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Acute exacerbation is the major cause of asthma morbidity, mortality, and health-care

costs. Respiratory viral infections, particularly rhinovirus (RV) infections, are associated

with the majority of asthma exacerbations. The risk for bronchoconstriction with RV is

associated with allergic sensitization and type 2 airway inflammation. The efficacy of the

humanized anti-IgE monoclonal antibody omalizumab in treating asthma and reducing

the frequency and severity of RV-induced asthma exacerbation is well-known. Despite

these clinical data, mechanistic details of omalizumab’s effects on RV-induced asthma

exacerbation have not been well-defined for years due to the lack of appropriate animal

models. In this Perspective, we discuss potential IgE-dependent roles of mast cells and

dendritic cells in asthma exacerbations.
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INTRODUCTION

Asthma is a T helper cell 2 (Th2) cell-driven chronic inflammatory lung disease, characterized
by airway inflammation, airway hyperresponsiveness (AHR), airway remodeling, and reversible
airway obstruction (1, 2). The prevalence of asthma has been increasing for the last several decades
(3). Five-10% of the patients have severe asthma, which is often difficult to treat (4). No treatment
is curative, and existing drugs are often ineffective in controlling symptoms (5, 6). RV infection is
associated with the majority of asthma exacerbations (7–12), whereas respiratory syncytial virus
(RSV) is more associated with non-allergic asthma (11, 13). The risk for wheezing with RV is
associated with allergic sensitization (e.g., HDM-specific IgE) and type 2 airway inflammation
(11–17). Some, but not all, studies (18–21) suggest that impaired type I and III interferon (IFN)
responses to RV infection may contribute to asthma exacerbation. RV infection also induces
production of IL-25 (22), IL-33 (23), thymic stromal lymphopoietin (TSLP) (24), and granulocyte
macrophage colony-stimulating factor (GM-CSF) (25) in lung epithelial cells, promoting type 2
airway inflammation (26–29). Clinical evidence supports the pathogenic role for IgE and mast cells
in asthma and RV-induced asthma exacerbation: mast cells are increased in the airway epithelium
(30) and within the smoothmuscle layer (31–33) in allergic asthma, and in the alveolar parenchyma
of uncontrolled allergic asthma (34). An increased percentage of degranulated mast cells are found
in the mucous glands from fatal asthma (35). Unlike the Th2-low group, the Th2-high group of
asthmatics highly express Th2 (IL4, IL5, IL13; IL-13-regulated genes, POSTN, CLCA1, SERPINB2)
and mast cell (TPSB2, TPSAB1, and CPA3) genes in the airway epithelium (36–38), consistent with
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the recruitment of mast cells to the airway epithelium from the
submucosa (39, 40). Mast cells are also recruited to the bronchial
epithelium following RV infection (41). RV can replicate in
mast cells and induce their activation (42–44). Importantly,
omalizumab is indicated for moderate-to-severe asthma (45–48)
and reduces RV-induced asthma exacerbation (47, 49, 50).

Despite these data supporting the pathogenic role for IgE and
mast cells in asthma, the study of this topic has a twisted history.
Studies in 1990s raised mixed results, with some supporting
their role (51, 52), but others revealing the lack of their role
in in vivo asthma models (51, 53–61). This confusion was
resolved by two studies published in year 2000 showing that
the contribution of mast cells to airway inflammation can be
seen in mice sensitized with small amounts of a conveniently
available antigen [i.e., ovalbumin (OVA)] without the strong Th2-
skewing adjuvant alum (62, 63). However, the situation became
murky again when clinically relevant allergens such as house
dust mite (HDM) were increasingly used. Numerous studies
have been conducted on HDM-induced airway inflammation in
murine models. While most studies failed to mention on the
role of IgE or mast cells (64–79), a recent study showed that
HDM-induced airway inflammation is not dependent on IgE or
FcεRI (80). In this Perspective, we will overview fundamental
aspects of IgE, IgE receptors, and mechanisms of anti-IgE mAb’s
function. Then, we will describe cell types that are targeted by
anti-IgEmAb-mediated protection against asthma exacerbations.
Finally, we will discuss animal models of asthma and RV-
induced asthma exacerbation, which will potentially solve the
current enigma of how RV induces asthma exacerbations. Our
discussion of IgE-related studies will be limited to those required
for understanding the topic. Those who want to have an
updated deeper understanding are referred to recent excellent
reviews (81–87).

