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Abstract

We present here miRTrace, the first algorithm to trace microRNA sequencing data back to their taxonomic origins.
This is a challenge with profound implications for forensics, parasitology, food control, and research settings where
cross-contamination can compromise results. miRTrace accurately (> 99%) assigns real and simulated data to 14
important animal and plant groups, sensitively detects parasitic infection in mammals, and discovers the primate
origin of single cells. Applying our algorithm to over 700 public datasets, we find evidence that over 7% are cross-
contaminated and present a novel solution to clean these computationally, even after sequencing has occurred.
miRTrace is freely available at https://github.com/friedlanderlab/mirtrace.
Introduction
An important laboratory challenge is to determine the
organism or organisms from which a biological sample
originates. In forensic science, clinical and field parasit-
ology and food quality control, it is often critical to de-
termine the identity of the animal or plant from which a
sample is derived [1]. In research, next-generation se-
quencing allows transcriptomes to be profiled with un-
precedented sensitivity, but this increases the risk that
minute cross-species contamination compromises the
results [2]. Commonly, ribosomal and mitochondrial
DNA or other “barcoding” genes have been used to re-
solve the taxonomic origins of a sample [3, 4]. Specific-
ally, short genetic markers that can be sequenced
without species-specific PCR primers are used to iden-
tify a DNA sample as belonging to a particular species
based on large databases of sequences for the particular
locus. Importantly, the loci must therefore show high
variation between species yet a relatively small amount
of variation within a species. Accordingly, this method is
sensitive to evolutionary sequence fluctuations such as
back mutations [5, 6], and they require availability of ref-
erences in the database.
MicroRNAs (miRNAs) are small RNAs that can regu-

late the expression of protein coding genes [7]. They are
found in virtually all multicellular animals and plants
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[8], in numbers that approximately correspond to organis-
mal complexity [9, 10]. Importantly, miRNA genes have
emerged continuously over evolutionary time; they are
rarely secondarily lost and are often highly conserved in
sequence [11]. These properties give miRNAs potential as
powerful phylogenetic and taxonomic markers. Indeed,
miRNA genes have been successfully used to resolve many
branches of the animal tree of life; a challenge related to,
but distinct from, taxonomic tracing [11, 12]. However,
when resolving phylogenetic branches, care must be taken
when drawing conclusions from often incompletely anno-
tated and incorrectly named miRNA complements [13,
14] as they can be misinterpreted as secondary losses [15].
Importantly, the evolutionary properties of miRNAs mean
that each animal or plant clade (taxonomical group) has
several miRNAs that are specific to that clade [16].
We have compiled known clade-specific miRNAs [11,

13, 17, 18] and developed an algorithm, miRTrace, that
searches this catalog to reveal the taxonomical origin(s)
of miRNA sequencing data. The currently preferred
method to profile miRNAs is next-generation RNA se-
quencing, combined with specialized protocols that en-
rich for short transcripts. Our algorithm can be used
directly for the quality control (QC) of such sequence
data, and it can be adapted for more specific applications
such as forensic science or parasitology. miRTrace strin-
gently matches the sequenced miRNAs to the catalog of
clade-specific miRNAs and reports on the overall com-
position. The method in this way identifies the taxonom-
ical groups that contributed to the sample.
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miRTrace has several potential advantages over the
mitochondrial DNA-based barcoding gene approaches
that are commonly used in animals and plants. First,
since a given miRNA is either present or absent in a
given clade, back mutations or sequencing errors cannot
compromise the analysis. This is analogous to classical
cladistics, which used morphological traits (present/ab-
sent) to resolve phylogenies [19]. Second, since miRNAs
are conserved in sequence, our method works for com-
pletely unstudied species, provided that sequences from
related species are present in our catalog. Third, since
most clades have dozens of miRNAs that are specific to
them, our method is robust to confounding factors that
affect a single gene, such as secondary loss, duplication,
or horizontal transfer.
We here give a proof-of-principle that miRNAs can be

used to trace biological samples back to their taxonomical
origins. Specifically, we show that miRTrace can track se-
quencing data back to 14 animal and plant clades with
high (> 99%) accuracy. We also demonstrate the sensitivity
of miRTrace, by detecting parasite-derived miRNAs in the
blood of infected mice, and by discovering the primate
origin of single human cells. A direct and important appli-
cation of miRTrace is to detect cross-clade contamination
in research sequencing data. We have analyzed more than
700 public miRNA sequencing datasets and find evidence
that more than 7% have contaminations. Further, we iden-
tify index mis-assignment during sequencing as an im-
portant source of the contamination. We test common
bioinformatics sequence analyses and find that they can
be robust, even when 1% of the sequenced RNAs are
cross-contaminations, and we present a new computa-
tional method to remove contaminations, even after se-
quencing has occurred.
Last, we have implemented miRTrace as fast and port-

able Java software. In addition to the taxonomical Trace
functionality described above, our software performs an
all-round quality control (QC) of miRNA sequencing data.
These two functionalities or modes are described in two
separate sections below. We validate the QC mode on
in-house data from intentionally corrupted samples. The
miRTrace software, including the trace feature, the quality
control feature, and the contamination cleaning feature, is
available at https://github.com/friedlanderlab/mirtrace.

