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Abstract: Although the number of patients with osteoporosis is increasing worldwide, diagnosis and
treatment are presently inadequate. In this study, we developed a deep learning model to predict
bone mineral density (BMD) and T-score from chest X-rays, which are one of the most common,
easily accessible, and low-cost medical imaging examination methods. The dataset used in this study
contained patients who underwent dual-energy X-ray absorptiometry (DXA) and chest radiography
at six hospitals between 2010 and 2021. We trained the deep learning model through ensemble
learning of chest X-rays, age, and sex to predict BMD using regression and T-score for multiclass
classification. We assessed the following two metrics to evaluate the performance of the deep learning
model: (1) correlation between the predicted and true BMDs and (2) consistency in the T-score
between the predicted class and true class. The correlation coefficients for BMD prediction were
hip = 0.75 and lumbar spine = 0.63. The areas under the curves for the T-score predictions of normal,
osteopenia, and osteoporosis diagnoses were 0.89, 0.70, and 0.84, respectively. These results suggest
that the proposed deep learning model may be suitable for screening patients with osteoporosis by
predicting BMD and T-score from chest X-rays.

Keywords: osteoporosis; screening; DXA; BMD; chest X-ray; deep learning; artificial intelligence

1. Introduction

With the population aging and increasing life expectancy, osteoporosis has become
a global health issue affecting more than 200 million people worldwide [1]. It is the
greatest risk factor for fragility fractures such as vertebral and hip fractures, and affects
life prognosis [2–4]. Early diagnosis of osteoporosis through screening is important for
the initiation of therapeutic agents and prevention of fragility fractures [5]. The standard
examination for osteoporosis screening is the measurement of bone mineral density (BMD)
using dual-energy X-ray absorptiometry (DXA) [6]. However, DXA has drawbacks in terms
of high equipment cost and radiation exposure [7–9]. Meanwhile, increasing awareness
of osteoporosis may be the most effective strategy for the prevention of osteoporotic
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fractures [10]. However, awareness of this disease among the elderly is very low [11];
therefore, the osteoporosis screening rate in Japan is only 5% [12]. Solutions to these
challenges would include (1) using commonly available imaging equipment and (2) using
multipurpose imaging equipment that is frequently used in clinical settings. Presently,
the most frequently performed imaging technique is chest radiography. A previous study
demonstrated that values obtained by analyzing structural and anatomical phenotypes,
such as the cortical thickness of the clavicles, ribs, and spine in chest radiographs, are
correlated with BMD [13–15]. These findings suggest that a tool for predicting BMD from
chest X-rays obtained for various medical purposes would be useful for osteoporosis
screening. The utilization of chest X-rays taken for other medical purposes eliminates
exposure to additional radiation and allows screening without requiring additional medical
procedures, specifically for examining bone density.

In recent years, deep learning, which is a machine learning technique that uses multi-
layer neural networks, has emerged as an effective technique for improving the performance
of computer image recognition [16]. Subsequently, progress in orthopedics research has
led to the use of deep learning models for osteoporosis screening [17]. In previous studies,
diagnoses of osteoporosis based on radiographs of the lumbar spine and hip joint have
been demonstrated [18,19], whereas the BMDs (g/cm2) of the hip and lumbar spine have
been measured from radiographs of these sites [20,21]. Chest X-rays have also been used in
two studies to diagnose osteoporosis [22,23]. However, the studies that used chest X-rays
predicted only a “T-score less than −2.5” or “young adult mean (YAM) less than 80%.” The
predictive performance indices obtained from these studies, in terms of the area under the
curve (AUC), were 0.88 and 0.78, respectively, and prediction of the BMD (g/cm2), which
is a continuous variable, was not performed. In addition, diagnosis (normal, osteopenia,
or osteoporosis) could not be predicted based on the T-score using a single deep learning
model. The deep learning models in past studies were trained on datasets that were each
obtained from a single site, making it difficult to ensure the validity of the results because of
the possibility of overtraining [24]. While a previous study on hip radiographs reported that
ensemble learning of image data and patient clinical covariates can increase the prediction
accuracy [25], there has been no report of such a learning method based on chest X-rays.