IgE, IgE Receptors, and Omalizumab
IgE is the least abundant immunoglobulin in serum. Multiple
mechanisms control IgE levels from its synthesis to degradation:
low efficiency of class-switch recombination to IgE, lower surface
expression of membrane IgE (mIgE) than of mIgG1 on germinal
center (GC) B cells, and increased apoptosis of IgE+ GC B
cells. Recent studies on several reporter mice and GC reaction-
mimicking B cell cultures (iGB cells) on 40LB feeder cells showed
that IgE-producing B cells swiftly exit GCs and differentiate
into plasma cells (PCs) and that IgE-producing GC cells die by
apoptosis (88–91). A recent study found that IgE-BCR without
antigen stimulation induces PI3K-mediated mTOR activation
that increases IRF4 protein (not transcription), leading to IgE+

PC differentiation, and that chronic calcium signaling in IgE+

B cells and PCs culminates in apoptosis (92). Therefore, IgE+

memory B cells and IgE+ PCs are scarce. High-affinity IgE is
produced by consecutive class-switch recombinations from IgM
to IgG to IgE, whereas low-affinity IgE is produced by a direct
switch from IgM to IgE (93). IgE production is induced by IL-
4 and IL-13 (94, 95). T follicular helper (Tfh) cell-derived IL-4
is necessary for IgE production (96). Recently, a rare population
of IL-13-producing Tfh cells (Tfh13) was shown to be required
for production of high-affinity IgE (97). The half-life of infused

IgE in the serum is very short (2 days) compared to IgG (18–
23 days) (98). Several mechanisms likely contribute to the short
half-life of IgE: rapid removal of free IgE from the circulation
by binding to mast cells and basophils; degradation of IgE by
extravascular and membrane-bound proteases; binding of IgE
glycans to lectins leading to delivery for degradation; receptor-
mediated endocytosis; and digestion of IgE in endolysosomes
caused by lack of protection by FcRn.

There are two IgE receptors, the high-affinity receptor FcεRI
and the low-affinity receptor CD23 (FcεRII). FcεRI expressed on
mast cells and basophils is a heterotetramer of three subunits,
an IgE-binding α subunit, a receptor-stabilizing and signal-
amplifying β subunit, and signal-initiating disulfide-linked two
γ subunits (99). IgE binds FcεRI at 1:1. While FcεRI expression
is limited to mast cells and basophils in mice under homeostatic
conditions, FcεRI in humans is additionally expressed by
eosinophils, DCs and Langerhans cells. FcεRI is also expressed by
bronchial epithelial cells in some asthmatics (100). The non-mast
cell/basophil FcεRI consists of αγ2 heterotrimers. It has been
known for long that levels of FcεRI expression on the cell surface
correlates well-with serum levels of IgE (101, 102). This seems to
be due to stabilization of FcεRI by bound IgE (103, 104). Thus,
reduction in IgE levels (e.g., by omalizumab) will reduce the
cell surface expression of FcεRI (105). Binding of a multivalent
antigen to the mast cell and basophil surface IgE induces
aggregation or crosslinking of FcεRI that triggers the activation of
complex signaling events, eventually resulting in degranulation,
eicosanoid synthesis and release, and cytokine production and
secretion. These events cause allergic reactions ranging from local
redness and itch to lethal systemic anaphylaxis.

