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Abstract: Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology.
Although some amyloid proteins are best known for their association with Alzheimer’s and Parkin-
son’s disease, many other amyloids are found across diverse organisms, from bacteria to humans,
and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence
programmability of amyloid fibrils have made them attractive candidates for functional materials
with applications in environmental sciences, material engineering, and translational medicines. This
review focuses on recent advances in fabricating various types of macroscopic functional amyloid ma-
terials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength
materials, composite materials, responsive materials, extracellular matrix mimics, conductive materi-
als, and catalytic materials.
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1. Introduction

Proteins and peptides play important functional roles in biology and provide the
molecular basis for various biomaterials in nature, from nanoscale cytoskeleton to macro-
scopic materials [1,2]. The intrinsic biocompatibility and bioactivity of proteins and pep-
tides also render them great potential for various biomedical applications. Recent progress
in recombinant technology and synthetic biology has largely advanced protein synthesis,
including difficult-to-express proteins, thus providing starting materials for downstream
studies [3–6]. Advances in material science have revealed the sequence-structure-function
relationship for multiple types of protein-based biomaterials [7]. While these scientific and
technological advances are encouraging, they also highlight the challenge that needs to be
addressed before fully realizing the power of protein-based materials: how to control the
structure of protein-based materials at multiple length scales?

To control protein structures beyond molecular scale, amyloids become particularly
attractive. Amyloids are proteins that can fold into β-sheet and self-assemble to form
elongated and unbranched fibrils that are a few nanometers in diameter and up to a few
micrometers in length [8]. They were first identified when studying brain tissues of patients
with neurodegenerative diseases [9]. Some fibril forms of amyloid proteins were considered
to be associated with Alzheimer’s disease (Amyloid β peptide and Tau protein) [10–13]
or Parkinson’s disease (α-Synuclein) [14–18], though the exact mechanisms are still under
heated debate in the field [11,15–17]. Similar fibrils were later found in a wide range of
organisms, and often play various functional roles, including structural scaffold [19,20],
catalysis [21–23] and functional coatings [24,25]. Some proteins found in human food
source such as milk, egg, meat, or wheat can also self-assemble into amyloid fibrils [26]. A
wide bioinformatic survey over the genomes of Escherichia coli, Saccharomyces cerevisiae and
Homo Sapiens showed that almost all proteins in nature contain at least one short sequence
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that is capable of aggregation and forming amyloid fibrils, though not all of them will
take such conformation [27]. These findings suggest that amyloid structures alone do not
necessarily lead to pathogenicity and can potentially be engineered into biocompatible
functional materials.

Amyloid fibrils have attractive mechanical properties. Compared with other natural
protein fibrils such as actin or tubulin, amyloid fibrils often have significantly higher
moduli due to their dense hydrogen bonding networks. Previous studies have shown that
amyloid fibrils, at the microscale, can exhibit a Young’s modulus of 3.3 ± 0.4 GPa and
a peak tensile strength of 0.6 ± 0.4 GPa [28,29]. The mechanical properties have made
amyloid fibrils attractive for structural materials. Amyloid fibrils are also chemically stable.
The microfibers have a low depolymerization rate and can maintain their assembled fibril
form under environmental changes in pH, temperature, solvents, and salt concentrations.
Fibrils assembled from the GNNQQNY peptide, for example, are found to remain stable
in 0.5 M NaOH, pure formic acid, or 4 M guanidinium with 2% SDS [30]. Additionally,
amyloid fibrils often have a very large aspect ratio, making them suitable for chemical
modifications and coating. Finally, properties of amyloid fibrils can be engineered by
modifying their amino acid sequences, further expending their applications.

These attractive properties of amyloid fibrils have inspired the development of var-
ious artificial materials for applications in sensors [31], medicines [32,33], fabrics [34,35],
and other functional materials [36–38]. The use of amyloid in nanomaterials has been
extensively reviewed previously [20,39–45]. This review focuses on recent advances in
engineering amyloids peptides or proteins as functional materials in macroscopic scales.
We highlight the numerous applications such as hydrogels, fibers, composites, sensors,
and catalysts.

2. Structure and Property of Amyloid Fibrils

When examined by X-ray diffraction, all amyloid fibrils display characteristic cross-β
diffraction patterns [46], including one diffuse reflection at 4.8 Å and one at approximately
10 Å [47]. Atomic resolution crystal structures later revealed that these amyloid peptides
self-assemble into β-sheet extending along the fibril axis and packed with other β-sheets
into steric-zippers through non-covalent interactions between functional groups on side
chains [48], which agrees with the basic features highlighted by the X-ray diffraction results.
The reflection at 4.8 Å arises from the stackings of β-strands, while the 10 Å spacing arises
from the separation between adjacent β-sheets [8,47]. These steric-zippers are assembled
from short fibril-forming peptides which are usually 5–8 amino acids long. They form
hydrogen bonds between adjacent β-strands along the fibril axis. The side chains of these
amino acids can be aromatic, charged, or hydrophobic, thus providing thermodynamically
favored interactions between β-sheets [8,49].

