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Theory of photoinduced ultrafast switching to a
spin-orbital ordered hidden phase

Jiajun Li', Hugo U.R. Strand?34, Philipp Werner® & Martin Eckstein'

Photo-induced hidden phases are often observed in materials with intertwined orders.
Understanding the formation of these non-thermal phases is challenging and requires a
resolution of the cooperative interplay between different orders on the ultra-short timescale.
In this work, we demonstrate that non-equilibrium photo-excitations can induce a state with
spin-orbital orders entirely different from the equilibrium state in the three-quarter-filled two-
band Hubbard model. We identify a general mechanism governing the transition to the
hidden state, which relies on a non-thermal partial melting of the intertwined orders mediated
by photoinduced charge excitations in the presence of strong spin-orbital exchange inter-
actions. Our study theoretically confirms the crucial role played by orbital degrees of freedom
in the light-induced dynamics of strongly correlated materials and it shows that the switching
to hidden states can be controlled already on the fs timescale of the electron dynamics.
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hoto-induced phase transitions open the intriguing per-

spective of controlling complex materials on ultra-short

timescales, with promising applications in information
storage and processing!~3. An intense laser pulse can impulsively
create charge excitations, and induce electronic processes which
cannot be described in terms of a quasi-equilibrium scenario.
This gives rise to rich physics in particular in Mott-Hubbard
insulators, which include a large family of transition-metal oxides
and chalcogenides. The charge gap in these materials prevents
rapid thermalization to a featureless hot electron state, and the
cooperative interplay of spin, orbital, and charge orders®* allows
for hidden phases, which can only be reached via an ultra-short
laser excitation but not along thermal pathways®~13.

The sub-picosecond electron dynamics can have a decisive
effect even on the long-lived final states of a photo-induced
system, as it determines the initial state for the subsequent
evolution of one or several order parameters>®14 in a multi-
dimensional energy landscape. However, a microscopic
understanding of the mechanisms which can initiate the
transition to a hidden order on electronic timescales is often
missing. Theoretical descriptions of the ultra-fast dynamics in
solids have progressed in the weakly correlated regime, where
mean-field and perturbative studies of various intertwined
orders are possible!>17. For strongly correlated systems,
extensive studies of the Hubbard model have provided insights
into different aspects, such as charge relaxation and therma-
lization processes in one-band Mott insulators'®1%, the
renormalization of bands by screenin§20’21, and proposals
for the laser control of magnetism?223, While most of
these studies involve single-orbital models, both strong corre-
lations and multi-orbital degeneracy must be taken into
account in order to resolve the cooperative dynamics of dif-
ferent orders in Mott insulators and explore the landscape of
hidden states.

In this work, we investigate the non-thermal evolution of the
intertwined spin-orbital-ordering and a resulting hidden phase
in transition-metal compounds with a partially filled d-shell. In
the representative case of one electron (or hole) in two e,-
orbitals, such as d* or d° configurations, spin and orbital
exchange interactions can emerge due to the superexchange
mechanism?4-2%, and result in a spatially ordered pattern for
both the spin orientations and orbital occupations?”-28. The
orbital-ordering drives the lattice to form Jahn-Teller-like
distortions?°-31. This scenario offers the intriguing opportunity
to simultaneously switch spin and orbital orders through non-
equilibrium protocols on the ultra-fast timescale. We demon-
strate that in this situation, laser-induced charge excitations
partially quench spin and orbital order on electronic timescales
in a way that markedly differs from the effect of heating. As a
consequence, the spin-orbital exchange drives the system to a
transient hidden phase with a new orbital-order polarization on
the picosecond timescale. The subsequent electron-lattice
relaxation should lead to lattice distortions following the
orbital-ordering on the timescale of picoseconds, which may be
detected in experiments.