CD23 is a type 2 transmembrane protein that forms a
homotrimer composed of an IgE-binding C-type lectin head, a
long α-helical coiled-coil stalk, a transmembrane domain and
an N-terminal short cytoplasmic portion. CD23 is expressed
on B cells, monocytes, DCs, Langerhans cells, eosinophils, and
respiratory and gastrointestinal epithelial cells (106). Antigen
presentation by CD23-bound IgE is known as IgE-mediated
facilitated antigen presentation that amplifies Th2 responses
upon re-exposure to the same antigen. In this phenomenon, IgE-
antigen complexes are transported to the spleen by recirculating
CD23+ B cells where they are delivered to CD8α− conventional
DCs (cDCs) which induce proliferation of CD4+ T cells
(107). CD23 expression by B cells is involved in regulation
of IgE synthesis: engagement of CD23 with IgE suppresses
IgE production and CD23-deficient mice exhibit stronger and
long-lasting IgE response upon immunization (108). Conversely,
CD23 transgenic mice exhibit decreased IgE production (109,
110). CD23-blocking mAb lumiliximab lowers IgE levels in
humans (111). In contrast, soluble CD23 fragments promote IgE
synthesis. Although CD23 plays a role in OVA-induced airway
inflammation (112) by transcytosis of IgE immune complexes by
lung epithelial cell CD23 (113), little is known about the role of
CD23 in asthma exacerbations.

Omalizumab is a humanized IgG1κ monoclonal antibody
(mAb) that binds to free human IgE and to membrane-bound
form of IgE (mIgE) on the surface of B cells (114). Omalizumab
inhibits IgE interactions with FcεRI and CD23 (115). As it
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binds to free IgE, omalizumab lowers free IgE levels and
thus downregulates FcεRI levels on basophils and mast cells,
limiting the degree of release of allergic mediators. Owing to
these properties, omalizumab is indicated for the treatment of
moderate-to-severe asthma (116), allergic rhinitis (117), and
chronic idiopathic/spontaneous urticaria (CIU/CSU) (118–120).
However, a newer anti-IgE mAb ligelizumab (121) failed to
show its efficacy in the treatment of severe asthma (122), while
it was more effective than omalizumab in the treatment of
CIU/CSU (123). It was speculated that the differential efficiencies
of omalizumab and ligelizumab in inhibiting FcεRI and CD23
bindings may contribute to the difference in the efficacies on
severe asthma, although it requires further investigation.

Dendritic Cells
Children with severe asthma are susceptible to respiratory virus-
induced asthma exacerbations, particularly those with high
serum IgE levels (16, 124). IFNs secreted by plasmacytoid DCs
(pDCs) are essential for the host defense to viral infections.
pDCs express FcεRI and its expression is controlled by IgE
levels. Enhanced FcεRI expression in asthma inhibits virus-
induced IFN-α and IFN-λ1 responses of human pDCs (19,
125, 126). Omalizumab treatment of asthmatics reduces FcεRI
expression on the pDC surface and increases RV-induced
pDC IFN-α responses (19, 125–127). Studies demonstrated a
counterregulatory mechanism between FcεRIα and TLR7, by
which expression of these proteins is inversely proportional (19,
125). These observations can potentially explain the PROSE data
that preventive administration of omalizumab could dampen the
seasonal increase in asthma exacerbations among school children
(50). Another DC subset might be involved in respiratory virus-
induced asthma exacerbations. Sendai virus (SeV) infection in
mice results in cysteinyl leukotrienes-induced recruitment and
survival of CD49d+ neutrophils and subsequent enhancement
of FcεRI expression on lung cDCs. Meanwhile anti-SeV IgE
antibodies are produced, and these IgE antibodies stimulate the
lung cDCs to produce CCL28 via FcεRI. CCL28 recruits IL-13-
producing Th2 and type 2 innate lymphoid cells (ILC2) (11, 128).
Thus, cDCs might also be targeted by omalizumab.

The clinical observations described above, particularly efficacy
of omalizumab in reducing asthma exacerbations (49, 50, 116,
127, 129), strongly support the pathogenic role of IgE-bound
mast cells, pDCs, and cDCs to RV-induced asthma exacerbation
(Figure 1).

