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Tunable reflecting terahertz filter 
based on chirped metamaterial 
structure
Jing Yang1, Cheng Gong1, Lu Sun1, Ping Chen1, Lie Lin1 & Weiwei Liu1,2

Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated 
by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with 
different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency 
and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change 
the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial 
structure is insensitive to the incident angle and polarization-dependent. The proposed chirped 
metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, 
bandwidth, shape factor and center frequency can be controlled by light pumping.

Metamaterials provide new opportunities to realize the tailored interactions with terahertz (THz) waves, which 
are often unavailable or very difficult to obtain from natural materials1–3. A few interesting and useful function-
alities have been demonstrated from metamaterial-based devices, including negative refractive index compo-
nents4, perfect absorbers5–8, modulators9–11, and filters12–15. Metamaterial concepts have also been widely applied 
in developing active terahertz filters by means of optical, electronic, and thermal stimulation15–23. And optical 
tuning of metamaterials is very attractive due to its fast speed16,24–26.

Tunable filters are pretty interested due to its flexibility in controlling THz wave, being crucial in THz imaging, 
sensing, and communications27–29. In the present work, tunable reflecting THz bandstop filter based on chirped 
metamaterial structure will be demonstrated by numerical simulation. Bandstop filter is commonly used to selec-
tively eliminate undesired information and suppress interfering signals. So far, many tunable bandstop filters 
based on metamaterials17,20–23, such as mechanically tunable bandstop filters17,20–22, dynamic modulator based on 
microfluidic metasurface23, and active plasmonic bandstop filters resulting from varying of the chemical potential 
of graphene15,30, have been proposed.

Our designed tunable chirped metamaterial structure combines the chirped structure and photoconductive 
material. Broadband absorption can be constituted by including multiple metallic bars with varying length in a 
single unit cell5,31. The working frequency and transmission of metamaterial resonator can be tuned by photoex-
cited carrier injections when the photoconductive semiconductors are incorporated as elements of metamaterial 
structures16,32,33. In this letter, the metal bars are concatenated to silicon bars with different lengths. The metama-
terial structure can be attributed to interference theory. In the interference model, our designed metamaterial 
filter could be decoupled into two interfaces, with the bars array and the ground plane located at the two sides of 
the dielectric spacer. And light illumination could to be introduced to change the conductivity of the silicon bars. 
When increasing the conductivity of the silicon bars, the silicon can realize a gradual transition from dielectric 
to metal, leading to different reflection and transmission coefficients of the bars array. Therefore, the reflectivity, 
central frequency and bandwidth of the metamaterial could be tuned.

Results
Metamaterial filter with chirped structure.  The tunable chirped metamaterial structure is inspired by 
two simple concepts that chirped structure and photoconductive material. In our design, the chirped structure 
refers to multiple metallic bars with varying length and silicon acts as the photoconductive material. By comb-
ing the benefits of the both concepts, we proposed a tunable metamaterial terahertz bandstop filter as shown in 
Fig. 1. Figure 1a displays a 6 ×​ 3 unit cells’ array. Figure 1b describes one cell of the filter. A unit cell comprises 
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20 bars with varying lengths (i =​ 1, 2…​…​20) and equal spacing. Each hybrid bar (except i =​ 1) in a single unit 
cell is composed of a metallic bar and two photoconductive silicon bars. The central yellow bars indicate golden 
bars and silicon (grey bars) is embedded in the both ends of each metallic bar. The silicon bars are different in 
lengths, while the widths and thicknesses are equal to those of the metallic bars. The filter consists of three layers: 
gold film substrate, polyimide (PI) spacer layer and metallic bars array, respectively. The unit cell is a =​ 300 μ​m in 
length and b =​ 120 μ​m in width. The thickness of PI layer is set to be d =​ 22 μ​m. The width w and thickness t of all 
gold bars are 5 and 0.3 μ​m, respectively. Silicon (grey bars) is embedded in the both ends of each metallic bar. The 
length L of 20 hybrid bars of varies from 60 to 117 μ​m with a step of 3 μ​m.

Tunable reflectivity.  The proposed chirped metamaterial structure performs as a reflective array. The inci-
dent THz wave with a polarization parallel to the metallic bars was denoted as the TE polarization. The simula-
tions resulted in complex S parameters, from which we obtained the frequency dependent reflectance R =​ |S11|2. 
In our design, the transmission T is zero due to the Au ground.