Although they share the same diffraction pattern, differences in fibril symmetry exist
and were used to categorize amyloid fibrils. The β-strands within amyloid fibrils can
be either parallel or antiparallel, and their side chains can be either antifacial (even/odd
residues segregated on different sides of the β-sheet) or equifacial (even/odd residues
distributed on both sides of the β-sheet). With these two criteria, all amyloid fibrils can be
divided into four symmetrical categories: parallel/equifacial, parallel/antifacial, antipar-
allel/equifacial and antiparallel/antifacial [8,50]. However, parallel/equifacial fibril has
not been discovered so far, which can be attributed to: (1) parallel β-sheets are relatively
unfavorable compared with antiparallel β-sheets thermodynamically in the proliferation
of fibrils due to the hydrogen bonding geometry, and (2) equifacial β-sheets reduce the
chance for residues to form a ladder, which could greatly improve the stability of the
fibril [51]. In addition to the differences in symmetry, there are also different registries
found in different amyloid fibrils [52,53]. A β-sheet is defined as out-of-register when
its translational repeat direction is not orthogonal to the strand direction, and amyloids
with out-of-register β-sheets are referred to as an out-of-register amyloid, in contrast to
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in-register amyloids. The structural details of amyloid fibrils can be crucial to their material
properties, especially when engineering novel amyloid materials.

Amyloid fibrils are thermodynamically stable due to a collection of non-covalent inter-
actions, including van der Waals forces, π–π stacking, electrostatic forces, hydrogen bonds,
and hydrophobic effect occurring among the β-strands and β-sheets [54–57]. Changes
in amyloid peptide sequence can greatly influence both the structure and stability of a
fibril [58]. Formation of amyloid fibril is a kinetic driven process. The rate-limiting step
in the formation of amyloid fibril is believed to be amyloid seeding [48]. Seeding starts
when three to four peptides are in close proximity while simultaneously exposing their
zipper-forming segments, which is rare and thus creating a high energy barrier. Once this
energy barrier is bypassed, monomers will grow from the seed, one strand at a time. This
fibril extension process follows a first-order kinetic model, and fibril can grow rapidly [59].
Multiple environmental factors can affect the self-assembling process, including pH, tem-
perature, solvent, salt concentration, and metal ions. Thus, both thermodynamic and
kinetic factors make contributions to the super-molecular assembly of amyloids and are
handles for the design of artificial functional amyloid materials.

3. Macroscopic Functional Amyloid Materials
3.1. Functional Amyloids in Nature

Although the term amyloid is often associated with diseases, scientists have found
various cases where amyloid fibrils play important functional roles in nature, from prokary-
otic cells to mammals. Amyloids help to adhere to abiotic surfaces [60], detox harmful
compounds [61], resist antibiotics [62], direct morphological differentiation of filamentous
bacteria [63], and assist electron transport [64].

Many bacteria express and secrete amyloid proteins to the extracellular environment,
which, upon self-assembly, form biofilm. In the case of E. coli’s curli fibrils, amyloid
CsgA proteins assemble on top of the nucleator protein CsgB and form micrometer long
fibrils, which further interact to form biofilm [24,65,66]. Similar amyloid fibrils are also
discovered in other bacteria species [67–69]. In insects, such as silkmoths, amyloids are
used to make eggshell for protection [70]. In mammalians, except for their involvement in
neurodegenerative diseases, amyloids also play important roles in mitigating the toxicity
of melanin formation [23], the formation of long-term memories [71], and the function of
pituitary secretory granules [72]. These findings have drastically changed the view over
amyloids and demonstrate that they can also play beneficial physiological roles. Molecular
level mechanisms on the difference between pathogenic and benign amyloids are still not
very well understood. However, it has been proposed that the incompletely self-assembled
oligomeric intermediates may be responsible for the cellular toxicity [73]. This will suggest
that when beneficial amyloid fibrils are formed, the reaction will go to completion to
prevent the accumulation of oligomeric byproducts.

With the discovery of various natural functional amyloids, it is becoming increas-
ingly clear that amyloids can be engineered for real-world applications. In the following
section, we will discuss recent progresses in the fabrication of amyloid-based macroscale
materials, including hydrogels, macro-fibers, composites, sensors, extracellular matrices,
and catalysts.