We hypothesized that a deep learning model can predict BMD using chest radiography.
The purpose of this study was to develop a deep learning model trained on a large dataset
collected from multiple institutions to predict BMD (g/cm2) and diagnosis based on
the T-score (normal, osteopenia, and osteoporosis) using chest X-rays, age, and sex. By
developing models with good predictive performance, we may be able to utilize chest
X-rays as a screening tool for osteoporosis.

2. Materials and Methods
2.1. Patient Registration and Patient Data Collection

We conducted this retrospective multicenter study by collecting medical data from
six hospitals in Japan (one university hospital and five general hospitals). This retro-
spective study was approved by the ethics committee of the lead hospital. This machine
learning-based study was conducted in accordance with the Transparent Reporting of a
Multivariable Prediction Model For Individual Prognosis Or Diagnosis (TRIPOD) guide-
lines [26] (Supplementary File S1).

The inclusion criteria were patients aged 20 years or older who visited any one of the
facilities between April 2010 and July 2021, and underwent bone densitometry and chest
X-ray imaging. The time gap between the bone densitometry examination and chest X-ray
acquisition was within 6 months, in accordance with a previous study [20]. The dataset
also included patients with implants or clinical features due to disease within the imaging
range of the chest X-rays. The exclusion criteria were as follows: (i) patients whose chest
X-rays did not include both lungs and clavicles, and (ii) patients whose chest X-rays were
taken using portable equipment.
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We extracted the anonymized image files from the image servers. All image files were
in the “.dcm” format. The areal BMD was measured at the lumbar spine, femoral neck,
and total hip using DXA. The details of the X-ray generator, image processing unit, image
size, and DXA scanner at each facility are listed in Supplementary Table S1. We used the
patient clinical covariates (age and sex), imaging data (chest X-rays), and results of bone
densitometry (BMD and T-score from DXA) for the analysis in this study.

2.2. Data Preparation

We paired the bone densitometry and chest X-ray results of each patient. To improve
predictability, we associated the age and sex with the chest X-rays and trained a deep
learning model using ensemble learning [25]. We used the BMDs (g/cm2) measured at (i)
the lumbar spine (average of L1–L4) and (ii) the lower of the values measured at the femoral
neck and entire proximal femur [9]. The BMD values from the GE scanner were converted
to Hologic values using the equations provided in Supplementary Table S2. For the T-score,
we used the lowest value of the test results for the lumbar spine (average of L1–L4), femoral
neck, and entire proximal femur [9]. We classified the participants into normal, osteopenia,
and osteoporosis groups according to the World Health Organization (Geneva) (WHO)
criteria [27]. The WHO defines normal as a T-score above −1.0, osteopenia as a T-score
between −1.0 and −2.5, and osteoporosis as a T-score below −2.5. We labeled the BMD
(g/cm2) and diagnosis based on the T-score (normal, osteopenia, osteoporosis) calculated
against the chest X-rays.

2.3. Splitting the Dataset

We randomly split the dataset collected from each hospital into training, validation,
and testing datasets. We ensured that the data for each of the three labels (normal, osteope-
nia, and osteoporosis), in conjunction with their corresponding chest radiographs, age, and
sex ratios, were randomly distributed in balanced numbers among the training, validation,
and test datasets. The splitting ratios for the training, validation, and test datasets were
70%, 10%, and 20%, respectively. Figure 1 shows a flowchart of the dataset creation process,
which ensured that the test dataset contained only new chest X-ray images that the model
did not encounter during the training.
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2.4. Image Preprocessing and Machine Learning