Results
miRTrace: tracing miRNA sequencing data to their
taxonomic origins
The core function of miRTrace, to trace miRNA sequen-
cing data back to their taxonomical origins, is performed
in two steps (Fig. 1a). In the first step—the data pre-
processing—low-quality sequencing reads are discarded,
and the 3′ end sequencing adapter is removed from the
remaining reads. This is important since when short
miRNAs are sequenced, the sequencing reaction often ex-
tends into the adjacent adapter. Last, remaining reads that
have low sequence complexity or that are shorter than 18
nucleotides are discarded (Methods). In the second step,
clade-specific miRNAs are identified. Specifically, the
remaining processed reads are mapped to our curated
database of clade-specific miRNAs (Additional file 1), con-
sidering only perfect matches, and the composition of
clade-specific miRNAs is reported as output (Methods).
For each data set, the taxonomic composition is reported
as a bar plot, with each of 14 different animal or plant
clades presented with a distinct color (Fig. 1a, right). If a
data set contains sequences from more than one clade,
the bar will be stratified into distinct colors. This output
can for instance be used to reveal the taxonomic origin of
an unknown or complex sample, detect parasite RNAs or
laboratory cross-species contaminations, or resolve the or-
igins of food material (Fig. 1b).

miRTrace accurately and sensitively traces sample
taxonomic origins
To test the accuracy of miRTrace in classifying unknown
samples, we analyzed representative public miRNA se-
quencing data from 14 clades of animals and plants
(Fig. 2a, Additional file 2: Figure S1; Additional file 3:
Table S1; Additional file 4: Report S1). The method
identified hundreds or thousands of clade-specific miR-
NAs in each species. In 12 species, 100% of these miR-
NAs belonged to the expected clade, and more than 99%
of the sequences for the remaining species were assigned
as expected. Importantly, the miRNA complement of
two of the species, sea cucumber and oyster, has not
been studied [20], and these species are not represented
in our catalog. The method, however, correctly identified
these species as echinoderms and lophotrochozoan,
showing the generality and robustness of miRTrace.
We next tested the sensitivity of our method by ana-

lyzing miRNA sequencing data from single human cells
[21]. Our method again correctly identified all clade-
specific miRNAs as primate, showing that it can trace
picogram sample material to the correct organism
(Fig. 2b, Additional file 3: Table S2). We then used our
tool to profile sequencing data from serum of mice in-
fected with the parasitic nematode Litomosoides sigmo-
dontis [22]. Both rodent and nematode miRNAs were
detected (Fig. 2c, Additional file 3: Table S3), demon-
strating that our method can detect parasitic infections
in mammals. Next, we analyzed mouse sequences with
different levels of fruit fly sequences introduced in silico
(Fig. 2d, Additional file 3: Tables S4–S6). Fruit fly traces
were detected when present at 0.001% or higher, show-
ing that miRTrace can detect foreign miRNAs even
when they comprise one in 100,000 sequences. Last, we
applied binomial statistics to estimate the rate with

https://github.com/friedlanderlab/mirtrace
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Fig. 1 miRTrace: tracing miRNA sequencing data to their taxonomic origins. a Flowchart of how miRTrace assigns miRNA sequencing data to
their taxonomical origins. One or more Fastq files and the synthetic adapter sequence are input. The data are pre-processed and clade-specific
miRNAs are identified by perfect matching to a curated sequence database. The clade-specific miRNA profile is output in graphic format. b
Possible miRTrace applications
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Fig. 2 miRTrace determines the organismal origins of miRNA-seq data with high accuracy and sensitivity. a Representative miRNA-seq data from
nine animal and five plant species were analyzed with miRTrace. The common species names are given below the bars. For each species, over
99% of the diagnostic clade-specific miRNAs were assigned to the expected clade, as shown by the bar color and the color key to the right. The
total number of clade-specific sequencing reads in each dataset is shown above the bars. Sea cucumber and oyster (marked with black asterisks)
were not represented in our reference database, but were still correctly identified as Echinoderm and Lophotrochozoan based on
conserved sequences. b miRTrace identifies human samples as primate using data from single cells. c A parasitic infection is identified
from nematode miRNAs in mouse serum. d Estimation of sensitivity. In a carefully controlled in silico experiment, fruit fly sequences
were spiked into mouse data in abundances ranging from 0 to 100%. miRTrace detected the insect presence when 0.001% or more of
the sequences were fruit fly
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which random sequence would match to our database
of curated miRNAs (Additional file 2: Supplementary
Methods). We found that a typical sequencing data
set of ten million reads would produce less than one
spurious match (Additional file 2: Figure S2), demon-
strating that our method is highly specific.

Evidence that cross-clade contamination is prevalent in
public miRNA sequencing data
In research settings, cross-species contamination of sam-
ples can reduce reproducibility and complicate the inter-
pretation of results. One direct and important application
of miRTrace is to detect such contamination in miRNA
sequencing data. We surveyed more than 700 public re-
search sequencing datasets from mouse, nematode, and
fruit fly for the presence of primate miRNAs, since the
most plausible explanation for the presence of primate
sequences in mouse, nematode, or fly would be human
contamination, from, for example, researchers or pa-
tient material (Fig. 3a, Additional file 2: Figure S3,
Additional file 3: Tables S7–S12, Additional file 4: Re-
ports S2–S4). On average, 7% of the datasets con-
tained primate sequences, with more in the fruit fly
data (11%) and less in the nematode data (2%). How-
ever, the levels of the putative contaminants were gen-
erally low, with a median contamination level from
primate sequences of 0.01% of the clade-specific miR-
NAs (Fig. 3b). We conclude that trace levels of cross-
contaminants are prevalent in public research se-
quence data.

Index mis-assignment is an important source of
contamination
We next designed a controlled in-house experiment to
study potential sources of cross-contamination. Exten-
sive research has been conducted on this topic for DNA
sequencing [2, 23], but none specifically for miRNA se-
quencing. Work with DNA has shown that cross-
contamination can occur during the sequencing process,
and thus we used the Illumina NextSeq500 instrument
to profile miRNAs from human cell cultures and mouse
neuronal synapses in parallel. Mouse synapses contain
highly abundant rodent-specific miRNAs, and we were
therefore not surprised to observe clear rodent contam-
ination in all of our nine sequenced human samples
(Fig. 3c, see Additional file 2: Note S1 and Figure S4 for
a discussion on the effect of miRNA annotation imbal-
ances between species, Additional file 3: Table S13).
When multiple samples are profiled in parallel, each de-
tected miRNA is assigned back to its sample of origin
based on an index sequence that is unique to that sam-
ple. If some of the nucleotides of the index are misread
during the sequencing, the miRNA may be assigned to
an incorrect sample (Fig. 3d, top, Additional file 2:
Figure S5). We therefore repeated the assignment, but
stringently discarded miRNAs with indices that did not
have a perfect match to a known sample index. This step
removed approximately 90% of the rodent sequences
from the human samples, indicating that index misread-
ing is an important source of miRNA contamination
(Fig. 3d, bottom, Additional file 3: Table S14).
Cross-contamination can also occur when the sequen-