Results

Spin and orbital order in the two-band Hubbard model. We
consider a system with a partially filled 3d band in a cubic crystal,
such that the d-shell is split into two e, and three t,, orbitals.
Typical representatives are the perovskites, with a cubic
arrangement of transition-metal ions in an octahedral environ-
ment of ligand atoms®2. We assume the t,, orbitals are inactive
(filled or empty), so that the system can be described by a two-

band Hubbard model with two e, orbitals d,._. and d;,. . at

each site?*. The local interaction is given by
Hy=U %: Mg+ D0 (U = JgOe ) NiggMiprer
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where i labels sites and ¢ = d,»_ >, ds»_ . is the orbital index. J;; is

the Hund’s coupling and U = U — 2J;. The hopping Hamilto-
nian is given by

HO = 71'0 Z elgbij(t)C’T[JTZ/"Cj[J, (2)
(ijyel o

where the structure of the 2 x 2 hopping matrices T* along the
bonds (ij) || « = x,y,z is imposed by the cubic symmetry, and
electric fields can be included via a Peierls phase ¢;; (see meth-
ods). The hopping amplitude ¢, =1 sets the energy scale. We use
non-equilibrium dynamical mean-field theory (DMFT)3? to solve
this problem (see methods).

We consider the case of three-quarter-filling, and choose U/t
=7 and Jy/U=0.1 to roughly match the realistic parameter
regime of KCuF33!, with an insulating gap of E, ~ Weg ~3eV.
The time unit A/t and the initial temperature 0.01 then
correspond to about 1fs and 100K, respectively. At this
temperature, the DMFT calculation predicts A-type antiferro-
magnetic spin-ordering (A-AFM) and antiferro-orbital-ordering
(AFO), consistent with both ab initio and mean-field results?-31,
The local spins align ferromagnetically in the xy-plane and
antiferromagnetically along the z-axis, and the hole approxi-
mately occupies the orbitals dj, . and d,._ in an alternating

pattern (Fig. 1). To represent the orbital order, it is convenient to
combine the two orbitals into a spinor ¢ = (cxz,yz, 63227,2) ,and

define the pseudospin components of the hole Z, = 1y4,91, with
the Pauli matrices 6, , ;. A transformation of the basis orbitals to
(dyz,zz , d3xz,,z) and (dzz,xz, d3yz,,z) corresponds to successive
0= 120° rotations around the Z,-axis, using the rotation matrix

R(6) = 92, and the resulting pseudospin components in this
new basis will be denoted by X, and Y,, respectively (Fig. 1).

Fig. 1 Spin- and orbital-ordered phase in equilibrium. a The spin-orbital
order in a cubic environment in equilibrium. Each site contains three
electrons and the unoccupied orbital is shown, with arrows labelling the
total spin moment of the electrons. The color scale indicates the value of
orbital spherical harmonics in arbitrary units. b The Z;-Z3 plane in the
orbital pseudospin space (the compass). The Xz, Y3, Z3 directions and their
corresponding orbitals are marked on the compass. The hole-occupied
orbitals on A and B lattice sites are shown as red arrows
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Concentrating on the site A in Fig. 1 and defining d,_» and
dy,a_,» as orbital 1 and 2, respectively, the A site has two electrons
in orbital 2 and one spin-down electron in orbital 1. The orbital-
order parameter can be defined as the occupation difference
between the two orbitals, which is the component X; =1 (n, —
n,) of the orbital pseudospin. The orbital pseudospin vector (Xg)
on the B sites is a reflection of (X ) w.r.t. the Z;-direction, i.e., the
order parameter approximately alternates between the X5 and Y;
directions on neighboring lattice sites, and the ordered phase is

invariant under the transformation ¥, — 657, o0 and
Ay

Vi, — 03V, ; _,- This symmetry is preserved out of equilibrium,
so that the general spin-orbital order is given by a three-
dimensional manifold parametrized by the magnitudes of S, and
X5 and the direction of the pseudospin, tan 0 = X3/X.