The specifications of the development environment were as follows: CPU: AMD
EPYC 7452, GPU NVIDIA GTX TITAN X, Python 3.8.10, and PyTorch 1.10.0. To improve
predictability, we performed data augmentation on the images extracted from the image
server. For data augmentation, the image data were amplified via the application of
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ColorJitter (random brightness, contrast, saturation, and hue changes), RandomAffine
(random geometric deformation), and RandomHorizontalFlip (random left-right flip) to
each image. We then decomposed all chest X-rays into four (2 × 2) patches and resized
them to 224 × 224 pixels. Each decomposed patch was vectorized and concatenated using
ResNet50 [28]. These were then combined with the age and sex, and input into a three-layer
perceptron with 128 hidden channels. The input batch size was 64 and optimization was
performed using stochastic gradient descent. We trained the deep learning model as a
regression for BMD and multiclass classification (one-vs.-all classification) for the T-score.
In the multi-classification, we trained the deep learning model for three classification tasks
as follows: (1) T-score above −1.0 vs. the rest; (2) T-score between −1.0 and −2.5 vs. the
rest; and (3) T-score below −2.5 vs. the rest.

2.5. Statistical Analysis

The predictive performance of the deep learning model was evaluated using Scikit-
Learn (https://scikit-learn.org/stable/; accessed on 1 July 2021). Data analysis was per-
formed using a complete case dataset.

2.5.1. Regression of BMD

We used the Pearson correlation coefficient (R-value), coefficient of determination
(R-squared or R2), and mean absolute error (MAE) as the measures of performance in
predicting BMD. In addition, a linear fitting curve and Bland–Altman plots were drawn.
The R-value measures the linear correlation between the predicted value and ground truth,
and considers only the sequential correlation, regardless of the absolute values. The linear
fitting curve illustrates the overall direction of correspondence and modeling quality. The
MAE is the error between the predicted values and standard references. Estimating the
quality of the methods used for regression requires validation of the correlation between
the measured values and reliable standards for accuracy, which is determined through the
MAE and standard deviation of the MAE. The linear fitting curve illustrates the overall
direction of correspondence and modeling quality. In the Bland–Altman plots, the error is
plotted against the average value of a pair of predicted and true values.

2.5.2. Classification of T-Score

The following metrics were used as a measure of performance in the classification of
the T-score: (1) accuracy, (2) sensitivity, (3) specificity, and (4) AUC. The 95% confidence
interval (CI) was also evaluated. The confusion matrix in this study was set as a 2 × 2
contingency table displaying the number of true positives, false positives, false negatives,
and true negatives. The receiver operating characteristic (ROC) curve was created based on
a plot of the true positive rate (sensitivity) against the false positive rate (1 − sensitivity).

3. Results
3.1. Patient Characteristics

The images were chest radiographs of 17,899 individuals (15,060 females and 2839
males, with ages ranging from 24 to 98 years (mean age 71.57 years)). From the chest
radiographs, 3152 were categorized as normal results, 10,404 as osteopenia, and 4343 as
osteoporosis based on DXA examination. Table 1 presents the baseline characteristics of
the training, validation, and testing datasets.

https://scikit-learn.org/stable/
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Table 1. Demographic characteristics of the dataset.

Training Dataset Validation Dataset Test Dataset Overall

Participant 12,529 1790 3580 17,899
age (years), mean ± SD 71.94 ± 10.05 71.24 ± 10.94 71.54 ± 11.27 71.57 ± 10.75

Sex Female (%) 10,544 (84.16%) 1508 (84.25%) 3008 (84.02%) 15,060 (84.14%)
Male (%) 1985 (15.84%) 282 (15.75%) 572 (15.98%) 2839 (15.86%)

BMD (g/cm2), mean ± SD Lumbar 0.88 ± 0.19 0.89 ± 0.21 0.88 ± 0.20 0.88 ± 0.20
Hip 0.58 ± 0.12 0.59 ± 0.15 0.58 ± 0.13 0.58 ± 0.13

T-score mean ± SD Lumbar −1.51 ± 1.56 −1.53 ± 1.68 −1.51 ± 1.60 −1.52 ± 1.61
Hip −2.145 ± 1.17 −2.15 ± 1.40 −2.16 ± 1.10 −2.15 ± 1.22

T-score categories, n (%) Normal 2204 (17.59%) 317 (17.71%) 631 (17.63%) 3152 (17.61%)
Osteopenia 7287 (58.16%) 1038 (57.99%) 2079 (58.07%) 10,404 (58.13%)

Osteoporosis 3038 (24.25%) 435 (24.30%) 870 (24.30%) 4343 (24.26%)

Note: BMD: bone mineral density; SD: standard deviation.

