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ABSTRACT 

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and enable 
development of spatial biomarkers to predict patient response to immunotherapy and other 
therapeutics.  However, spatial biomarker discovery is often carried out on a single patient cohort 
or imaging technology, limiting statistical power and increasing the likelihood of technical 
artifacts.  In order to analyze patient cohorts profiled on different platforms, we developed methods 
for comparative data analysis from three disparate multiplex imaging technologies: 1) cyclic 
immunofluorescence data we generated from 102 breast cancer patients, 63 with clinical follow-
up, in addition to publicly available 2) imaging mass cytometry and 3) multiplex ion-beam imaging 
data. We demonstrate similar single-cell phenotyping results across breast cancer patient cohorts 
imaged with these three methods and identify cellular abundance and proximity-based biomarkers 
with prognostic value across platforms. In multiple platforms, we identified T cell infiltration as 
independently associated with longer survival in high-proliferation breast tumors. Functional 
marker analysis of T cells in these tissues showed enrichment for activated and spatially clustered 
T cells. A comparison of six spatial analysis methods revealed robust spatial biomarkers, including 
tumor-macrophage and tumor-fibroblast proximity associated with poor prognosis in estrogen 
receptor-positive and triple-negative tumors, respectively. Our methods enable assembly of larger 
clinical cohorts from diverse platforms to aid in prognostic spatial biomarker identification and 
validation.    
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STATEMENT OF SIGNIFICANCE 

Our single-cell spatial analysis of multiple clinical cohorts uncovered novel biomarkers of patient 
outcome in breast cancer. Additionally, our data, software, and methods will help advance spatial 
characterization of the tumor microenvironment. 
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INTRODUCTION 

Recent advances in the treatment landscape of breast cancer, including the approval of immune 
checkpoint inhibitors for early TNBC1, have motivated the characterization of the breast tumor 
microenvironment for deeper understanding of immune-tumor interactions. Identification of 
biomarkers predicting breast cancer immunotherapy response is still an urgent clinical need2. In 
metastatic TNBC, only a quarter of PD-L1 positive patients respond to single-agent immune 
checkpoint blockade2. In contrast, in early stage TNBC, response rates to neoadjuvant immune 
checkpoint plus chemotherapy were similar in PD-L1 positive and negative groups3. This 
highlights the need for biomarker development for better patient stratification across disease 
stages. Furthermore, trials evaluating novel immune targeted therapies in breast cancer should be 
accompanied by biomarker development for maximum therapeutic efficacy4.  
 
Highly multiplex imaging methods enable quantification of dozens of biomarkers in a single tissue 
section with at sub-cellular resolution while retaining spatial context5–10. Tissue structures such as 
tertiary lymphoid structures, identified with multiplex imaging, are predictive biomarkers of 
immunotherapy response in melanoma11,12. Recently, spatial biomarkers involving multiple cell 
types have been identified that predict response to immune checkpoint inhibitors in cutaneous T 
cell lymphoma13 and patient survival pancreatic ductal adenocarcinoma14. Employment of 
multiplex imaging methods in breast cancer has revealed that single-cell spatial context has 
prognostic relevance and shows correlations with transcriptomic and genomic features of tumors15–

17. However, different imaging platforms can introduce method-dependent technical and 
computational idiosyncrasies. Identification of biomarkers in additional platforms can strengthen 
biological and clinical findings. Furthermore, due to the number of steps in the processing pipeline 
and the number of variables and parameters involved, overfitting is an issue in biomedical imaging 
data. Overfitting can be addressed through use of a training cohort to tune analytical methods, 
which are then fixed and subsequently applied to a validation cohort18. Such validation cohorts can 
be obtained through incorporation of data from additional imaging platforms into biomarker 
studies. Documentation of metadata, analysis protocols and code is essential for reuse of data and 
reproducibility of findings, preferably using open-source software tools18. We developed an open-
source python software, mplexable19, for multiplex image processing and analysis, which we use 
herein to process and analyze three multiplex imaging breast cancer cohorts: a cyclic 
immunofluorescence (CyCIF) dataset which we generate, and publicly available imaging mass 
cytometry (IMC) and multiplex ion-beam imaging (MIBI) datasets 15,17,20. In this proof-of-concept 
study, we identify prognostic single-cell spatial biomarkers common across the imaging platforms. 
As such imaging datasets become more widely available, tools such as ours can facilitate 
biomarker discovery with high accuracy, reliability, and efficiency.      