The reflectivity of the designed metamaterials has been investigated numerically by using a commer-
cial tool – CST Microwave Studio. In simulation, gold was modeled as a lossy metal with the conductivity is  
σ​Au =​ 4.561 ×​ 107 S/m, the spacer layer was taken as a lossless polyimide dielectric with ε​PI =​ 3.1, and the silicon 
was treated as a lossless dielectric material with ε​si  =​ 11.68, but the conductivity σ​si is a pending value which 
could be controlled by light illumination according to different pump light powers. The dependence of the sil-
icon conductivity on the pump power has been investigated in ref. 34. It is found that the conductivity is pro-
portional to the pump power, but the conductivity should not be proportional to pump power at higher power, 
since carrier-carrier scattering resulting from a large carrier density saturates the conductivity and the probabil-
ity of a multiphoton process is enhanced with the increase of pump power. Ref. 16 has indicated that a silicon 
conductivity value of 5 ×​ 104 S/m could be induced by near-infrared laser pulses with a center wavelength of 
800 nm with average power of 500 mW (energy flux~500 μ​J/cm2). Besides, an optical pump beam with an energy  
flux ~294.6 μ​J/cm2 (@ 800 nm) was used to excite photoconductive silicon to obtain the conductivity of 1 ×​ 105 S/m33.  
Therefore, in our work, we hypothesis that the silicon conductivity could vary from 1 S/m to 1 ×​ 105 S/m.

A filter is generally characterized by parameters such as, modulation depth, center frequency, bandwidth 
and selectivity35. An important figure-of-merit is the modulation depth (MD), defined as MD =​ (Imax −​ Imin)/Imax, 
where Imax and Imin are the maximum and minimum reflectivity, respectively36. In practical filters, 3 dB bandwidth 
is defined as the difference in frequency between the half power points (f1 and f2) of the reflectance characteristic. 
The bandwidth of a filter gives information about its ability to separate components of similar amplitudes, and 
thus determines the resolution of the filter. The center frequency f0 is the arithmetic mean of f1 and f2. With respect 
to the filter, it should be mentioned that bandwidth is not the only factor determining the resolution capability. 
Selectivity is a descriptor which also indicates the ability of a filter to separate components of widely different 
levels. The basic parameter for selectivity is the shape factor, indicating the steepness of the filter characteristic 
outside the stopband, could be defined as the ratio of the filter bandwidth at an attenuation of 8 dB, to its 3 dB 
bandwidth37.

A numerical simulation was performed to analyze the reflection properties of the filter when the silicon had 
different conductivities. Figure 2a shows the reflection spectra from 0.1 to 1.6 THz for the silicon with several 
typical conductivities. One can see that the stopband shifts to a shorter frequency and the reflectivity in stopband 
decreases with an increase in conductivity. The concrete analysis of reflection properties is presented in Fig. 2b. 
Our results show that when the conductivity of silicon increases from 1 S/m to 2 ×​ 104 S/m, the modulation 
depth, bandwidth and shape factor will be added from 0.33 to 1, 0.45 to 0.62 THz, and 1.13 to 1.68, respectively, 
while the center frequency shifts from 1.12 to 0.88 THz. On further increase in the conductivity (2 ×​ 104 S/m−1  
×​ 105 S/m), the first three parameters remain about the same, but the center frequency has a slight variation 
of 0.11 THz. In addition, the modulation rate is limited by the recombination time (about 10 μ​s in our case) 
of the photo-excited carriers38, which can arrive 105 Hz in principle. Based on the photoconductivity-induced 
mode-switching effect32,34, the device could work as a tunable broadband THz metamaterial bandstop filter.