cing instrument reads an index correctly but pairs it to
an incorrect transcript (Fig. 3e, top). This is possible be-
cause the index and the transcript are read in two dis-
tinct sequencing reactions, which can then be mis-
paired by the instrument [2]. However, since miRNAs
are short transcripts, when they are sequenced, the main
reaction can extend into the adjacent index. For in-
stance, the default 75 bp Illumina TruSeq kit should be
long enough to cover miRNA (~ 22 nt), adapter se-
quence (33 nt), and index (6 nt). A consequence of this
is that the index is read twice. We developed software to
identify and discard miRNAs with inconsistent indices
and in this way remove contaminated samples that ori-
ginate from mispairing events. We successfully used this
approach to completely clean all contamination from six
of nine samples (Fig. 3e, bottom, Additional file 3: Table
S15). We compared our method of removing mis-paired
indices with a previously described approach that filters
sequencing reads based on index sequencing quality
[24], and found that the two compare similarly in clean-
ing efficiency, while our method retains more useful
miRNA sequences (Additional file 2: Figure S6). Further,
our method works independently of index quality scores,
which are rarely available for public data. In summary,
our results show that misread and mis-paired indices are
sources of miRNA cross-contamination, and we present
a method to computationally remove them, after the
samples have been sequenced. Importantly, our cleaning
method can remove same-species contamination and
can also be used for other short transcript applications
such as CLIP-seq [25, 26].

Impact of contamination on downstream bioinformatical
analyses
Having studied the sources of cross-contamination, we
turned to their effects on subsequent bioinformatical
analyses. We computationally spiked in either human or
fly miRNA sequences into data from mouse embryonic
stem cells (Fig. 3f, top, Methods, Additional file 3: Tables
S16, Additional file 4: Reports S5–S6). The mouse cells
had been cultivated either in the presence of a com-
pound that maintained their pluripotency (leukemia in-
hibitory factor, LIF) or with a compound that induced
them to differentiate into neurons (retinoic acid, RA)
[27]. Contaminants at levels of 1% or less did not change
the overall transcriptional profile of the samples, as
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Fig. 3 Prevalence, causes, and effects of cross-contamination in miRNA-seq data. a Percentages of public mouse, nematode, and fly
datasets that contain primate sequences (putative human contamination). b Percentages of primate sequences in putatively contaminated
datasets (considering only clade-specific sequences). The white dot indicates the median value, the thick black line indicates the range
from 25 to 75% percentiles, and the whole gray area indicates the range from 5 to 95% percentiles. c Human and mouse samples were
profiled in parallel with Illumina sequencing to detect sources of cross-contamination (top). Using the Illumina default settings for sample
assignment, rodent contamination was detected in all nine human samples. Each bar represents one sample, and the numbers in each
bar indicate the number of contaminating sequences (bars below). d Using more stringent settings for sample assignment, only sequences
with perfect matches to known sample indices were retained (top). This computational step removed most rodent contaminations (bottom). e
In an additional filtering step, sequences with inconsistent indices were discarded (top), removing contaminations completely from six out of
nine human samples (bottom). f Mouse samples in silico contaminated with controlled abundances of human or fly sequences ranging from 0
to 100% (top). Principal component analyses (PCA) show how the overall miRNA composition of the sample changes with increasing levels of
contamination (bottom). g Effects of the contaminations from (f) on gene differential expression (DE) analyses. Sensitivity, specificity, and
accuracy (in shades of brown) are given as fractions, while the false positive rates (in red) are absolute numbers. h Effects of contamination on
the prediction of novel miRNAs
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indicated by principal component analyses (PCA), while
higher levels of contaminants increasingly changed the
profile towards that of the contaminating sample (Fig. 3f,
bottom, Additional file 2: Figures S7–S8, Additional file 3:
Tables S17–S18). We next used differential gene expres-
sion analysis to identify genes that had been activated
following induction into neurons (RA vs. LIF). The
analysis was not compromised by the presence of up
to 0.1% human sequences or 1% fly sequences, while
higher levels of contaminants reduced the sensitivity
and caused false positives (Fig. 3g, Additional file 2: Fig-
ures S9–S10, Additional file 3: Table S19). The analyses
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performed on mouse data were more sensitive to the
human sequences than to the fly sequences, and we
speculate that this is because of the closer evolutionary
relationship. Finally, we predicted novel miRNA genes
from the mouse LIF data using miRDeep2 [28] (Methods).
The presence of up to 0.1% human or 1% fly sequences
did not disturb the analyses, while a higher level of con-
taminants reduced sensitivity and caused some false posi-
tives (Fig. 3h, Additional file 3: Table S20). These results
indicate that common analyses can be robust to levels of
contaminants up to 1%, depending on species relatedness
and the type of analysis. This leads to the conclusion that
approximately 1.5% of the public datasets may be substan-
tially compromised by contaminants (Fig. 3a, b).