3.2. Artificial Macroscopic Functional Amyloids
3.2.1. Amyloid-Based Hydrogels

Hydrogels are water-containing soft materials with cross-linked polymer networks.
Crosslinks between polymer chains can be formed using either covalent bonds or nonco-
valent interactions. Some proteins can be cross-linked to form hydrogels that have great
potentials in biomedicine due to their biocompatibility, biodegradability, and amenable to
engineering [74,75]. Various methods have been developed to induce the hydrogelation of
proteins and peptides, either through the formation of covalent bonds between peptide
chain via pre-modification or through noncovalent interactions such as aromatic stacking



Int. J. Mol. Sci. 2021, 22, 10698 4 of 18

or hydrogen bonding [76]. Amyloids are among the prominent candidates for protein
hydrogelation because their assembled cross-β fibrils provide extensive intermolecular
cross-links.

Natural functional amyloids are among the top candidates to be engineered and
fabricated into hydrogels. Two of the most studied are β-lactoglobulin and lysozyme. Both
of these proteins are non-toxic food-origin and have high propensity to self-assemble into
amyloid fibrils. Several studies have utilized the amyloid form of lysozyme to fabricate
antibacterial hydrogels. Hu et al. reported a strategy to form hydrogels by adding polyphe-
nol, such as epigallocatechin gallate (EGCG), to lysozyme amyloid fibrils. Hydrogels were
formed after 12 h of incubation at pH 5.8 [77]. The polyphenol served as a crosslinker
that interacted with multiple amyloid fibrils through hydrogen bonding, π−π stacking,
and hydrophobic interactions. This lysozyme amyloid hydrogel was thermally stable,
antibacterial due to the lysogenic activity of lysozyme, and had low cytotoxicity to human
cells, therefore providing an attractive candidate for biomedicine [77,78].

Many amyloid fibrils can form hydrogel without additional cross-linker, but through
inter-fibril non-covalent interactions including hydrogen bonding, electrostatic forces, π–π
interactions, and hydrophobic effects, mediated by amino acid side chains [55,79,80]. Hy-
drophobic amino acids are usually preferred for this purpose. Medini et al. studied the
IKHLSVN peptide sequence from β-interface of peroxiredoxin III [81]. Several residues in
this short peptide were mutated to tyrosine, whose side chain allowed fibril-fibril interac-
tions through π−π stacking and hydrogen bonding. These mutants resulted in different
fibril patterns, but all displayed amyloid characteristics. Mechanical properties of the
hydrogels were also affected by these mutations, suggesting that hydrogels derived from
this type of peptides have tunable properties [81]. Identifying short amyloid-forming
peptide sequences is useful as it provides building blocks for constructing complex ma-
terials. In one example, a tetrapeptide DLII was identified as the shortest fibrillogenic
motif from the amyloid TDP-43. DLII and its tetrapeptides variants (YLII, KLII, NLII, and
LIID) showed strong hydrogelation propensity at 0.1 wt % [82]. Decandio et al. reported
an amyloid-inspired model octapeptide [Arg-Phe]4, with arginine promoting hydrogen
bond formation and phenylalanine establishing π−π interactions (Figure 1A) [83]. The
designed sequence formed long fibrils at 0.17 wt %. At 1 wt %, these fibrils gradually
interconnected into a high viscosity gel-like network [83]. Similar design principles have
been used to develop other amyloid-like hydrogels using short peptides [84,85] or peptide
oligo repeats [86].
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Figure 1. Strategies for the fabrication of amyloid-based hydrogels. (A) β-sheets of the designed 
octapeptide [Arg-Phe]4 packed through extensive π−π stacking, while the arginine residues point 
to the outside, ready to form inter-fibril hydrogen bonds. Reprinted with permission [83]. Copy-
right 2015, American Chemical Society. (B) Prion-inspired peptides consist of tyrosine residues 
and other polar amino acids. Tyrosine residues contributed to the self-assembly with π−π stack-
ing, while the rest of residues provided the polar context and weak interactions. Reprinted with 
permission [87]. Copyright 2018, American Chemical Society. (C) Altered self-assembly patterns 
in homochiral and heterochiral diphenylalanine. Different chiral patterns led to different hydrogel 
physical properties in macroscale. Reprinted with permission [88]. Copyright 2020, American 
Chemical Society. 

Aside from hydrophobic amino acids, the combination of tyrosine and polar amino 
acids was also used in the design of amyloid hydrogels. The design principle was inspired 
by natural prion proteins whose core regions usually contain mostly polar residues such 
as Asn, Gln, Ser, and Gly, as well as Tyr [89]. This sequence pattern has been used to 
design dynamic and reversible amyloid materials [20,90]. For example, Diaz-Caballero et 
al. designed four minimalist binary-patterned peptides: NYNYNYN, QYQYQYQ, 
SYSYSYS, and GYGYGYG (Figure 1B) [87]. Tyrosine residues were used to promote both 
intra-fibril π−π stacking and inter-fibril dityrosine crosslinks. The polar residues were 
found to affect the concentration needed for fibril self-assembly [87]. 