Photo-induced reduction of spin and orbital order. We con-
sider three non-equilibrium protocols: excitation of the e, system
with an electric field pulse with polarization parallel or perpen-
dicular to the ferromagnetic planes, and a photo-doping, i.e., a
sudden excitation of electrons into (out) of the e, manifold by a
resonant laser excitation from (to) other bands (see methods). We
first study the relaxation after an electric pulse polarized in the
diagonal of the xy-plane, taken to be a single cycle pulse of period
T =2. The pulse creates non-equilibrium charge excitations and
causes a reduction or melting of the spin and orbital orders, as
shown in Fig. 2. Furthermore, while the equilibrium orbital
pseudospin X corresponds to a real superposition of orbital states
in the X; — X; plane, transiently a small non-zero X, component
emerges, indicating precession dynamics induced by the excita-
tion3®. The long-time relaxation of order parameters can be
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Fig. 2 The photo-induced reduction of spin-orbital-ordering. a The
extrapolated order parameters X3(o0) and S,(c0). Inset: Time evolution of
spin and orbital-order parameters after the electric field pulse with ne, =
0.015. Dashed lines show an exponential fit. b The fitted relaxation rate 75"
and 7y for the spin (S,) and orbital (X3) order parameters, respectively. As
the excitation density n, increases, the spin relaxation rate drops below the
rate for the orbital order. Both spin and orbital relaxations slow down close
to ney ~0.015 (labelled by the vertical dashed line)

examined by fitting the time evolution of both S, and X; by
exponential  functions, S,(t) =S, (00) + Cge ™"/ and
X,(t) = X;(00) + Cye /™, to extract the decay rates 7yl
(Fig. 2¢) and the extrapolated order parameters at t = oo (Fig. 2b).
We analyze the relaxation as a function of the excitation density
e (the photo-induced change of 4- and 2-electron configura-
tions), by varying the amplitude of the pulse. The rate 73! falls
below 73! as n., increases, in line with the slower melting of spin
order shown in Fig. 2a. Furthermore, in the long-time limit the
AFM order S (e) is systematically stronger than the AFO order
X;(e0), which eventually melts beyond a threshold ., ~ 0.015. At
the same threshold we observe a slow down of the melting, but no
divergence of relaxation times as obtained for a second-order
phase transition3>3°, The slower and weaker melting of A-AFM
order compared to the AFO order is also observed for a z-
polarized excitation, and after photo-doping holes or electrons
into the system. The observed behavior is exactly opposite to the
thermal melting of spin order, which would precede the melting

of orbital order because of a smaller spin exchange interaction®®.

Hidden state. In the long-time limit, the presence of charge
excitations leads to a quasi-steady photo-excited state, which does
not thermalize on the 100 fs timescale of the simulation due to the
Mott gap. We now compare the multi-dimensional order para-
meter (given by S,(e0), X5(e0), and the angle tan 6 = X (c0)/X5(e0))
in the photo-excited state at different excitation densities, and in
various equilibrium states. We first look at the relative magnitude
of X; to S, by plotting X; against S, in different states (Fig. 3a). In
thermal equilibrium, as the temperature increases, the S, — X3
curve first drops to S,=0 and then proceeds to the high-
temperature state X3 =S, =0, reflecting the lower critical tem-
perature of the A-AFM order compared to the AFO order.
Chemically doped systems follow similar paths, as shown by the
red and blue dot-dashed lines for doping dn = +0.01. The photo-
excited states, in contrast, follow a smooth curve in the S, — X3
plane with S,>X; when n., is increasing, for all three non-
equilibirum protocols. Photo-doping electrons leads to the
weakest AFM order, indicating that 4-particle excitations most
efficiently destroy the spin order. The photo-excited states at a
given density ne, =0.01 (see square symbols) exhibit different
order parameters than the equilibrium system with the same hole
or electron doping 6n=+0.01, independent of temperature.
Hence the states reached by ultra-fast laser excitation are not
accessible under equilibrium conditions. Furthermore, the
direction of X(eo) in the pseudospin space shows that the
polarization of orbital order is different in the equilibrium and
non-equilibrium states (Fig. 3b). In equilibrium, the angle
between X, and Xg of the two sublattices (~120°) increases with
temperature and stays at 180° after the AFM order has melted.
On the contrary, photo-excitation results in a decreasing angle,
which evolves towards 0° in the strong excitation limit, corre-
sponding to a ferro-orbital (FO) ordering with a small
magnitude |X].