METHODS 

Patient samples 

Breast cancer tissue microarrays were graciously provided by Dr. Jennifer Pietenpol (JP). All 
samples were collected at time of surgical resection (mastectomy or breast conserving surgery) at 
Vanderbilt University Medical Center with the same fixation protocol. JP-TMA1 had 131 cores of 
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approximately 1.2 µm diameter, with duplicate cores from 19 TNBC, 8 HER2+ and 36 ER+ 
patients. It also included one control core each of inflamed appendix, colon cancer, muscle, 
pancreas and normal breast. Four of the TMA1 TNBC patients received neoadjuvant 
chemotherapy. Clinical outcome and clinicopathological information were available for TMA1. 
JP-TMA2 contained a single, slightly larger (~1.4µm diameter) core from 39 triple-negative 
tumors and 1 ER+/HER2+ control core. Thirteen of the patients in TMA2 had received 
neoadjuvant therapy. Clinical outcome data were not yet available for TMA2. 

Imaging data generation and sources 

CyCIF staining of tumor tissue was completed on JP-TMA1 and TMA2. The whole tissue core 
was imaged, as described previously19. MIBI imaging data was previously published by Keren et 
al15 and the images were downloaded from https://mibi-share.ionpath.com/tracker/imageset under 
the name “Keren et al., Triple Negative Breast Cancer.” Survival and recurrence data were 
obtained from a second publication by the same group21, and were downloaded from 
https://github.com/aalokpatwa/rasp-mibi. IMC imaging data were previously published by 
Jackson et al.17 and images and clinical data were downloaded from 
https://doi.org/10.5281/zenodo.3518284.  

Image Processing 

CyCIF tiff images were registered, segmented and single-cell intensity as well as nuclear size and 
shape features were extracted as previously described19. The CyCIF pipeline is available at 
https://gitlab.com/engje/mplexable/-/tree/master/jupyter. Nuclear and cell segmentation were 
conducted using the Cellpose algorithm, which showed visually superior performance on CyCIF 
data compared to a watershed algorithm (S 1a). Nuclear and cell segmentation masks were matched 
using mplexable, enabling subtraction of nuclear mask from cell mask to obtain segmentation of 
the cytoplasm (S 1b). 
 
MIBI and IMC processing pipelines are available as Jupyter notebooks at cycIF_TMAs 
(https://codeocean.com/capsule/7863588/tree). MIBI and IMC images were downloaded as 
multipage OMEtiffs. Hot pixels16 were detected by identifying pixels that were 10 standard 
deviations above a median filtered image with a 2x2 pixel kernel size. Hot pixels were set to the 
median filter values and resulting images were saved as tiffs for downstream feature extraction. 
DNA channels were processed for nuclear segmentation as follows. DNA images were rescaled 
between the 3rd and one and a half times the 99.999 quantile. The gamma value was adjusted by 
0.6 in MIBI data and 0.4 in IMC data to enhance dimly stained nuclei. A two-channel nuclear plus 
cytoplasm image was generated for cell segmentation. A mixture of markers was used to generate 
a composite image which stained the cytoplasm of the majority of cells. For MIBI data, the β-
catenin, vimentin, CD45 and CD31 channels were combined into a maximum intensity projection 
cytoplasm image and the gamma value was adjusted by 0.6. For IMC data, E-cadherin, vimentin, 
CD44 and CD45 were combined into a maximum intensity projection cytoplasm image and 
gamma adjusted by 0.4. Chamboelle total variation denoising, implemented in scipy22, was used 
to smooth out pixelated nuclear and cytoplasmic projection images (weight=0.1, except 
weight=0.05 for IMC cytoplasm). All parameters were selected by testing segmentation results at 
https://www.deepcell.org/predict and cellpose.org (S 1c-d). Skipping either nuclear or cytoplasmic 
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Chamboelle total-variation de-noising resulted in failure of deep learning-based algorithms on the 
IMC data (S 1e). Mesmer segmentation23 performed better than Cellpose24 in IMC data due to 
improved detection of dim nuclei, likely due to the incorporation of cytoplasmic staining in the 
nuclear segmentation model (S 1d). This issue with Cellpose was not detected in CyCIF images, 
which had brighter DNA staining. For IMC and MIBI data, nuclear and cellular segmentation were 
performed on processed nuclear and nuclear + cytoplasm images using Mesmer23. Matching of cell 
IDs in the nuclear and cell masks was done with mplexable19, with cell masks relabeled to match 
the ID of the nucleus which they had most overlap with. Cytoplasm masks were calculated by 
subtracting the nuclear mask from the matching cell mask. Nuclear and cytoplasmic mean 
intensity, nuclear size and shape features, and nuclear centroid coordinates were extracted with 
scikit-image25.  
 