Mast Cells and IgE in HDM-Induced
Models of Asthma
Early studies of animal models of asthma mostly used chicken
OVA as a model allergen. More recently, numerous studies used
HDM for sensitization and challenge purposes, as up to 90% of
asthmatics are sensitized with HDM.Whenmice were repeatedly
exposed to intranasal injections of a single allergen such as
HDM, ragweed and Aspergillus, tolerance was induced (66).
In contrast, sensitization to double and triple allergens broke
through tolerance and caused AHR, eosinophilic inflammation,
mast cell and smoothmuscle hyperplasia, mucus production, and
airway remodeling. Mucosal exposure to triple allergens in the

absence of an adjuvant induced chronic airway inflammation.
Anti-IL-5 and anti-IL-13 antibodies inhibited inflammation
and AHR in the acute asthma model but not in the chronic
triple-allergen model (66). A similar procedure of intranasal
sensitization/challenge with the above triple allergens showed
that airway epithelial cell-derived colony stimulating factor
(CSF1/M-CSF) had a critical role in the production of allergen
specific-IgE and regulated the recruitment of alveolar DCs and
enhanced the migration of cDC2s to the draining lymph node,
leading to Th2 cell-mediated allergic lung inflammation (69).

In typical airway inflammation experiments using HDM,mice
are sensitized with a commercial HDM via the intranasal or
intratracheal route and then challenged with the same allergen
via the same route. One day or a few days after the last
allergen challenge, bronchoalveolar lavage fluids (BALF) are
collected. Leukocytes (e.g., increased eosinophils, neutrophils,
macrophages, lymphocytes) and cytokines (e.g., increased
mRNAs for and/or proteins of IL-4, IL-5, IL-13) in BALF and
lungs are reported together with total or allergen-specific IgE
and IgG and lung functions (usually showing methacholine-
induced increase in lung resistance). Remodeling such as goblet
cell metaplasia is also reported. Acute and chronic disease-
mimicking procedures were developed. Involvement of specific
molecules or cells in these airway inflammation models has been
defined using pharmacological and immunological reagents as
well as genetically engineeredmice lacking these molecules or cell
types. For example, antibodies against GM-CSF (64) or chemical
antagonists against TLR4 (67) reduced Th2 phenotype and AHR.
Using bone marrow chimeras, Hammad et al. showed that TLR4
expression on radioresistant lung structural cells, but not onDCs,
is necessary and sufficient for DC activation in the lung and
for priming of effector T helper responses to HDM (67). TLR4
triggering on structural cells caused production of the innate
proallergic cytokines TSLP, GM-CSF, IL-25 and IL-33.

Intranasal administration of a high dose of HDM
for 5 days/week over 3 weeks induced allergic airway
inflammation with mast cell expansion and HDM-induced
bronchoconstriction, which was abrogated in mast cell-deficient
KitW−sh/W−sh mice (130). In another HDM model, WT
mice showed allergic airway inflammation with increased
tryptase in BALF, but KitW−sh/W−sh mice showed a selective
impairment with reduced plasma IgE levels and BAL eosinophils
(131). These KitW−sh/W−sh mice showing reduced AHR and
inflammation compared to WT mice have the C57BL/6 genetic
background. However, BALB/c-KitW−sh/W−sh mice showed
as robust HDM-induced airway inflammatory phenotypes as
did WT BALB/c mice (132). Allergic airway inflammation
induced by repetitive HDM treatments was also reduced by
cromoglygate, a mast cell stabilizer, before each HDM challenge
(133). Interestingly, exacerbated AHR was induced by HDM
in KitW−sh/W−sh mice engrafted with ST2-deficient mast cells,
compared to KitW−sh/W−sh mice engrafted with WT mast
cells (134), probably due to reduced prostaglandin E2 (PGE2)
levels, which can inhibit IgE-mediated mast cell activation
(135). IL-33/ST2-dependent mast cell induction of PGE2 could
be responsible for the dampening effect on AHR (134). As
researchers were concerned with abnormalities beyond mast cell
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FIGURE 1 | Hypothetical model of RV-induced asthma exacerbation. Only potential events involving IgE and FcεRI are depicted. Allergens such as HDM and

rhinovirus antigens likely activate mast cells. pDCs highly expressing FcεRI in asthmatics may produce reduced levels of type I and type III IFNs when infected with

rhinovirus. cDCs with high FcεRI expression may produce CCL28 that recruits IL-13-producing Th2 and ILC2 cells. These different cells likely contribute to