3.2. Predictive Performance of Deep Learning Model
3.2.1. Regression of BMD

The correlation plot and Bland–Altman plots for BMD predicted by the deep learning
model and true BMD are shown in Figure 2. The predictive performance indices for
femoral BMD are as follows: R-value of 0.75, R2 of 0.54, and MAE of 0.08. The predictive
performance indices for lumbar spine BMD are as follows: R-value of 0.63, R2 of 0.40, and
MAE of 0.12.
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Figure 2. Predictive performance of regression on BMD. (A) Linear fitting curve and (B) Bland-Altman
plot for the trained model for femoral BMD prediction. (C) Linear fitting curve and (D) Bland-Altman
plot for the trained model for lumbar spine BMD prediction. Model predictions were compared with
the ground truth. In the linear fitting curve, R is the Pearson correlation coefficient. Each point in the
Bland-Altman plot represents a pair of DXA BMD and predicted BMD; the horizontal axis depicts
the mean, whereas the vertical axis depicts the difference. Note: BMD: bone mineral density; DXA:
dual-energy X-ray absorptiometry; SD: standard deviation.
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3.2.2. Classification of T-Score

The predictive performance of multiclass classification of the diagnoses based on the
T-score (normal, osteopenia, and osteoporosis) is shown in Table 2. The ROC curves for the
multiclass classification of the T-scores are shown in Figure 3. The predictive performance
indices for diagnosis as normal (T-score above −1.0 vs. the rest) are an AUC of 0.89 (95%
CI: 0.86–0.91), accuracy of 74.89% (95% CI: 71.21–77.45), sensitivity of 90.14% (95% CI:
87.35–92.41), and specificity of 72.24% (95% CI: 68.32–75.80). The predictive performance
indices for diagnosis as osteopenia (T-score between −1.0 and −2.5 vs. the rest) are an
AUC of 0.70 (95% CI: 0.68–0.72), accuracy of 66.06% (95% CI: 63.65–68.39), sensitivity of
71.28% (95% CI: 69.01–73.53), and specificity of 62.35% (95% CI: 59.94–64.77). The predictive
performance indices for diagnosis as osteoporosis (T-score below −2.5 vs. the rest) are an
AUC of 0.84 (95% CI: 0.82–0.86), accuracy of 77.83% (95% CI: 75.52–79.9), sensitivity of
77.27% (95% CI: 74.94–79.36), and specificity of 78.58% (95% CI: 76.32–80.55).

Table 2. Performance metrics of the model for the test dataset. The accuracy, sensitivity, specificity,
and AUC in the respective ranges, with T-scores of −1.0 and −2.5 as cutoffs, are shown.

AUC (95% CI) Accuracy (%) (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI)

T-score ≥ −1.0 0.89 (0.86–0.91) 74.89 (71.21–77.45) 90.14 (87.35–92.41) 72.24 (68.32–75.80)
−1.0 > T-score > −2.5 0.70 (0.68–0.72) 66.06 (63.65–68.39) 71.28 (69.01–73.53) 62.35 (59.94–64.77)

−2.5 ≥ T-score 0.84 (0.82–0.86) 76.47 (75.52–79.90) 81.25 (74.94–79.36) 73.68 (76.32–80.65)

Note: AUC: area under the curve; CI: confidence interval.
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4. Discussion

In this study, we developed a deep learning model with ensemble learning based on
chest X-rays, age, and sex to predict BMD (g/cm2) and diagnosis as per the T-score (normal,
osteopenia, osteoporosis). With regard to the performance, the deep learning model could
predict femoral BMD with R = 0.75, and predict “T-score = −1.0 or not” with an AUC of
0.89 and sensitivity of 90.14%. This study is the first to develop a deep learning model that
predicts BMD (g/cm2) and T-scores using multiclass classification based on chest X-rays.
The results demonstrated that the deep learning model may have potential for application
in osteoporosis screening using chest X-rays in actual clinical practice.