We now explain the mechanism which drives the system into the
hidden state. It follows from the non-thermal nature of quenching
the orders by photo-induced carriers, and the spin-orbital exchange
interactions, which act differently in this unconventional quenched
state compared to the equilibrium state.

Femtosecond quench of spin and orbital order. While thermal
melting of spin and orbital order is due to the population of
(orbital) spin-waves, the partial quench of the two order para-
meters after photo-excitation follows an entirely different
mechanism: It occurs on the femtosecond timescale, as the
motion of charge excitations leaves a string of defects in the
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Fig. 3 The extrapolated spin and orbital order in the long-time limit. a The
three different non-equilibrium protocols (electric field pulse, photo-doping
in/out electrons) all lead to stronger spin-ordering than orbital-ordering,
which is qualitatively different from the behavior of the equilibrium system
with increasing temperature (yellow double-dotted line) at integer filling
and for the chemically doped systems with én = +0.01 (red/blue double-
dotted lines). b Normalized orbital-order components X; and X in the long-
time limit shown on the pseudospin compass. Rising equilibrium
temperature and photo-excitation cause the orbital pseudospin to rotate in
opposite directions

ordered background, similar to the case of the single-band
AFM!%:36:37 Due to the in-plane ferromagnetism in the xy-plane,
only the motion of charge excitations along the z direction affects
the spin order (process 1 in Fig. 4b), while orbital order can be
affected by hopping processes in all three directions (process 2 in
Fig. 4b) and thus should decrease faster.

To confirm this mechanism, we first note that it corresponds to
a transfer of kinetic energy from the charge carriers to the ordered
background. This can be seen directly by looking at the electronic
distribution functions, which show the relaxation to a relatively
cold distribution within t < 50 inverse hoppings (Fig. 4a).
Furthermore, at early times, the anisotropy is also reflected in
the polarization dependence of the excitation (Fig. 4c). During the
pulse, the suppression of the magnetic order is lower for E || x, y,
consistent with the fact that this creates mostly in-plane spin-
triplet excitations (process 4 in Fig. 4b), while the perpendicular
polarization E || z directly creates spin-singlet doublons (process
3 in Fig. 4b), affecting A-AFM and AFO in the same manner.
After several hopping times, the decay rates of the A-AFM and
AFO order for both polarizations differ by roughly a factor of two
to three, consistent with an independent melting of the two
orders due to the hoppings along the different directions. Note
that a larger Hund’s coupling Jy; might further suppress out-of-

plane hopping by energetically penalizing the conversion of spin-
triplet into spin-singlet doublons.

Orbital-order polarization. After the non-thermal reduction of
X3 and S, the unconventional polarization of the orbital order
qualitatively follows from the intertwined dynamics of the two
orders due to the spin-orbital exchange interactions. In the Mott
phase at U > ¢, the latter are described by the Kugel-Khomskii
model?’,

H= ) §X3Xy+ > §V3Yy+ > §.2,75
(i) 1% (iily (ij)|1z (3)

+ 2 (0 Xa; + 1, Y +1.Z3).

Here £,,1,, are orbital exchange parameters that depend on the
spin configuration on the bond (ij) | « with a=x, y, z. In
particular,

I s
03559, (@

with a positive exchange interaction ] obtained through the
Schrieffer-Wolff transformation®. The parameter 7, is max-
imized for spin-singlet and minimized for spin-triplet, thus 7, >
#x = 1, under A-AF spin order.

As S, vanishes for increasing temperatures, the compass
parameters &, and 7, become isotropic for « =x, y, z, and the
180° orbital-ordering minimizes the mean-field energy®43°. In the
photo-excited states, however, the compass parameters remain
anisotropic with a finite S,, while the strong reduction in |X|
renders the linear terms on the second line of Eq. (3) dominant.
Therefore, the pseudospins align along the negative Z;-direction
(orbital d;,._,.) due to the dominant #,.