The chirality of amino acids can potentially affect the structure of amyloid fibril, thus 
providing additional control over hydrogel assembly and its physical and mechanical 
properties [91]. Marchesan et al. reported hydrogelation of Aβ-derived tripeptides Val-
Phe-Phe with the chirality of the central amino acid differing from the other two amino 
acids (D-L-D and L-D-L in stereochemistry)[92]. The introduction of D-amino acids to 
tripeptide sequences removed steric clashes between amino acid side chains and thus al-
lowing interdigitation of tripeptide stacks into zippers. Similarly, Kralj et al. used diphe-
nylalanine with different chirality (DPhe-LPhe) to controll fibril structures and successfully 
obtained hydrogels[88]. In contrast to homochiral diphenylalanine (e.g., LPhe-LPhe), the 
heterochiral DPhe-LPhe fibril had homogenous size distribution and reduced cytotoxicity 
(Figure 1C) [88]. These examples demonstrate the potential of heterochirality as a strategy 
to design amyloid hydrogels [91]. 

Recently, a study carried out by Bal et al. proposed an interesting strategy called non-
equilibrium amyloid polymerization [93]. While the sequence KLVFFAE does not form 
hydrogel on its own, the addition of a small amount of KLVFFAL, which contains a hy-

Figure 1. Strategies for the fabrication of amyloid-based hydrogels. (A) β-sheets of the designed
octapeptide [Arg-Phe]4 packed through extensive π−π stacking, while the arginine residues point to
the outside, ready to form inter-fibril hydrogen bonds. Reprinted with permission [83]. Copyright
2015, American Chemical Society. (B) Prion-inspired peptides consist of tyrosine residues and other
polar amino acids. Tyrosine residues contributed to the self-assembly with π−π stacking, while the
rest of residues provided the polar context and weak interactions. Reprinted with permission [87].
Copyright 2018, American Chemical Society. (C) Altered self-assembly patterns in homochiral and
heterochiral diphenylalanine. Different chiral patterns led to different hydrogel physical properties
in macroscale. Reprinted with permission [88]. Copyright 2020, American Chemical Society.

Aside from hydrophobic amino acids, the combination of tyrosine and polar amino
acids was also used in the design of amyloid hydrogels. The design principle was inspired
by natural prion proteins whose core regions usually contain mostly polar residues such as
Asn, Gln, Ser, and Gly, as well as Tyr [89]. This sequence pattern has been used to design
dynamic and reversible amyloid materials [20,90]. For example, Diaz-Caballero et al.
designed four minimalist binary-patterned peptides: NYNYNYN, QYQYQYQ, SYSYSYS,
and GYGYGYG (Figure 1B) [87]. Tyrosine residues were used to promote both intra-fibril
π−π stacking and inter-fibril dityrosine crosslinks. The polar residues were found to affect
the concentration needed for fibril self-assembly [87].

The chirality of amino acids can potentially affect the structure of amyloid fibril, thus
providing additional control over hydrogel assembly and its physical and mechanical
properties [91]. Marchesan et al. reported hydrogelation of Aβ-derived tripeptides Val-Phe-
Phe with the chirality of the central amino acid differing from the other two amino acids
(D-L-D and L-D-L in stereochemistry) [92]. The introduction of D-amino acids to tripep-
tide sequences removed steric clashes between amino acid side chains and thus allowing
interdigitation of tripeptide stacks into zippers. Similarly, Kralj et al. used dipheny-
lalanine with different chirality (DPhe-LPhe) to controll fibril structures and successfully
obtained hydrogels [88]. In contrast to homochiral diphenylalanine (e.g., LPhe-LPhe), the
heterochiral DPhe-LPhe fibril had homogenous size distribution and reduced cytotoxicity
(Figure 1C) [88]. These examples demonstrate the potential of heterochirality as a strategy
to design amyloid hydrogels [91].

Recently, a study carried out by Bal et al. proposed an interesting strategy called
non-equilibrium amyloid polymerization [93]. While the sequence KLVFFAE does not
form hydrogel on its own, the addition of a small amount of KLVFFAL, which contains
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a hydrophobic leucine, facilitated the nucleation core formation and promoted peptide
aggregation, leading to hydrogelation. The authors designed a peptide HLVFFAE-NP,
where E-NP stands for 4-nitro phenol (NP) functionalized glutamic acid. The new sequence
formed fibrils similar to that of KLVFFAE. Upon fibril formation, histidine sidechains
in the fibril displayed esterase activity, which removed NP from glutamic acid residue
and destabilized the fibril. This created a negative feedback cycle where fibril formation
catalyzed the depolymerization of fibrils after their formation. On a macroscale, the
peptides formed hydrogels in 1 h and became fluid after 5 h [93].

3.2.2. High-Strength Materials

The attractive mechanical property of amyloid at nanoscale has motivated decades of
research to translate such properties into macroscopic materials. The most common types
of high-strength amyloid materials engineered so far are free-standing films and fibers.