The deep learning model was able to predict BMD using the chest X-rays. The predic-
tive performance for hip BMD was R = 0.75, which indicates a high positive correlation with
the true value [29]. Because none of the previous studies that predicted osteoporosis from
chest X-rays were able to predict BMD, this study represents significant progress in this
research area [22,23]. In comparison with the results of studies that predicted BMD from
radiographs of the hip and lumbar spine using deep learning models [18,19], the results
of our study were slightly inferior (previous studies: R = 0.81, 0.89; this study: R = 0.75).
This may be due to the following reasons. (1) The site corresponding to the radiograph and
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the site where BMD was measured were different. (2) The training was performed based
on setting the region of interest of the bone or dividing the image into sections instead of
considering the entire image. Based on these factors, training the learning model such that
the lumbar spine is cut out from the chest X-rays may improve the predictive performance.
However, the performance of the method cannot be guaranteed. A previous study reported
less accurate results in predicting the BMD of the lumbar spine than in predicting that
of the hip [19]. Similarly, in this study, the predictive performance of the BMD differed
between the hip and lumbar spine (hip: R = 0.75; lumbar spine: R = 0.63). The reason
for this may be that, in comparison with those at the hip joint, the DXA measurements at
the lumbar spine are subject to measurement errors due to osteoarthritis [30]. To address
this problem, it is necessary to verify whether the performance can be improved through
modifications of the labels and reorganization of the dataset.

The deep learning model was also able to predict diagnosis with moderate perfor-
mance by utilizing T-scores with multiclass classification (normal, osteopenia, and osteo-
porosis) based on chest X-rays. The predictive performance indices were AUC = 0.89,
0.70, and 0.84, respectively. The predictive performance in the diagnoses of normal and
osteopenia could not be compared because of the absence of similar studies in literature,
but the predictive performance in diagnosis of osteoporosis was slightly inferior to that of
a previous study [23]. Compared with previous studies that diagnosed osteoporosis using
chest X-rays [22,23], our study has the following novel aspects: (1) a single deep learning
model is classified into three classes: normal, osteopenia, and osteoporosis (multiclass
classification); and (2) the T-score is used to predict diagnosis (normal or osteopenia).
In screening for osteoporosis, it is important not only to identify the participants with
T-scores below −2.5, but also those with T-scores between −1.0 and −2.5. This is because
among the participants who underwent bone densitometry, the group diagnosed with
osteoporosis had a higher fracture rate, whereas the group diagnosed with osteopenia
had a higher number of patients. Therefore, the total number of fractures was higher
in the group diagnosed with osteopenia than in the group diagnosed with osteoporo-
sis [31]. Medical guidelines recommend further examination or therapeutic interventions
for osteopenia [9,32,33]. Therefore, a deep learning model that can identify osteopenia is
necessary. With regard to the predictive performance for T-score = −2.5, it was slightly
lower in this study than in previous studies (Jang et al. [23]: AUC = 0.88; this study:
AUC = 0.84). This was because in this study, data were collected from multiple centers,
and thus a broad range of inclusion criteria was set. Large-scale and comprehensive data
collection is necessary to ensure versatility. The previous study cited these factors as limita-
tions, which were overcome in this study. The inferior performance indicates that there
is potential for performance improvement. Previous studies have reported that learning
based on setting regions of interest (shoulder, cervical and thoracic area, thoracic, and
lumbar area) in chest X-rays improves the performance [23]. In the future, we will train our
model using this approach.