RV-induced asthma exacerbation.

deficiency in Kit mutant mast cell-deficient mice (e.g., KitW/Wv

and KitW−sh/W−sh mice) and abnormal reconstitution of these
mice with adoptively transferred mast cells (136, 137), non-Kit
mutant mice have been used more often. Indeed, HDM-induced
AHR was dependent on mast cells as demonstrated using
KitW−sh/W−sh and Mas-TRECK mice (72).

Using wild-type and mutant BALB/c and FVB/N mice,
McKnight et al. showed that neither IgE nor FcεRIα contributed
to allergic airway disease, even in mice inoculated with the
lowest dose of HDM, which readily induced detectable disease,
but did not increase serum IgE or pulmonary mast cell levels
(80). In contrast, high doses of HDM strikingly increased
serum IgE and pulmonary mast cells, although both AHR and
airway mast cell degranulation were equally elevated in wild-
type and IgE-deficient mice. Thus, they concluded that IgE
and FcεRIα-independent mechanisms are responsible for AHR
and airway inflammation when low doses of HDM are inhaled
repetitively. All the above HDM-induced airway inflammation
data were obtained using soluble preparations of HDM.However,
exacerbation of allergic asthma is also associated with an
increase in ambient inhalable particulate matters (e.g., PM2.5
and PM10) from air pollutants. Furthermore, experimental
allergic airway inflammation and/or AHR can be enhanced by
particulate matters in an IL-33- or IL-1β-dependent manner
(138–141). Importantly, Jin et al. compared AHR and pulmonary
eosinophilia induced by soluble vs. particulate antigens (sAg
vs. pAg) including HDM-conjugated polystyrene beads (142).
They found that, compared with sAgs, pAgs triggered markedly
heightened AHR and pulmonary eosinophilia in antigen-
sensitized mice in a mast cell-dependent manner. pAgs mediated
mast cell-dependent responses by enhancing retention of
pAg/IgE/FcεRI complexes within lipid raft-enriched, CD63+

endocytic compartments, which prolonged IgE/FcεRI-triggered
signaling and resulted in heightened cytokine responses. Animal

models using particulate HDM are highly desirable to address the
potential role of IgE/mast cells to mimic HDM-induced asthma.

Animal Models of Rhinovirus-Induced
Asthma Exacerbation
RV is a member of the enterovirus genus in the Picornaviridae
family of small, non-enveloped positive strand RNA viruses
(143). There are three human RV genotypes (A, B, C). Ninety
percent of RV-A and RV-B use human intercellular adhesion
molecule-1 (ICAM-1) as their receptor (144), while the minor
group uses the human and mouse proteins of low-density
lipoprotein receptor family (145). RV-C viruses use cadherin-
related family member 3 (CDHR3) as their receptor (146). RV-
C and RV-A cause severe respiratory illness more often than
RV-B (147). RV-induced lower respiratory illness is increased in
asthmatics and correlates with virus load, augmented Th2, and/or
impaired Th1 and IL-10 immunity (148). RV-1B (a member of
the minor receptor group of RV-A) infection of BALB/c mice or
RV-16 (RV-A, amember of themajor receptor group) infection of
mouse-human ICAM-1 transgenic mice induces viral replication
in airway epithelial cells, airway inflammation (neutrophilia and
lymphocytosis), mucin secretion, and increased IFNs response,
similarly to human RV infection (149). Compared to RV-A (RV-
1B) infection, RV-C (RV-C15) infection induced higher BALF
eosinophilia, mRNA expression of IL-5, IL-13, IL-25, Muc5ac
and Gob5/Clca, protein production of IL-5, IL-13, IL-25, IL-
33 and TSLP, and expansion of ILC2 in naive and HDM-
immunized BALB/c mice (150). Eosinophilic inflammation and
mRNA expression of IL-13, Muc5ac and Muc5b were ILC2-
dependent. It is well-known that RV infection causes increased
IgE levels (151) and RV-specific IgE (152). However, unlike RSV
infection (153), no studies have tested if RV-specific IgE could
sensitize mast cells for RV antigen-mediated activation and if
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RV causes IgE-dependent airway inflammation and AHR in vivo.
Such experiments remain to be conducted.