Mesmer, a deep-learning-based approach for nuclear and whole-cell segmentation of tissue data, 
was run on IMC data and compared to the watershed-based segmentation originally published by 
Jackson et al17. The cell counts across the two methods had a Pearson correlation of 0.98 (S 2 a). 
Visual examination of ROIs with discordant cell numbers revealed that Mesmer segmentation 
performed better in tissues with necrosis and high background noise in the DNA channel (S 2 b-d). 

Image QC 

In IMC data, artifacts include non-specific background staining, necrotic regions, and bright 
antibody aggregates. IMC data were collected from small ROIs (~600 µm) within TMA cores and 
some samples annotated as ER+ tissues did not show any ER+ staining in the ROI. Therefore, 
quality control (QC) was performed on ER stained images, a marker which has been noted to 
exhibit non-specific background staining on the IMC platform26. QC images of ER staining were 
generated and sorted in a blinded fashion into negative and positive for nuclear-specific-staining 
(S 3a). ROIs from clinically annotated ER+ patients that were classified as ER positive during QC 
or ROIs that came from ER negative patients and classified as ER negative were used for analysis. 
Samples that passed ER QC did not have significantly different grade, PR status, TMA block, age 
of specimen, age of patient or tumor size (S 3c-d). There were no significant survival differences 
between QC passed versus failed tumors from ER+, TNBC or ER+HER2+ patients (S 3e). In the 
IMC dataset, additional QC steps included: necrotic regions were manually circled using the 
napari27 image viewer and excluded and bright aggregates in the CD3 channel were excluded by 
removing cells above a threshold set at the value of CD3+ cells showing an appropriate 
membranous staining pattern. 
 
In the CyCIF data, imaging artifacts included autofluorescence (AF), non-specific background, 
floating tissue and tissue loss. Background AF images were obtained half-way through CyCIF data 
collection and these images were scaled by exposure time and subtracted from the AF488, AF55 
and AF647 channels using mplexable19. Feature extraction was performed on AF subtracted 
images. Areas of floating tissue, air bubbles or necrotic regions were manually circled using the 
napari27 image viewer and excluded. Non-specific background staining was removed by setting 
manual thresholds for selected markers and subtracting those values from extracted data. The PD1 
antibody had bright aggregates that were excluded with an upper threshold. Tissue loss was 
detected by cells that lacked DAPI staining in the last round of imaging, and these cells were 
excluded.  
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In all three platforms, additional artifacts caused by floating tissue or imaging problems (e.g., dark 
or bright bands across IMC and MIBI images perhaps caused by problems with the rastering 
process) were detected through unsupervised clustering and visual inspection of clusters on the 
images. Clusters comprised of artifacts showed atypical very bright or dim staining in many 
channels, formed distinct artifact clusters and were removed.  