Our deep learning model has the potential to perform osteoporosis screening using
chest X-rays. In Japanese osteoporosis screening, a T-score below −1.0 indicates that the
patient needs further examination. The predictive performance indices of the deep learning
model developed in this study, with T-score = −1.0 as the cutoff, were sensitivity = 90.14%
and specificity = 72.24%. From the viewpoint of triage screening for osteoporosis, high
sensitivity (approximately 90%) and relatively low specificity (approximately 40–60%) are
considered acceptable for clinical decision rules [34]. Therefore, we can use this deep
learning model to screen for osteoporosis. In Japan, 40 million people over the age of 40
are screened for lung cancer using chest X-rays [35]. By applying the deep learning model
to these potential participants to screen for osteoporosis, we could find five million new
osteoporosis patients based on the age range of the examinees and age-specific incidence of
osteoporosis [35,36]. Appropriate therapeutic interventions for these patients would then
help prevent fragility fractures [37].
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The strength of this study lies in the collection of diverse data from multiple insti-
tutions. The advantages of multicenter studies are (i) the ability to prevent overfitting
by collecting a large amount of data [24] and (ii) the ability to conduct comprehensive
research by using data obtained from different conditions and environments, thereby al-
lowing medical research to be conducted in clinical settings [38]. In this study, we collected
approximately 18,000 training data points from approximately 10,000 cases, which included
almost all chest X-ray images taken at multiple institutions in Japan and with various
medical devices over a long duration. This allowed for diverse patient datasets (images that
included implants and clinical features due to disease) collected from multiple examination
settings, including X-ray generators, image processing units, and DXA scanners. This
supports this study’s validity as an epidemiological study and ensures its internal validity.
On the contrary, to be used in clinical practice, external validity must be assessed using
data from other institutions.

However, this study has several limitations. First, we did not develop multiple trained
models or validate their predictive performance. Transfer learning using pretrained models
is common in deep learning [39]. A previous study evaluated various learned models and
reported differences in their performance [20]. In this study, we used ResNet50 because
of its short processing time [28]. In the future, training with different learning models
may lead to improved performance. Second, we considered only age and sex as the
patient variables in predicting the BMD and T-scores. However, various patient factors
can influence the incidence of osteoporotic fractures [40]. In this study, we trained our
deep learning model using chest X-rays, age, and sex. This was because we believed that
learning from the information contained in the image file (image, age, and sex) would
not change the current workflow in an actual clinical setting. However, a previous study
reported that training a deep learning model with patient clinical covariates, such as height,
weight, and fracture history, improved the performance [25]. Further, various diseases
(COPD, rheumatism, etc.) that coexist with osteoporosis should be considered [41,42].
Considering this, we can train our deep learning model with these factors to verify the
possibility of improving the performance. Third, we have not evaluated the predictive
accuracy of the developed training model for each age group (young, middle-aged, and
older adults). Osteoporosis is prevalent in aged women, and this population group is the
target for screening [9]. Secondary analysis for this age group is required to make the
analysis more relevant to actual clinical practice. Fourth, we did not perform an external
validation. Most studies on deep learning models have not evaluated the validity of the
models in different environments [38]. Although this study prepared a dataset with data
collected from multiple facilities, we were unable to validate our model using data from
entirely different clinical settings. To train our deep learning model as a programmed
medical tool, it is necessary to evaluate the predictive performance using data collected at
different facilities and from different racial groups. Fifth, while the deep learning model
could diagnose osteoporosis on guidelines based on T-score, this did not necessarily imply
that it could understand the pathophysiology of osteoporosis, including causative disease
and comorbidities. We developed this deep learning model using radiographs, bone
densitometry, age, and gender but did not consider medical history such as comorbidities.
Therefore, to confirm whether the results of this deep learning model analysis are normal,
the physician should interview and examine the patient, perform blood tests, and make a
definitive diagnosis using DXA.

5. Conclusions

We developed a deep learning model based on ensemble learning of chest X-rays, age,
and sex to predict BMD (g/cm2) and diagnosis according to the T-score (normal, osteopenia,
osteoporosis). With this model, chest X-rays taken for various medical reasons can be used
to identify patients at risk for osteoporosis without additional radiation exposure or cost,
and without the possibility of behavioral changes in the examinee. This may improve
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screening for osteoporosis. To realize the goal of clinical application, we need to further
improve the predictive performance and validity of the deep learning model.

6. Patents

A patent application for the results of this study has been filed in Japan (No. 21ZP324).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10092323/s1, Table S1: title X-ray generator, image
processing unit, image size, and DXA scanner at each facility; Table S2: title Equations for converting
BMD value of GE to that of Hologic DXA scanners.
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