miRTrace: all-round quality control of miRNA sequencing
data
We have implemented the algorithm described in this
study as fast and portable Java software. It operates in
two modes: Trace mode, in which the software reports
the composition of clade-specific miRNAs of unknown
or complex samples, as described above, and extended
QC mode, in which it performs an all-round quality con-
trol of miRNA sequencing data, applicable to any of the
219 animal or plant species currently available in the
miRBase database [20].
The QC mode builds on the workflow of the Trace

mode (Fig. 1a), but more steps are included and in total
six report figures are generated during the flow (Fig. 4).
First, a report figure of the sequencing quality is output
(“Phred Score Distribution,” example Fig. 5a). In the data
pre-processing step, low-quality reads are discarded, the 3′
end sequencing adapters are removed, and low-complexity
reads and short reads are discarded (Methods). After the
adapters have been removed, a report figure is generated
that shows the length profile of reads (“Read Length Dis-
tribution,” Figs. 4 and 5b). The length profile of sequenced
transcripts can be highly informative, since particular clas-
ses of transcripts have distinct lengths, for instance, miR-
NAs are often 22 nucleotides long. Next, quality control
statistics accumulated thus far are reported, showing what
fractions of reads have been discarded or retained in the
previous steps (“Quality Control Statistics”, Figs. 4 and 5c).
In the annotation step, reads are mapped to a custom
database of miRNA precursors, tRNAs, rRNAs, and syn-
thetic adapter sequences that may be present, and the
composition of each data set is presented (“RNA Type,”
Figs. 4 and 5d). From the sequences that have now been
identified as miRNAs, a report is generated showing the
number of distinct miRNAs in each data set, as a function
of sequencing depth (“miRNA Complexity,” Figs. 4 and
5e). Ideally, many distinct miRNAs should be present in
each data set; low complexity data sets may be generated
when low quantities of RNA are sequenced. Last, in the



(See figure on previous page.)
Fig. 4 miRTrace: an all-round quality control tool for miRNA
sequencing data. Flowchart of the steps that generate the six
reports shown in Fig. 5a–f. For instance, an example of first
report is shown in Fig. 5a. A detailed description of the flowchart
can be found in the Results section
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contamination test step, sequence reads are mapped
against our catalog of clade-specific miRNAs, identical to
the Trace mode (“Contamination,” Figs. 4 and 5f). This is
a key part of the QC analysis, since cross-species miRNAs
could result from contamination that compromises the
data.
We have benchmarked the QC mode on a small use

case representative of a research laboratory, and on an
extensive use case representative of a bioinformatics or
sequencing facility. The analysis of ten datasets compris-
ing approximately 185 million reads takes less than 8
min on a MacBook Air (2014) laptop with 2 GB memory
allocated, while the analysis of 428 datasets comprising
approximately 4.5 billion reads takes less than 14min on
a server with 20 cores (Xeon(R) E5-2630 v4) and 32 GB
memory allocated, demonstrating the efficiency of our
software.

miRTrace quality control accurately identifies problematic
samples
To test our software on realistic data, we have validated
the QC mode using in-house human RNA control sam-
ples that we intentionally subjected to various insults.
These treatments include cross-species contamination,
sample dilution, and RNase A digestion (Fig. 5, Methods,
Additional file 3: Table S21). As expected, miRTrace suc-
cessfully identifies fruit fly contamination in human
samples even when it is present in a 1:1000 ratio at the
RNA level (first four bars in Fig. 5f ). In addition, miR-
Trace also discerns subtle changes in quality caused by
contamination. For example, the human miRNA content
and sequence complexity decrease as the fly presence in-
creases (Fig. 5d, e). The changes are also reflected in the
overall sequence length profile, since the abundant fly 2S
RNA is around 30 nucleotides long, while the human
miRNAs are around 22 nucleotides long (Fig. 5b).
miRTrace also discerns the differences between the

human control sample and a sample that has been partly
degraded with RNase A enzyme. The degraded sample
has fewer sequences that are around 22 nucleotides long,
and a higher fraction of shorter variants, including zero-
length sequences, which are probably ligation adapter ar-
tifacts (Fig. 5b). The degraded sample also has a lower
miRNA content and sequence complexity (Fig. 5d, e).
These tendencies are observed to a lesser extent for the
low-input sample that was prepared from only 50 ng
total RNA. Last, when an incorrect ligation adapter
sequence is provided to miRTrace, no adapters are
identified (Fig. 5c) and more than 85% of reads are la-
beled as “Artifacts,” which suggests that the unclipped
adapter sequences are aligned to our Illumina artifact
database (Fig. 5d). In summary, miRTrace accurately
identifies poor-quality samples and can even, to some
extent, provide hints to the cause of the poor quality.
The miRTrace method can trace samples to the species
level
While some studies have provided miRNAs that are
specific to broader clades [11, 17, 18], currently few
truly species-specific miRNAs are known. However, a
recent study has provided a catalog of miRNA candi-
dates specific to each of 12 Drosophila species [29].
This has allowed us to evaluate if our method can trace
miRNA sequencing data to the species level, when the
required annotations are available. Specifically, we ana-
lyzed public miRNA sequencing data from the 12 Dros-
ophila species, while providing curated species-specific
databases to miRTrace. For all 12 datasets, > 90% of the
reads were correctly assigned and the species of origin
was unambiguously identified (Fig. 6a, Additional file 3:
Table S22), demonstrating that our approach can accur-
ately trace to the species level, when the annotations
are available.
This case study also allowed us to compare miRTrace