A free-standing film can be made by allowing amyloid fibrils to elongate under con-
ditions that favor intermolecular interactions. Plasticizers are added at the end of fibril
growth phase to start hydrogelation. The hydrogel is then dried on a flat polytetrafluo-
roethylene film to form a free-standing film. Using this method, films were made from
either β-lactoglobulin or lysozyme [94]. Both films exhibited Young’s modulus ranging
from 5.2 to 7.2 GPa, close to that of amyloid fibrils at nanoscale (2–19 GPa) [29,54,95,96].

Spider silk fiber is one of the strongest and toughest macroscopic fiber materials in
nature. As with amyloid aggregates, natural spider silk fibers are rich in β-sheet crystallites
formed by polyalanine repeat sequences. However, the β-strands in these β-nanocrystals
are aligned in parallel with the fiber axis, distinct from that of amyloid fibrils [97,98].
Inspired by the semi-crystalline structure of spider silk fiber, polymeric amyloid proteins
were recently designed by combining amino acid sequences from both spider silk protein
and amyloid peptides (Figure 2) [99]. These proteins were then spun into macroscopic
fibers using a wet-spinning process. The high self-assembly tendency of amyloid peptide
promoted the formation of β-nanocrystals during fiber spinning, resulting in enhanced
crystallinity, which are known to be critical to fiber strength [99]. Fibers of all tested
polymeric amyloid proteins have displayed higher ultimate strength than recombinant
spider silk fibers under similar molecular weight. The reduced sequence redundancy
(e.g., from AAAAA to FGAILSS) also improved genetic stability and facilitated protein
biosynthesis in heterologous host. As a result, a high-molecular-weight (378 kDa) polymeric
amyloid protein containing 128 repeating FGAILSS sequences was biosynthesized and
spun into fibers. The fibers displayed a high tensile strength (0.96 GPa) and high toughness
(160 MJ/m3), exceeding most recombinant spider silks and even some natural spider
silk fibers [35,100,101]. Similar design rules can potentially be applied to other amyloid
sequences, thus drastically expanding the diversity of mechanical-demanding protein-
based materials [34].

3.2.3. Amyloid-Inorganic Hybrid Composite Materials

Amyloid fibrils have high aspect ratios and generally display multiple binding sites for
small molecules along their surface, which makes them promising templates for the design
of organic-inorganic hybrid nanomaterials through specific post-assembly modification or
co-assembly approaches. Fabrication of nanoscale amyloid-inorganic hybrid materials has
been previously reviewed [102]. Here, we focus on the macroscopic composite materials.

In one of the pioneering studies, β-lactoglobulin amyloid fibrils were used as tem-
plates for gold deposition, forming gold aerogels [103]. Amyloid peptides were later used in
several papers for bio-mineralization. Zhang et al. reported a hybrid β-lactoglobulin/ZrO2
(CAF-Zr) membrane that exhibited selective removal of fluoride from water [104]. The
charged amyloid scaffold provided anchorage for ZrO2 nanoparticles so that these nanopar-
ticles (approximately 10 nm in diameter) can avoid aggregation, thus increasing sur-
face/volume ratio of ZrO2 particles by several hundred-fold from those particles without
attaching to the scaffold. The hybrid nanocolloids were entrapped with activated car-
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bon, and the composite materials were used to remove fluoride from contaminated water
with 99.5% removal efficiency [104]. A similar strategy was also used to improve the
catalytic efficiency of metal nanoparticles by increasing their aspect ratio. β-lactoglobulin
fibrils decorated with gold and palladium nanoparticles that catalyze the reduction of
4-nitrophenol to 4-aminophenol were fabricated into membrane through vacuum filtration.
The membrane can achieve complete catalytic conversion of this reaction within one single
passage through [105]. Bolisetty et al. presented a β-lactoglobulin–carbon hybrid mem-
branes made from low-quality whey protein that showed high efficiency in the removal of
heavy metal ions, arsenite/arsenate, and clinically relevant radioactive compounds from
hospital wastewater [106–108]. Cao et al. reported stiff fibril-silica composite gels using
β-lactoglobulin fibrils. Fibrils were mixed with silica precursor tetraethyl orthosilicate to
direct silification on the surface of amyloid fibrils [109]. Similarly, Ha et al. designed a
scaffold for hydroxyapatite (HA) crystal growth using a lysozyme nanofilm coating [110].
The lysozyme nanofilm contained multiple carboxyl and hydroxyl groups that chelate Ca2+

ion. After incubation in 0.02 M CaCl2 solution, the nanofilm was transferred into simulated
body fluid to form a HA layer. The authors demonstrated that this strategy allowed HA
integration on various surfaces, including ceramics, metals, semiconductors, and synthetic
polymers irrespective of their size and morphology [110]. Li et al. designed a peptide,
consisting of a LLVFGAK amyloid motif and a MLPHHGA mineralization motif [111].
The mineralization motif contained numerous functional groups, for sequestering HA
from simulated body fluid. After self-assembly, the nanosheets were conjugated with
3D-graphene foam (GF) to form 3D GF-PNSs hybrid scaffolds for HA sequestration. The
resulting 3D-GF-PNSs-HA minerals exhibited adjustable shape, super low weight, high
porosity, and excellent biocompatibility, proving potential applications in both bone tissue
engineering and biomedical engineering [111].
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Figure 2. Fabrication procedures of mechanically strong macroscopic polymeric amyloid fibers.
Amyloid peptides were incorporated into tandem repeats of spidroins to replace the original polyala-
nine segments. Upon spinning, these amyloid peptides promoted the formation of β-nanocrystals,
consequently making the macroscopic fiber stronger. Reprinted with permission [34]. Copyright
2021, American Chemical Society.