Angle-independent property.  Since the angle-dependent property is an important issue for practical 
applications, the simulated reflection spectra at different incident angles are investigated. The structure was sim-
ulated using frequency domain solver in CST Microwave Studio when σ​si =​ 1 ×​ 105 S/m. As shown in Fig. 3a, the 

Figure 1.  Schematic of optically controlled metamaterial terahertz bandstop filter. (a) A part of the 
metamaterial structure showing 6 ×​ 3 unit cells. The metamaterial structure is devised by grouping thin hybrid 
bars together on a polyimide layer as a dielectric spacer, while the group plane is made of an opaque gold film. 
All the bars are centered in y-axis on the midline of each unit cell. (b) A unit cell of 20 bars with varying lengths 
(i =​ 1, 2…​…​20) from 60 to 117 μ​m and equal spacing g =​ 10 μ​m. Each hybrid bar (except i =​ 1) in a single unit 
cell is composed of a metallic bar and two photoconductive silicon bars.
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reflectivity under oblique incidence angles begins to increase as the incident angle increases. Figure 3b presents 
the performance analysis of the tunable filter at different incident angle θ. We notice that the modulation depth, 
bandwidth, center frequency and shape factor of reflection curve remain almost constant for angles of incidence 
from 0° to 40°, which means that the reflection is insensitive to the incident angle. We also analyzed other con-
ductivities, they all show angle-independent property in case of less than 40°. The loose angle tolerance allows the 
filter to be easily aligned.

Polarization-dependent property.  The incident THz wave is TE polarization when the plane wave is 
polarized in the direction parallel to the bars, while the incident THz wave is TM polarization when the incident 
plane wave is perpendicular to the direction of the bars. The polarization used in this simulation is TE polariza-
tion. The reflection spectra have been achieved for the TE polarization, as shown in Fig. 2a. The stopband of the 
reflection spectrum shifts to a shorter frequency and the reflectivity in stopband decreases with an increase in 
conductivity. In Fig. 4, we also depicted three typical spectra for the TE polarization in order to compare with 
TM polarization when σ​si =​ 1 S/m, σ​si =​ 1 ×​ 103 S/m and σ​si =​ 1 ×​ 105 S/m. However, for the excitation with the 
TM polarization, the reflection spectra remain nearly constant. Apparently, the array is polarization-dependent, 
which can be utilized to modulate an incident TE polarization into a predefined reflective mode while maintain-
ing normal reflection for the TM polarization.

Discussions
We have proposed and numerically investigated a tunable THz broadband metamaterial reflecting bandstop filter 
based on metallic bars embedded with photoconductive silicon. Specifically, the modulation depth, bandwidth, 
center frequency and shape factor of the filter can be flexible by adjusting the conductivity of silicon. In general, 
when the conductivity of silicon varying from 2 ×​ 104 S/m to 1 ×​ 105 S/m, the four parameters of the filter can 
be tuned from 0.33 to 1, 0.45 to 0.62 THz, 1.12 to 0.88 THz, and 1.13 to 1.68, respectively. The mechanism to 
tune the stopband relies on manipulating bars array by changing the conductivity of photoconductive silicon. 
Furthermore, we could modulate the characteristic of the filter by changing the length and the number of bars in 
a single unit cell to tune bars array or varying the thickness of polyimide to tune the dielectric spacer. It could also 
be expected that if combined by structured light illumination, this chirped metamaterial structure could provide 
more freedom in controlling THz wave.

Figure 2.  Tunable reflectivity. (a) Simulated reflection spectra of the bandstop filter for silicon with different 
conductivity. The curves are the reflectivity |S11|2 for the metamaterial structure shown in Fig. 1a. (b) The 
modulation depth, bandwidth, center frequency and shape factor of reflection spectra in Fig. 2a.

Figure 3.  Angle-independent property. (a) The simulated reflection spectra for σ​si =​ 1 ×​ 105 S/m with incident 
angle θ scanning from 0° to 80°. (b) The modulation depth, bandwidth, center frequency and shape factor of 
reflection spectra in Fig. 3a.
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Methods
Sample design.  Model a shown in Fig. 5a and Model b shown in Fig. 5b show the examples of chirped struc-
ture and metallic bars structure embedded with photoconductive silicon, respectively. Figure 5a shows a unit cell 
of 20 metallic bars with varying lengths and equal spacing. Figure 5b displays a unit cell of 20 hybrid bars with 
same lengths and equal spacing, and each hybrid bar is composed of a metallic bar and two photoconductive 
silicon bars.