to other methods, at the species level. Currently, miR-
Trace is the only approach that can trace miRNA se-
quencing data to their taxonomical origins, but similar
methods exist for other data types. The most common
method for taxonomical tracing in animals uses barcod-
ing of the mitochondrial Cytochrome Oxidase C Subunit
1 (COI) gene [4]. This method does not analyze next-
generation sequencing data, rather researchers extract
DNA from samples of interest, PCR amplify the COI
gene, and sequence it with Sanger sequencing, before
mapping it to a comprehensive COI sequence database
[4]. We therefore simulated Sanger sequencing data
from the 12 Drosophila species, considering intra-
species sequence variation and common error rates of
Sanger sequencing (Additional file 2: Supplementary
Methods). We found that the Barcode of Life Engine
assigned more sequences correctly than miRTrace for
seven of the 12 species, while miRTrace performed bet-
ter for four species, and both methods performed per-
fectly on one species (Fig. 6a–b) However, for two of the
species, most Sanger sequences could not be correctly
assigned to a single species. When we looked closely
into these species, we found that the ambiguous assign-
ment is likely due to incorrectly annotated sequences in
the Barcode of Life reference database, and indeed when
comparing all available Drosophila COI sequences, it
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Fig. 5 (See legend on next page.)
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Fig. 5 miRTrace quality control report. a Sequencing quality. Higher Phred scores indicate higher sequencing quality. In this case, all samples pass
the filter. The number above each column shows the number of sequences in the dataset. b Length of sequenced transcripts. miRNAs are ~ 22
nucleotides long, while the fly 2S RNAs are ~ 30 nucleotides long. Zero-length sequences indicate adapter artifacts, while lengths of > 50 indicate
that the sequencing adapter has not been successfully identified. Four samples are flagged because < 25% of the sequences are between 20 and
25 nucleotides long. c Quality control. After the ligation adapter has been removed, sequences are grouped according to length and sequencing
quality. The most desirable sequences have the adapter removed and are long enough to map reliably (18 nucleotides or longer). d RNA type.
For most applications, a high miRNA content and low rRNA and tRNA content are desirable. Illumina sequences are tagged as “artifacts.” Here,
three samples are flagged because the miRNA content is < 10%. e miRNA sequence complexity. Each bar shows the number of distinct miRNA
sequences as a function of sequencing depth. Two samples are flagged because < 10% of all known miRNAs for the studied species (human) is
represented in the sample. f Contamination. The human samples that are intentionally contaminated with fly clearly stand out (in beige color). In
total, 14 clades are considered, but here only eight are shown in the table below. Samples: Fly control, S2 cells; Human/Fly 10:1, total RNA from
HEK-293T cells mixed with total RNA from S2 cells in ratio 10:1; Human control, HEK-293T cells; Low-input RNA, 50 ng total RNA from HEK-293T
cells; Degraded RNA, HEK-293T total RNA incubated with RNase A enzyme; Incorrect adapter, wrong adapter sequence designated when starting
the analysis. The six report figures here are imported directly from miRTrace output, except for the small gray arrows and the accompanying
annotations, which have been added here for clarification
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was not possible to assign all of the species to monophy-
letic groups (Additional file 2: Figure S11).
While currently no competing methods exist to trace

miRNA sequencing data to their origins, there are simi-
lar methods for other next-generation sequencing data.
The FastQ Screen tool maps long reads produced by
RNA or DNA sequencing simultaneously to multiple ge-
nomes of interest, and reports how many reads map un-
ambiguously to the expected genome, and how many
reads map to other genomes [30]. When mapping pub-
licly available RNA sequencing data with FastQ Screen,
we found that reads were assigned to most Drosophila
species with > 90% accuracy, similar to the performance
of miRTrace (Fig. 6c, Additional file 2: Supplementary
Methods, Additional file 3: Table S23). miRTrace outper-
formed FastQ Screen for five out of 12 species, while
FastQ Screen performed better for seven species (Fig. 6a,
c). Importantly, for three of the species (D. melanogaster,
D. erecta and D. virilis), we found RNA sequencing data
that matched the miRNA sequencing data analyzed by
miRTrace above (exact same studies); miRTrace per-
formed best for two out of three of these species. This
test case is likely particularly challenging for FastQ
Screen, since some of the Drosophila species are closely
related, and several have incomplete genome assemblies.
In summary, we find that miRTrace performs compar-
ably to state-of-the-art tools that trace other types of se-
quence data to their taxonomic sources. However, the
types of mis-assignments (ambiguous or wrong assign-
ments) differ between the tools, suggesting that the ap-
proaches may be complementary.

Discussion
We have here given a general proof-of-principle that
miRNAs can be used to trace biological samples back to
their taxonomic origins. This approach has several ad-
vantages over traditional methods—in particular, that
the analysis is binary and conceptually simple, since a
given miRNA is either present or absent from an animal
or plant clade. We also present miRTrace, an implemen-
tation of the method that accurately and sensitively
traces miRNA next-generation sequencing data to 14
important animal and plant clades. A primary applica-
tion of miRTrace is to detect contaminations in miRNA
research data. We have surveyed more than 700 public
datasets and have presented evidence that more than
7% are compromised. We have identified index mis-
assignments during sequencing as an important source
of contamination, and we have proposed a simple yet
innovative method to clean contamination, even after
sequencing has occurred. Importantly, miRTrace is
available as general-purpose quality control software
and is fast and user-friendly, making it useful for bio-
informatics and sequencing facilities and for the indi-
vidual biologist.
We have shown that miRTrace is quantitative for some

clade comparisons (Fig. 2d), while it reports skewed rela-
tive abundances for other comparisons (Fig. 5f ). This
has biological reasons, since some clades have larger sets
of miRNA genes that are specific to them and that are
more abundantly expressed (see the Additional file 2:
Note S1 and Figure S4). This could easily be corrected
by profiling miRNA genes at the DNA level, similar to
the methods normally used to analyze barcoding genes.
However, there are several advantages to profiling miR-
NAs at the RNA level. First, the RNA molecules are
often present in thousands of copies per cell, compared
for instance to the two autosomal DNA copies in diploid
cells, making the profiling more sensitive. Second, there
have long existed protocols to separate the total pool of
miRNAs from other transcripts [31–33], without the
need for specific primers or probes. Third, miRNAs are
very stable transcripts [34], detectable even in minute
dried blood samples [35] or from samples several thou-
sands of years old [36]. All these features combined
make miRNAs very promising markers at the RNA level.
Similar to the advantage of having thousands of miRNA

copies per cell, there are advantages to using multiple
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Fig. 6 miRTrace can be refined to trace samples to the species level.
a miRNAs known to be specific to individual Drosophila species
were compiled to generate a custom database for miRTrace. miRNA
sequencing data from the 12 species were obtained from public
repositories and assigned to the species by miRTrace, using the
custom annotations. The number in each bar indicates the percentage
of sequences that were traced to the correct species (pale yellow). b
Sanger sequences of the COI gene were simulated for the 12
Drosophila species, considering intra-species variation and
sequencing error rates, and assigned using the Barcode of Life
Identification Engine. For each species, 1000 sequences were
simulated. c RNA sequencing data from the 12 Drosophila
species were obtained from public repositories and assigned
using the FastQ Screen tool. The black asterisks indicate species
where it was possible to obtain matched miRNA and RNA
sequencing data (obtained from the same study)
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gene loci over single gene loci for taxonomical tracing.
During evolution, individual genes can be lost or sequence
can revert back to ancestral forms. Further, sequencing er-
rors can obfuscate differences between closely related spe-
cies, and mis-annotation in databases can make it difficult
to assign particular genes unambiguously. By leveraging
on multiple genes for tracing, the impact of events that
affect one gene can be minimized, and the analyses can be
made more robust.
Previous studies and our analyses here show that long