Bacterial amyloids such as curli have also been employed to direct biomineralization,
where mineral-binding peptides were integrated into the cuili subunit CsgA sequence.
Yang et al. reported a hybrid protein CsgA-DDDEEK as a coating material capable of
sequestering HA [112]. The DDDEEK sequence originates from salivary acquired pellicles
in the dental plaque biofilm and has a strong ability to absorb mineral ions and induce the
formation of biominerals. The engineered biofilm was used to coat Ti6Al4V nanoparticles.
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The resulting composite exhibited long-term stability, improved force-resisting capacity,
and high biocompatibility without triggering immune responses in animal experiments,
making it a potential candidate for implant materials [112]. An alternative approach was
developed by substituting three of the five pseudorepeats (R2-R4) of CsgA to HA-binding
peptide, resulting in a R1-HAP-R5 mutant CsgA (Figure 3). The remaining pseudorepeats
R1 and R5 were sufficient for fibril formation. When incubating with CaCl2 or Na2HPO4,
HA-derived crystals were able to form uniform and dense nanosized minerals in the
R1-HA-R5 hydrogel [113].
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remaining pseudorepeats R1 and R5 were sufficient to form fibrils, which directed the biominer-
alization of hydroxyapatite via the fused HAP-binding domain. Reprinted with permission [113].
Copyright 2020, American Chemical Society.

3.2.4. Responsive Materials for Sensing

Responsiveness to external stimuli is not an intrinsic feature of amyloid fibrils. How-
ever, by tuning the interactions between fibrils or by introducing functional components to
the system, responsive and sensory amyloid materials can be fabricated. Here, we summa-
rize recent macroscopic amyloid materials whose morphology, mechanical properties, or
color change in response to pH, temperature, salt concentration, magnetic field, or other
environmental stimuli.

Multiple strategies have been developed to fabricate pH-responsive amyloid hydro-
gels. One straightforward method is to immobilize existing pH-responsive molecules to
amyloid hydrogels. Saldanha et al. fused pHuji, a pH-responsive fluorescent protein, to
CsgA [114]. The fusion protein was made into textiles via vacuum filtration. The resulting
materials were mechanically stable and underwent yellow to red transition upon a pH
increase [114]. pH change can also be used to control hydrogel mechanical properties
via pH-sensitive interactions between amyloid and additives. Li et al. fabricated a pH-
responsive hydrogel by mixing β-lactoglobulin fibrils with sulfonated multi-walled carbon
nanotube (MWCN) [115]. At pH 2, the negatively charged MWCN interacted with the
positively charged β-lactoglobulin fibrils and thus formed a hydrogel. When the pH was
increased to 7, higher than the pI of β-lactoglobulin, the amyloid fibrils became nega-
tively charged, thus disassociate from MWCN, leading to a 100-fold decrease in hydrogel
modulus [115].

Responsiveness to heat has also been achieved in amyloid hydrogels. Ozbas et al.
synthesized a 20-residue β-hairpin peptide VKVKVKVKVPPTKVKVKVKV, where VK
repeats formed β-sheet, and PP formed a type II turn, packing the hydrophobic Val
sidechains between two β-sheets [116]. Hydrogelation occurred upon the addition of salt
to neutralize the repulsion between positively charged peptides. Rheology tests revealed
that hydrogel modulus also responded to temperature. A higher temperature at 37 ◦C
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promoted the formation of β-sheets, making the hydrogel stiffer compared to that at room
temperature [116].