Model a is presented to interpret the physic mechanism of the broadband reflection in this work. Moreover, 
as shown in Fig. 6a, we provide the reflectance spectra in the situation of only having an isolated bar of Model a. 
The reflectance spectra are all narrowband and their peaks shift from 1.30 THz to 0.65 THz with length increasing 
from 60 to 117 μ​m, as shown in Fig. 6a. When the resonant frequencies are sufficiently close to each other, the 
broadband reflection (black dotted line in Fig. 6a) can be formed by including multiple metallic bars with varying 
length in the single unit cell as indicated in Model a. It’s worth mentioning that the narrowband peaks of isolated 
L1 and L20 shift slightly corresponding to the counterpart of Model a due to the unbalanced interactions among 
these bars. As a comparison, we also modeled an array with photoconductive silicon, as shown in Model b in 
Fig. 5b. Figure 6b,c and d indicate the reflectance spectra of Model b with different silicon conductivity when 
Lb =​ 63 μ​m, 90 μ​m, and 117 μ​m, respectively. The spectra feature will be modified with the silicon conductivity 
increasing from 1 S/m to 1 ×​ 105 S/m, but the trends of variation are inconsistent for different length of hybrid 
bars Lb. The bars array of Model b is not only connected with silicon conductivity, but also related to the length 
of hybrid bars Lb.

Furthermore, when the lengths of 20 bars in Model a are the same, the Model a is transitioned to Model b with 
silicon conductivity of 1 S/m (or without silicon). When the silicon conductivity reaches an order of 105 S/m (gold 
conductivity is 4.561 ×​ 107 S/m), it can be regarded as metal. Therefore, when the conductivity of silicon increases 
from 1 S/m to 1 ×​ 105 S/m, the metamaterial filter with bars array could be recognized as making the transition 
from the Model b without silicon to Model a.

Interference theory.  Previous works have pointed out that the reflection peak mainly originates from the 
destructive interference of multi-reflection process between the metallic bars and the gold substrate31,39,40. The 
multilayered metamaterials can be divided into several individual layers without inter-layer resonance coupling 
and such individual layer properties are responsible for the overall properties16,41. Multiple reflections between the 
bars array and ground plane are shown in the Fig. 7a inset. At the air-spacer interface with bars array, the incident 
light is partially reflected back to air with a reflection coefficient = ϕ

r r ei
12 12 12 and partially transmitted into the 

Figure 4.  Polarization-dependent property. The simulated reflection spectra for both the TE and TM 
polarization incident waves when σ​si =​ 1 S/m, σ​si =​ 1 ×​ 103 S/m and σ​si =​ 1 ×​ 105 S/m.

Figure 5.  Two inspired models. (a) Model a: a unit cell of 20 metallic bars with different lengths varying from 
60 to 117 μ​m. (b) Model b: a unit cell of 20 same hybrid bars (L1  =​ 60 μ​m, Lb is variable).
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dielectric spacer with a transmission coefficient = θt̃ t ei
12 12

12. The latter continues to propagate until it reaches the 
ground plane, with a complex propagation phase β ε= 

 k dsapcer 0 . After the reflection at the ground plane and 
addition of another propagation phase β, partial reflection and transmission occur again at the air-spacer inter-

Figure 6.  Reflection characteristics for Model a and Model b. (a) The curves are the reflectivity |S11|2 from 
the metamaterial structure of Model a and several isolated structures when i =​ 1, 4, 7, 10, 13, 16, 19 and 20. 
Simulated reflection spectra of the Model b for silicon with different conductivity when (b) Lb =​ 63 μ​m,  
(c) Lb =​ 90 μ​m and (d) Lb =​ 117 μ​m.

Figure 7.  Interference theory explaining decoupled system of Model a. (a) Amplitude and phase of the 
reflection and transmission coefficients at the air-spacer interface with bars array. Inset: Multiple reflections and 
interference model. (b) The calculated reflectivity of the decoupled model a using interference model and the 
simulated reflectivity when treating the Model a as a coupled system.
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fere with coefficients = ϕ
r r ei

21 21 21 and = θt̃ t ei
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21. The overall reflection is the superposition of the multiple 
reflections:
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Taking Model a in Fig. 5a as an example, the reflection and transmission coefficients are shown in Fig. 7a, 
which can be obtained from simulating using Model a removed Au substrate. The reflectivity of Model a retrieved 
through = R r 2 is described as the black line in Fig. 7b. The excellent agreement shown in Fig. 7b further vali-
dates the interference model.
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