reads produced by RNA sequencing can also be traced
to the species level, using FastQ Screen [30] (Fig. 6c).
However, since this method relies on mapping to whole
genomes, the sequence space that needs to be searched
is in the range of billions of nucleotides, which makes
the tracing computationally demanding. Our entire cu-
rated miRNA database, covering 14 important animal
and plant general clades, comprises around 30,000 nu-
cleotides, making the search computationally efficient
and also highly specific, with less than one expected false
positive for every ten million reads (Additional file 2:
Figure S2). This makes miRNAs particularly useful for
applications where high-performance computing may
not be available, such as in-the-field tracing analyses.
Current catalogs of clade-specific miRNAs are far from

complete [13, 20]. With saturated annotations, miRTrace
could give complete coverage from phylum to species,
identifying marker miRNAs along entire branches of the
phylogenetic tree. This would simultaneously yield both
high-level and fine-resolution taxonomic information in
a single analysis, for increased robustness. In the Dros-
ophila test case (Fig. 6), we have shown that such a de-
tailed tracing is possible both in theory and in practice
when species-specific annotations are available.
Finally, single-celled eukaryotes, prokaryotes, and vi-

ruses also have small RNAs [37–39]. If these were to be
included in our catalogs, our approach could be extended
to all the domains of life, making it a strong complement
to the traditional barcoding methods. Thus, we propose
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that a future initiative to complete the annotations of
small RNAs, similar to the existing Barcode of Life Project
[40], would benefit numerous research fields.

Conclusions
We conclude that miRNAs can be used to trace bio-
logical samples back to the clade or even species of ori-
gin. We have shown that miRTrace can accurately (>
99%) assign miRNA sequencing data to 14 animal and
plant clades, sensitively determine the taxonomic origins
of single cells, and detect parasitic nematode miRNAs in
mammalian host blood samples. We estimate that > 7%
of public miRNA sequencing datasets may be cross-
clade contaminated and that common bioinformatics
analyses are robust to up to 1% contamination. We find
that index mis-assignment during sequencing is an im-
portant source of cross-contamination, which can in
some cases be cleaned computationally after sequencing.
miRTrace is available as fast and portable software—to
trace, quality control, and clean miRNA sequencing
data—and importantly, its architecture allows for future
expansion as new miRNA reference data become
available.

Methods
miRTrace pipeline
miRTrace is a portable JAVA program for quality control
(QC) and tracing taxonomic origins of small RNA se-
quencing data. miRTrace takes FASTQ files as input. If
the reads are longer than 50 nucleotides (nt), the se-
quence beyond the first 50 nt is trimmed. Low-quality
reads with more than 50% nt with PHRED score less
than 20 are removed. The remaining reads are subjected
to adapter trimming. For the Illumina TruSeq small
RNA and the QiaSeq miRNA protocols, the reads are
searched for the first 8-mer of the 3′ adapter. If a match
is found, the last appearing match is removed, together
with all subsequent nucleotides. If no match is found,
miRTrace then scans and trims the 3′ end of reads that
have the largest match to the 5′ end of the 3′ adapter.
For the NEXTflex Small RNA-Seq protocol, first the four
initial nt are trimmed and the 3′ adapter sequence is re-
moved as described above. Additionally, if the adapter is
detected, the last four nt are trimmed. For the CATS
Small RNA-seq protocol, the three initial nt are trimmed
and the left-most occurrence of a poly-A 8-mer is
searched for. If a match is found, the poly-A tail and
subsequent nt are removed. Otherwise, miRTrace at-
tempts to match and trim using subsequently shorter
poly-A k-mers (down to a single A if necessary). After
adapter removal, the reads containing any ambiguous nt
(e.g., N), the reads containing highly repeated nucleo-
tides, and the short reads (< 18 nt) are removed. The
adapter trimmed reads with length ≥ 18 nt are named as
“QC-passed reads,” as are also adapter unrecognized
reads (sequences where no adapter has been trimmed),
and used for later analysis.
To know the RNA composition of a sample, each

QC-passed read is first aligned to miRNA precursor se-
quences downloaded from miRBase v21 [41], then tRNA
sequences downloaded from tRNAdb and mitotRNAdb
[42] (http://trnadb.bioinf.uni-leipzig.de), and then ribo-
somal RNA sequences curated from NCBI nucleotide,
Silva [43] (https://www.arb-silva.de) and the Ensembl
database, without allowing any mismatches. If no align-
ment is found, miRTrace will redo the mapping with
one mismatch allowed. The reads are annotated based
on the type of RNA that they first aligned to. Further-
more, the remaining unmapped reads are aligned to the
“artifact sequences” from Illumina adapter documents,
requiring at least one 18 nt stretch of sequence identity.
The reads that do not map to any of the above databases
are marked as “unknown.” All of the reference databases
can be found in the “reference_databases” folder of the
miRTrace package.
To estimate the miRNA sequence complexity, miRTrace

calculates the cumulative number of distinct miRNA pre-
cursors identified in a given dataset as a function of se-
quencing depth. The number of distinct miRNA genes is
determined by the number of distinct precursor sequences
that the reads map to, while the sequencing depth is deter-
mined by the number of processed raw reads. A sample
with high miRNA complexity tends to have a greater
number of distinct miRNA precursors and to reveal more
lowly abundant miRNAs as sequencing becomes progres-
sively deep.
According to the previously curated clade-specific

miRNA family numbers (Additional file 1), the reference
catalog of clade-specific miRNA sequences is obtained
from miRBase v21 by selecting the mature miRNA se-
quences with an ID that contains the family numbers. For
example, the primate-specific miRNA family 580 yields
five sequences with miRBase v21 IDs hsa-miR-580-5p,
hsa-miR-580-3p, mml-miR-580, ptr-miR-580, and ppy-
miR-580. A read is identified as clade-specific miRNA if
its first 20 nt have an exact match to a reference sequence.
By counting the number of clade-specific miRNAs of each
clade and the number of unique clade-specific miRNA se-
quences, miRTrace provides the clade and sequence count
table of clade-specific miRNAs respectively.