Amyloid-based scaffolds can be used to hold magnetic Fe3O4 nanoparticles, which
allows the hydrogel to be magnetically sensitive. Bolisetty et al. prepared a β-lactoglobulin-
Fe3O4 composite hydrogel, where the amyloid fibrils can be aligned via their associated
Fe3O4 particles in three dimensions using magnetic fields as low as 0.1 T (Figure 4) [117].
The hydrogel further underwent a reversible sol-gel transition as magnetic field increased
to 1.1T [117]. Lutz-Bueno et al. reported water-responsive wires made from gelatin and
β-lactoglobulin fibrils to mimic self-winding of plants’ tendrils [118]. The mechanism of
this self-winding behavior relied on the relatively low alignment of amyloid fibrils within
the wire, which triggered the rotatory force in water and thus transferred the chirality
of gelatin and amyloid fibrils across multiple length scales. The water-responsive wires
were then incubated with magnetic Fe3O4 nanoparticles, allowing the wire to elongate
linearly with increasing magnetic field strength. Such materials can potential be used as
underwater stretchable sensors, enabling new applications [118].
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3.2.5. Extracellular Matrix (ECM) to Sustain Viable Cells

Due to their connections to neurodegenerative diseases [119–121], amyloid materials
were historically not considered to be suitable for biomedical applications. This view was
later changed as more evidence from recent studies suggested that amyloids may only be a
nontoxic byproduct, and some amyloids were found to be functional. Now, attracted by
their mechanical properties, increasing research efforts have explored amyloid materials in
artificial extracellular matrices (ECMs). Although natural amyloids often do not contain
cell adhesion motifs (e.g., RGD from fibronectin), functional peptide sequences can be
added to amyloid proteins by genetic fusion and bioconjugation.

Reynold et al. used a lysozyme fibril network as artificial ECM to support the growth
of fibroblast or epithelial cell lines [122]. Residues 66–68 within lysozyme contains a tripep-
tide DGR that is similar to RGD. This minimal fibronection-binding domain promoted
integrin-mediated focal adhesions [123–125]. Cells remained viable for up to 7 days on
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the fibrillized lysozyme matrix with increased focal adhesion compared to monomeric
lysozyme. Similarly, the amyloid peptide IKVAV from laminin-1 was incorporated into
an elastin-like polypeptide (ELP). This amyloid-ELP hybrid protein formed a hydrogel
upon crosslinking by multi-arm thiol- and acrylate-functionalized polyethylene glycol
(PEG) crosslinker. ThT assay confirmed the presence of amyloid fibrils formed from the
IKVAV sequence. Both in vitro and in vivo experiments demonstrated that the hydrogel
promoted the growth of sensory neuron without noticeable cytotoxicity and inflammatory
effects [126]. Deidda et al. fused the amyloid peptide NSGAITIG from adenovirus fiber
shaft to the RGD motif [127]. A cysteine residue was incorporated for potential biocon-
jugation. The assembled peptide hydrogel supported both adhesion and proliferation of
fibroblast NIH/3T3 cells, suggesting promising biomedical applications [127]. Additionally,
purified inclusion body containing both human chaperone Hsp70 and unfused human
FGF-2 were used to form scaffold. Proteins in this inclusion body adopted amyloid-like
cross-β structures. The scaffold displayed good cell growth properties [128].

Stem cell transplantation has attracted an increasing amount of attention as a potential
treatment for multiple diseases and traumas including cancers, cardiac disease, stroke,
Alzheimer’s disease, and severe burns. It is critical to precisely control the microenviron-
ment of stem cells as it affects cell differentiate. So far, effective stem cell transplantation
has proven to be extremely challenging in clinical tests because stem cells often lose via-
bility quickly after transplantation [129,130] or drift away from the targeted lesion [131].
Consequently, researchers have been focusing on developing artificial ECM to encapsulate,
sustain and direct the differentiation of stem cells. Several amyloid-based ECMs have been
presented as candidates for such vital tasks. Das et al. reported an α-synuclein-inspired
hydrogel that promoted stem cell differentiation to neurons [132]. The self-recognition
motif of α-synuclein VTAVA has the highest β-propensity within the protein and was
chosen. The two alanine residues at the third and the fifth position of the peptide were
mutated into more hydrophobic residues to improve the extent of crosslinking. The Thr at
the second position was mutated to Tyr or His to provide extra π−π stacking or sidechain
ionization (Figure 5). Hydrogels fabricated from these peptides not only provided mechani-
cal support to cells, but also directed cell differentiation [133]. Implantation of the hydrogel
into mouse brain did not trigger severe immune responses. In vitro assays showed that the
hydrogel supported neuronal differentiation, possibly via mechanical stimulation [132].
Jacob et al. designed a series of peptides based on the aggregation-prone Aβ42 protein [38].
Hydrogelation occurred after a heat/cool cycle and the mechanical property was tunable
through modulation of peptide concentration and salt concentration. The hydrogel was
used as a scaffold for stem cell differentiation and kept the entrapped cells viable for more
than 48 h [38].

3.2.6. Conductive Materials

Benefitting from their fibrillar morphology, amyloid fibrils can be engineered or
modified into conductive materials. With a rational design, high electron mobility can be
achieved along the highly ordered protein fibrils, resulting in conductive wires and gels
that are also biocompatible and biodegradable.