Synergistic interactions between RV infection and allergen
sensitization and exposure increase the risk of asthma
exacerbations (154, 155). Toussaint et al. found that experimental
infection of asthmatics with RV-16 induces double-stranded
DNA (dsDNA) release in nasal lavages, which is correlated
with type 2 immune-mediated asthma exacerbation severity
(156). Then, by comparing immune responses between
PBS-sensitized/HDM-challenged and HDM-sensitized/HDM-
challenged mice infected with live or UV-inactivated RV-1B
1 day after the last (and the second) HDM challenge, they
found that live RV-induced exacerbation is associated with a
more robust type 2 immune response (increased eosinophils,
lymphocytes in BALF); higher serum IgE; enhanced airway
inflammatory cells and mucus production; AHR; increased Th2
cells in lung; stronger production of Th2 cytokines from lung
and mediastinal lymph node cells; increased recruitment of
monocyte-derived DCs to lung and mediastinal lymph nodes
and cDC2 to lung and higher dsDNA release in the airways than
the other groups (156). These responses were reduced by DNase
treatment and mostly recapitulated by exogenous dsDNA in
place of RV infection. DNase treatment reduced the recruitment
of monocyte-derived DCs to lung and mediastinal lymph
nodes. dsDNA releases induced by RV-16 in human patients
and by RV-1B in the mouse model were part of neutrophil
extracellular traps (NETs). The pathogenic role of NETosis in
type 2 inflammation was revealed by neutrophil depletion and
NET inhibitor.

DISCUSSION

Animal experiments have been the mainstay for mechanistic
analysis of immune responses and disease pathogenesis, despite
a wide recognition of differences between human and rodent
immune systems (157–159). There is a discrepancy in clinical
data showing omalizumab’s efficacy in asthma and animal
models lacking the effect of IgE or FcεRI deficiency. Clinical
data indicate the presence of Th2-high and Th2-low asthmatic
patients. Theoretically, Th2-high group may respond well to
omalizumab. These different groups might be represented by
animal models requiring IgE/FcεRI or not. However, things are
not that simple. The discrepancy could be due to inappropriate
animal models or simply lack of testing the role of IgE/FcεRI
and mast cells. Most studies used a short course of less than

a month. Careful analysis of acute vs. chronic models may

reveal subtle differences in cellular and molecular requirements.
Experiments with particulate HDM preparations or soluble
HDM plus PM2.5 may be worth to test. Differences in HDM
constituents between different lots could be a potential source of
different results, as we experienced more than 10-fold differences
in protein content per weight. Moreover, drastic differences in
microbiota contained in HDM sources were recently noticed
between different vendors (160). Thus, standardization of HDM
preparations or use of single or combination of pure allergens
is highly desirable. Incorporation of RV infection into HDM-
induced airway inflammation adds another complexity. No
systematic comparison between different RV types has been
reported in airway disease or asthma exacerbation models,
as experiments using RV-C has only recently begun. Since
proliferation of human RV in mouse cells is severely limited, it
may be useful to use a mouse cell-adapted RV variant (161). The
landmark study by Toussaint et al. established an RV-induced
asthma exacerbation model in HDM-allergic mice. Application
or modification of this model to test effects of other RV species,
mutant mice, and immunological/pharmacological agents will
likely provide new insights into RV-induced asthma exacerbation
in the future.
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