Public small RNA-Seq data pre-processing
More than 700 public sRNA-Seq datasets were used for
the study. The datasets were downloaded from the NCBI
SRA database (https://www.ncbi.nlm.nih.gov/sra) and
detailed information of these samples can be found in
Additional file 3. The datasets in SRA format were con-
verted to FASTQ files using fastq-dump from SRA

http://trnadb.bioinf.uni-leipzig.de
https://www.arb-silva.de
https://www.ncbi.nlm.nih.gov/sra
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Toolkit v 2.3.5. The 3′ adapter of each sample was identi-
fied individually using the same approach as in Kang et al.
2017 [44] (see “Methods” section “De novo 3’ adapter
identification”). Notably, the single-cell libraries (n = 7)
from Faridani et al. 2016 [21] have custom designed 5′
adapters with the unique molecular identifier sequence
(UMI) at the 3′ end, which makes the reads un-
processable by miRTrace. The extra UMI sequences
(the first 10 nt of the reads) of these samples were for
this reason trimmed. All FASTQ files were then proc-
essed by miRTrace to profile clade-specific miRNAs.

Culturing human and fruit fly cell lines
HEK-293T cells were cultured in DMEM (Sigma-Aldrich)
supplemented with 10% FBS (Gibco); Drosophila S2 cells
(Invitrogen) were cultured in Schneider cell medium
(Gibco) with 10% FBS under standard conditions.

Degradation by Ribonuclease A
To perform enzymatic degradation of RNA samples, a
partial hydrolysis by Ribonuclease A was used. Ten mi-
crograms of HEK-293T total RNA samples was hydro-
lyzed by 10 ng of RNAse A (Thermo Fisher) at room
temperature for 5 min. The activity of RNAse A was
inhibited by RNAseOUT (Invitrogen) at a concentration
of 1 u/μl. The RNA concentration and integrity were
assessed with an Agilent Technologies Bioanalyzer using
a RNA 6000 Nano kit (Additional file 2: Note S2 and
Figure S12). The RNase A-treated samples with an RIN
value of 2.3 were used for miRNA expression analysis
using TaqMan-based real-time PCR quantification (Ap-
plied Biosystems) (Additional file 2: Supplementary
Methods) and small RNA sequencing (Illumina). One
microgram of RNase A-treated total RNA was used for
small RNA library preparation.

In-house small RNA library preparation
Total RNA was isolated using TRIzol reagent (Ambion).
RNA integrity was estimated with Agilent Technologies
Bioanalyzer using RNA 6000 Nano kit (Agilent). One
microgram of HEK-293T total RNA was used for stand-
ard small RNA library preparation using TruSeq small
RNA kit v2 (Illumina) and prepared as described in the
manufacturer’s protocol (Illumina). Fifty nanograms of
HEK-293T total RNA was used for preparation of low
input small RNA libraries. In brief, total RNA was li-
gated to the RNA 3′ and 5′ adapters (Illumina). The
adapter-ligated small RNAs were reverse transcribed
into cDNA using SuperScript II (Invitrogen) and PCR-
amplified by 12 cycles using the PML PCR master mix
(Illumina) with the TruSeq Small RNA 3′ indexed PCR
primers (Illumina). After library amplification, samples
were gel purified using a Novex TBE gel, 6% (Invitrogen)
and 145–160-bp bands were excised, eluted, and ethanol
precipitated. cDNA libraries were normalized to 4 nM,
and single-end sequencing was carried out on an Illu-
mina NextSeq 500.
Contaminated HEK-293T small RNA libraries were gen-

erated by pre-mixing HEK-293T total RNA with the total
RNA isolated from S2 cells. The following ratios of HEK-
293T to S2 total RNA were used 1000:1, 100:1, and 10:1.
In-house library multiplexing and demultiplexing
The in-house prepared libraries (human HEK-293T n = 9
and mouse n = 9) were multiplexed and then sequenced in
the same flow cell using an Illumina NextSeq500 high
throughput sequencing v2 kit (75 cycles). The output data
from Illumina sequencing machine were converted from
BCL to FASTQ format and the pooled reads were de-
multiplexed (assigned back to the original samples) based
on the sample unique indices using bcl2fastq2 conversion
software v 2.17. The demultiplexing process was per-
formed three times: (1) using the default Illumina
setting “--barcode-mismatches 1,” which allows one
mismatch for index matching, (2) using a more stringent
setting “--barcode-mismatches 0” to consider only perfect
matches, (3) applying the same setting as in (2), but dis-
carding the reads with inconsistent indices, which means
that the index sequence reported by the main sequencing
reaction (READ 1) is different from the index reported by
the index sequencing reaction (INDEX 1) (Fig. 3e upper
panel). The source to remove inconsistent indices can be
found in the “scripts” folder of miRTrace package. The
demultiplexed FASTQ files were pre-processed in the
same way as the public datasets using miRTrace.
Generating in silico mixture samples
To investigate the effect of cross-clade contamination on
miRNA gene expression analysis and de novo miRNA
prediction, in silico mixture samples with various levels
of contamination were generated using four public data
sets: pluripotent mouse embryonic stem cells (mESCs)
cultivated in the media containing serum and leukemia
inhibitory factor (LIF), the stimulated mESCs treated
with retinoic acid (RA), the human monocyte-derived
dendritic cells, and the fruit fly embryo (Additional file 3:
Table S16). First, small RNA-Seq datasets of these sam-
ples were subsampled to the same sequencing depth of
four million reads using seqtk (https://github.com/lh3/
seqtk). Second, the mouse samples were contaminated
with reads from the human and fruit fly samples to
obtain various contamination levels: with present 0%,
0.0001%, 0.001%, 0.01%, 0.1%, 1%, 10%, 40%, 70%,
and 100% spike-in reads. All of the mixture samples
were processed for quality control using miRTrace.
The output QC report is provided in Additional file 4:
Reports S5–S6.