One strategy to improve electron mobility along amyloid fibrils is the incorporation
of conductive nanoparticles. Han et al. demonstrated that β-lactoglobulin fibrils can
template the polymerization of pyrrole into conductive polypyrrole [134]. After pyrrole
polymerization, the mixture can be readily fabricated into mechanically stable aerogel with
lyophilization. The conductivity of the aerogel responded to environmental stimuli such as
pressure with high sensitivity, making it an ideal candidate for wearable biosensors [134].

Some amyloids consist of multiple aromatic amino acids in their sequences to help
initiate fibrilization and stabilize their self-assembled structure. These aromatic rings, when
properly aligned, can serve as the structural basis of delocalized π clouds and become
conductive over a long range [135]. The conductive pili of Geobacter bacteria, in particular,
has attracted attention. Over the years, researchers have established efficient protocols to
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collect and produce engineered curli nanofibrils fused with different tags or with designed
mutations [136,137]. Kalyoncu et al. fabricated conductive biofilm by introducing aromatic
amino acids to the curli sequence to create delocalized π clouds similar to that in conductive
pili of Geobacter bacteria [138]. It was later found that adding tri-tyrosine or tri-tryptophan
peptide to CsgA can effectively improve biofilm conductivity [139]. The idea of engineering
delocalized π clouds was further proved by computationally designed CsgA mutants
carrying aromatic residues for delocalized electron transport across the curli fibril [140].
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forming sequence of α-synuclein VTAVA was mutated to facilitate the self-assembly of the peptides,
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Reprinted with permission [132]. Copyright 2016, Nature Publishing Group.

3.2.7. Catalytic Materials

Amyloid fibrils can be engineered to form unique chemical environments to catalyze
reactions, where catalytic sites can be introduced to the amyloid sequences and the fibril
structure provides a critical microenvironment for reactions to occur.

Histidine often plays an important roles in esterase, serving as both proton donor or
acceptor during ester hydrolysis [141]. Spatially organizing multiple histidine side chains
into close proximity by controlled amyloid assembly can promote esterase activity. Diaz-
Caballero et al. designed such a peptide using only histidine and tyrosine (HYHYHYHY),
which self-assembled into cross-β fibrils (Figure 6) [142]. Tyrosine residues promoted the
self-assembly of the peptide into nanofibrils while also displaying oxidase activity. Histi-
dine was chosen for its propensity to form non-covalent interactions between fibrils and
for its hydrolase activities [87,143,144]. Hydrogelation occurred at pH 8.0, and reversibly
turned to fluid at pH 4.0. The pH-responsiveness, together with the high esterase-oxidase
dual enzyme activity, has opened up new applications for amyloid fibrils as catalytic
materials [142].

Garcia et al. took one step further and designed a tripeptide His-DPhe-DPhe that
formed a thermally reversible hydrogel with esterase activity [145]. These hydrogels went
through a sol-gel transition temperature at 45◦C under neutral pH [145]. Carlomagno
et al. designed an amyloid-like octapeptide-based hydrogel with catalytic activities. The
His–Leu–DLeu–Ile–His–Leu–DLeu–Ile octapeptide relied on the hydrophobicity of leucine
and isoleucine to self-assemble and was found to form hydrogel at 10 mM, which is much
lower compared to previously reported tripeptide [146].
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4. Perspectives and Challenges

In this review, we discussed recent efforts in engineering amyloid peptides or proteins
as macroscopic functional materials. The strong mechanical properties and chemical sta-
bility of amyloids have been harnessed to produce strong macroscopic materials. Their
sequence programmability has enabled engineering of amyloid fibrils for tunable proper-
ties, stimuli-responsiveness, and various functions. Their biocompatibility has opened the
possibility for future biomedical applications. Overall, a wide range of amyloid proteins
and peptides have been used to fabricate membranes, fibers, hydrogels, composites, and
catalysts. To date, some amyloid-based materials have been successfully produced in
industrial settings by private companies and are ready for commercialization [107,108,147].

While progresses have been made, challenges remain. Firstly, coherent and predictable
design rules for macroscopic amyloid materials have not yet been established for multiple
types of materials. When designing amyloid hydrogels, several strategies exist, such as
using aromatic or hydrophobic residues to promote non-covalent interactions. However,
these strategies are largely empirical and not robust. Addition of new sequences may lead
to unexpected results. Because interactions between amyloid fibrils are heterogeneous, ac-
curate prediction on the properties of macroscopic materials from protein sequence remains
challenging even with the help of powerful computational tools such as AlphaFold2 [148].
Secondly, amyloid proteins with new functionalities are needed to further expand their
applications. This can be potentially achieved by carefully fusing new functional peptides
or proteins into fibril-forming amyloid sequences, so that the fusion protein can be as-
sembled in amyloid fibrils while maintaining the activity of the fused functional protein.
Thirdly, scalable and cost-effective production of amyloid peptides is a serious issue for
high-quantity applications. One possible solution is to use synthetic biological strategies
to produce these polypeptides from engineered microbes. With continued development,
we believe amyloid materials will become more popular in material engineering and
translational medicine.
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