Discussion

In summary, our finding suggests a pathway to reach hidden states
in correlated electron systems with intertwined spin and orbital
order on the ultimately short timescale of the electronic hopping.
The non-thermal quench transfers energy from photo-induced
charge excitations into the A-AFM and AFO ordered backgrounds
at different rates. Due to the exchange-coupling between the order
parameters, this drives the system to a state that features spin-
orbital orders unaccessible in an equilibrium state. In particular,
starting with a near-120° AFO ordering, the photo-excited system
approaches a ferro-orbital-ordering in the strong excitation limit,
while an equilibrium state (doped or not) always reaches a 180°
AFO ordering with increasing temperature. An obvious target
material to look for these effects is KCuF3, whose A-AFM and
AFO orders are well described by the two-band Hubbard model.
However, the general finding, i.e., that a photo-induced quench of a
multi-component exchange-coupled order parameter can lead to
hidden states on electronic timescales, should apply to a broader
class of materials with other spin-orbital orderings, e.g., the man-
ganites>?®. Such non-thermal electronic states are important as
they initiate the subsequent dynamics of non-thermal order
parameters'4. In particular, the Jahn-Teller effect can be non-
negligible in realistic perovskites*>*!, but the electronic mechanism
would still be a key driving force, among other effects, of the full
electron-lattice dynamics. One possible scenario is suggested by
recent experiments’!4, where the subsequent lattice dynamics is
driven by the fast change in electronic degrees of freedom. This
should be the case when the electron-lattice coupling is weak
enough and only affects the dynamics on longer timescales than
the electronic processes. In the strong coupling limit, on the other
hand, the electrons can be dressed with lattice distortions to form
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Fig. 4 The electronic processes occuring in the photo-excited state. a Relaxation of charge excitations and the photo-excited state in the long-time limit.
G*(w, t) at @ > O corresponds to the distribution of 4-particle excitations at @ > 0 while G>(w, t) at @ < O shows the distribution of doublons (see methods).
The red solid line is the density of states (spectral function) at t =50. b The charge excitations created by pulses perpendicular/parallel to the
ferromagnetic plane. A parallel pulse (E || x, y) creates spin-triplet excitations in process 4, while a perpendicular pulse (E || 2) is polarized along the AF-
axis and directly creates spin-singlet excitations in process 3. Processes 1 and 2 indicate possible hopping processes of 4-particle excitations. The lattice
site of the 4-particle excitation is of orange color. Blue arrows indicate the polarization of the electric field. € The non-equilibrium melting of spin and orbital
order under a one-cycle electric field pulse of Eg = 0.6. The solid (dashed) lines show X3 (S,) normalized by their initial values

polarons. With renormalized parameters, the electronic mechan-
ism of weaker and slower melting of AFO than A-AFM could still
be established in the polaron dynamics. Thus, in both cases, the
opposite rotation of the orbital pseudospin in the equilibrium and
non-equilibrium regimes might reveal itself by inducing opposite
Jahn-Teller-like distortions through electron-phonon coupling,
which can possibly be detected by time-resolved X-ray diffraction
techniques. The competition between Jahn-Teller effect and the
electronic mechanism in the intermediate coupling regime can be
more complicated and requires further studies.

The existence of new types of order upon photo-excitation is in
sharp contrast to the one-band Hubbard model, where the excita-
tion density and effective temperature exclusively determine the
spectral properties and exchange interactions in the photo-excited
state3%42, In addition to the multi-component order-parameter, the
eg-orbital degeneracy allows for multiple types of charge excitations
(in particular, there are three different doubly occupied sites). Thus,
even locally there are electronically excited states described by a
continuum of parameters, potentially giving rise to many near-
degenerate phases. In fact, in the present case, along with the dif-
ferent orders, also the probability distribution of the electronic
excitations in the two-particle sector is found to be different from
the equilibrium state. The multiple flavors of charge excitations may
offer rich possibilities to engineer the exchange interactions*?, and
thereby further control the dynamics on the ps timescale. It is worth
noting that, although one can explicitly impose the ferro-orbital-
ordering in a constrained DMFT simulation, the obtained solution is
in general unstable in equilibrium. Hence, the presence of charge
excitations should play a critical role in stabilizing the hidden phase.
To investigate those possibilities in detail requires a significant
extension of the simulation time. In future works, also a steady-state
formalism might be adopted to directly study the electronic quasi-
steady state and identify the general non-equilibrium protocols that
allow to explore the hidden manifold of non-thermal phases.

