapy have been discussed in several other reviews (Batlle
and Clevers, 2017; Najafi et al., 2019; Thankamony et al., 2020).
Firstly, enzymes involved in metabolic reprogramming during
tumor progression can be used as biomarkers for the therapeutic
targeting of cancers (Sun and Yang, 2020). In addition to IDH,
FASN in lipid synthesis and GLS1 in glutamine metabolism have
been reported as targets for breast cancer and colorectal cancer,
respectively, Sun and Yang (2020). Secondly, regulators involved
in EMT can be used biomarkers and for therapeutic targeting
(Williams et al., 2019). For example, both the transcriptional
and epigenetic regulation of EMT-TFs could be treatment
targets (Sun and Yang, 2020). Thirdly, since CSCs contribute
to tumor resistance and recurrence, special attention must be
paid to CSCs. Therefore, this review has discussed EMT in
the context of both cancer and reprogramming, and explores
the relationship between EMT, metabolism, and epigenetic
regulation. These mechanisms could provide new scenarios for
regenerative medicine and cancer therapy.
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