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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Principal component analysis
The miRNA expression analysis was performed using mir-
aligner from SeqBuster [45] with the command line “mira-
ligner -sub 1 -trim 3 -add 1.” The Mus musculus miRNA
precursor sequences (hairpin.fa) and relative mature
miRNA coordinates (miRNA.str) from miRBase v21 were
used as reference. The miRNA count table is available in
Additional file 3: Tables S17–S18. The miRNA counts
were normalized to read per million (RPM) based on
the formula: (miRNA count/miRNA total counts per sam-
ple) × 106. Principal component analysis was performed
based on the sample covariance matrix of the miRNA ex-
pressions (RPM) using the prcomp() function without
scaling in R v3.1.1. The PCA plots in 3D can be found in
Additional file 2: Figures S7–S8.

miRNA differential expression analysis
To identify the miRNAs that are differentially expressed
(DE) in the stimulated mESCs (RA) with different levels of
contaminations from 0 to 100% (RA 0–100%) versus the
pluripotent mESCs without contaminations (LIF 0%), we
used the following criteria. For miRNAs expressed in both
samples, the miRNAs must be expressed at least ≥ 10
RPM in one of the samples and have > 2 fold change
in RPM expression between the two samples. For
miRNAs expressed only in one sample, the miRNA
must be expressed at least ≥ 10 RPM. This is related
to Additional file 2: Figures S9–S10.

De novo miRNA prediction
Since the mouse miRNA precursors have been well
mined, instead of identifying novel ones that are likely
false positives, we measured how many known mouse
miRNA precursors can be recovered by miRDeep2 ana-
lysis. The pluripotent mESC (LIF) samples with human
and fruit fly spike-in reads were used for the analysis.
The de novo miRNA prediction was performed inde-
pendently for each sample in two steps using Perl scripts
from miRDeep2 [28]. In the first step, the QC-passed
reads (.fasta) were mapped to the mouse reference gen-
ome (mm10) using the command “mapper.pl -d -c -i -j
-l 18 -m -p” to get the read mapping coordinates, which
were deposited in an output file (with suffix .arf ). In the
second step, the novel precursor miRNAs were identi-
fied using the command “miRDeep2.pl -t Mouse.” The
QC-passed reads (.fasta) and genome-wide mapping co-
ordinates (.arf ) from the first step were loaded as input,
and the mouse reference genome (mm10), known rat
mature miRNAs from miRBase v21, were used as related
species reference.
Since the genome coordinates of novel miRNA precur-

sors can vary depending on the read content of samples,
the coordinates (with miRDeep2 score > 0) from each sam-
ple were pooled together and the overlapped coordinates
were collapsed to get the maximum intervals (using bed-
tools merge v2.26.0), which were used to resolve coordin-
ate inconsistency across samples. After annotating these
precursors by intersecting with the coordinates of mouse
precursors (mmu.gff3 from miRBase v21) using bedtool
intersect v2.26.0, the numbers of known and unknown
mouse precursors identified in each sample were counted.

Sensitivity, specificity, and accuracy
For the miRNA differential expression analysis, the DE
miRNAs that had been identified by comparing the
miRNA profile of uncontaminated pluripotent to stimu-
lated mESC samples (RA 0% vs. LIF 0%) were defined as
true cases, and the non-DE miRNAs were defined as false
cases. If the DE miRNAs (or true miRNAs), identified in
the uncontaminated samples were still differentially
expressed in the contaminated samples (RA 0.0001 - 70%
vs. LIF 0%), these cases were considered to be true posi-
tives (TP); otherwise, they were considered to be false neg-
atives (FN). Similarly, the previously identified non-DE
miRNAs (or false miRNAs) that were still non-DE in the
contaminated samples were considered to be true nega-
tives (TN); otherwise, they were considered to be false pos-
itives (FP). For each sample, we calculated the sensitivity
or true positive rate TPR =TP/(TP + FN), the specificity
(SPC) or true negative rate SPC =TN/(TN + FP) and the
accuracy ACC= (TP + TN)/(TP + FP + FN +TN). These
values can be found in Additional file 3: Table S19.
For the de novo miRNA prediction, we defined the

identified mouse miRNA precursors in the uncontamin-
ated pluripotent mESC sample (LIF 0%) to be true cases,
and the non-mouse precursors to be false cases. Based
on whether the true or false precursors were identified
in the contaminated samples (LIF 0.0001–70%), the TP,
FN, TN, and FP were calculated in the same way as de-
scribed above. The TPR, SPC, and ACC were also calcu-
lated using the same formulas. These values can be
found in Additional file 3: Table S20.

Tracing 12 Drosophila sequencing datasets to the species
level
To demonstrate that miRTrace can be extended to trace
sample species origins, we first obtained the reference
catalog of species-specific miRNAs from Mohammed
et al. 2018 [29] by parsing the “Supplemental_12flies_-
website.zip,” where the miRNA precursors with high
confidence and that are only expressed in one species
were considered as species-specific. In addition to the
requirement of a species-specific expression pattern, it
was also a condition that miRNA precursors should not
have ortholog sequences in another species. The mature
sequences of the qualified miRNA precursors were used
as reference sequences. We then downloaded sRNA-Seq
datasets from 12 Drosophila species from the NCBI SRA
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database (Additional file 3: Table S22). Since limited
sRNA-Seq datasets are available from Drosophila species
except for D. melanogaster, among the 12 samples only
four of them are not used redundantly in the study by
Mohammed et al. We mapped the reads of each sample
to the collected species-specific miRNA sequences. A
read is identified as species-specific miRNA if its first 20
nucleotides have an exact match to the first 20 nucleo-
tides of the reference sequences.
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