Methods )

The two-band Hubbard model. The hopping matrices T* are imposed by the
cubic symmetry, or in particular, the permutation symmetry of x, y, z-bonds. 7%,
the hopping along the z-bond, is determined by the only non-vanishing matrix
element between d;,_,. orbitals?®. All other matrices can be determined through

rotations:

In the one-hole- (three-electrons) or one-electron-filled case, using a
Schrieffer-Wolff transformation, an effective Hamiltonian (Kugel-Khomskii
model?®) in terms of spin and orbital pseudospin can be obtained, which preserves
the threefold rotational symmetry in the pseudospin space. This model is an
example of a compass model and has been intensively studied in the literature?>.

Dynamical mean-field theory. In non-equilibrium dynamical mean-field theory,
the lattice system is approximated by an effective impurity model coupled to a non-
interacting bath. The impurity action approximating the lattice problem takes the
form S =8, —iy, [dt [de'yi(t)A (t,t')y,(t')>. The two-band Hubbard
model involves orbital-mixing terms, but conserves the total spin S, component.
Therefore, the hybridization function of the bath AZA,(t, t'), as well as the Green’s
functions, are diagonal in the spin indices. We choose the non-crossing approx-
imation (NCA) as the impurity solver®3, which yields reliable results when the two-
band Hubbard model at large U is considered*4.

The lattice consists of two sublattices A and B with different orbital occupations.
T(}}e self-consistency condition for the hybridization function reads
A1) =1 30,0 WO TGy (1, 1)) T %), where {=+1 corresponds to
positive/negative directions along the same bond. This self-consistency represents a
Bethe lattice in which d bonds are connected to each lattice site*> along each
direction +x, *y, +z, and we take the limit of d — oo with a rescaled hopping
parameter t,/v/6d. This model has a (single-orbital) semi-circular density of states
with bandwidth W = 2t,, and one expects the results to be qualitatively similar to a
cubic lattice of the same bandwidth.

Motivated by the mean-field solutions, we consider an intertwined spin and
orbital-ordered phase, where A-type antiferromagnetism and antiferro-orbital
order are assumed?%. The orbital orders on the two sublattices can be related by a
unitary rotation R = g5 in the pseudospin space which flips the pseudospin w.r.t.
the Z;-direction, ie., G , = R'GS R, where the spin ¢’ is determined by the bond,
with ¢’ =0 for a =x, y and ¢’ = —o for a =z.

Characterization of the photo-excited state. The laser excitation is included in
the model by the Peierls phase, as indicated in Eq. (2). Photo-doping is realized by
connecting the lattice to an empty or filled Fermion bath for a short time (¢ <2).
The photo-doped system can be characterized by the excitation density #ey. #y is
defined as the sum of excited doublon and 4-particle excitations. In the electric-
pulse case, this quantity can be calculated as the pulse-induced growth in the
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probabilities of local 4-particle and 2-particle states. In the photo-doping case, it
can be measured by the change in the total particle number after the photo-doping
(coupling to the fermion bath).

In Fig. 4, the time-dependent density of states and occupied density of states are

computed through Fourier transforms over the relative time variables A(w, t) =
—Im {Tr,afdse"‘”"/G\’(t +5/2,t— s/2)}/7r and

GS(w,t) =Im {Tr&,fdse"“sa§(t +5/2,t— 5/2)}, which are traced over orbitals
and spins.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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