Single cell phenotyping 

Cell types were defined in two ways: manual gating and unsupervised clustering. Unsupervised 
clustering was conducted using the scanpy28 software. Single-cell mean intensity values were 
selected from either the nucleus or cytoplasm masks for each marker, depending on expected 
intracellular distribution.  β-catenin, which can localize on the membrane, in the cytoplasm or in 
the nucleus, was selected from both nuclear and cytoplasmic masks for separate analysis. Since 
the CyCIF and IMC platforms had more marker and breast cancer subtype overlap than the MIBI 
panel (Figure 1, Figure 2) 20 matching markers were selected for clustering in these datasets, plus 
selected markers for immune, epithelial and fibroblast subsets (collagen I [ColI], CD4, CD8 in 
CyCIF, and fibronectin [FN], pan-cytokeratin [panCK] in IMC). For MIBI data, all available 
markers were used for clustering. Additionally, the nuclear area feature was used for clustering. 
Each marker was divided by its standard deviation, without zero-centering, and clipped above 20 
standard deviations. A Uniform Manifold Approximation and Projection (UMAP) embedding was 
generated using 30 k-nearest neighbors and the embedding was clustered using the Leiden 
community detection algorithm29. The Leiden resolution parameter was selected that resulted in 
20 - 25 clusters. Each cluster was annotated and categorized as epithelial, endothelial, fibroblast, 
immune or stromal. Some clusters were comprised of multiple cell types, and these were manually 
split, for example, the CD44+ cluster was split into CD44+ tumor and CD44+ stroma based on 
manual gating results (described below).   
 
We then performed manual gating to verify our annotated-cluster cell type. A threshold was set 
for each gating marker based on positive pixel patterns in images. Fibroblasts were positive for 
one or more of vimentin, fibronectin (FN) or collagen I (ColI). Epithelial cells were positive for 
one or more of Ecad, cytokeratins, or β-catenin. Endothelial cells were defined as CD31+. Immune 
cells were CD45+. Stromal cells were all non-fibroblast, non-endothelial, non-epithelial, non-
immune segmented nuclei. Jupyter notebooks recording single cell phenotyping pipelines are 
available here: cycIF_TMAs (https://codeocean.com/capsule/7863588/tree). 

Statistical Analysis 

The CyCIF dataset was used as a training dataset to determine the quantile separating high and 
low abundance of each cell type that was most predictive of survival. For analysis of single variable 
association with recurrence-free (RFS) or overall survival (OS), each cell type was tested (log-
rank test) for significant association with RFS and OS in CyCIF TNBC, ER+ and HER2+ samples. 
For each cell type, fraction of cells of that type over all cells from combined ROIs/cores from each 
patient was calculated and binarized into high and low abundance based on tertile or median values 
within each subtype. The most prognostic cutoff value was selected for each cell type and for cell 
types having prognostic value (alpha<0.05) these cutoffs were applied in the two additional 
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datasets. Since overall cell type fractions differed between platforms and subtypes (Figure 3), high 
and low values were determined relative to other samples from the same platform and subtype. 
High/low binarized abundances were combined for survival analysis on the whole cohort (n=98 
TNBC and n=163 ER+). Kaplan-Meier analysis was used to estimate survival functions and the 
log-rank test was used to assess significant differences in survival. Multivariate Cox proportional 
hazards (CPH) modelling was used to combine cell abundance variables with patient age, tumor 
size and clinical stage. Collectively, 55 TNBC and 160 ER+ patients had these additional clinical 
parameters (additional clinical parameters were not included in the MIBI dataset). 
 
Epithelial and stromal subtypes were determined by hierarchical clustering of patients based on 
the fraction of epithelial or stromal cell types within each compartment, respectively. Cell types 
representing greater than 2-4% of the total cell population in the respective tissue compartment 
were used for clustering. This cutoff was chosen to ignore rare, platform specific cell types that 
may represent method-specific artifacts. Unsupervised hierarchical clustering of patients was 
performed using the AgglomerativeClustering function in scikit-learn30, using a Euclidean distance 
metric and complete linkage. The number of clusters/subtypes were selected as follows.  Based on 
gene expression studies of breast cancer subtypes, we expected four triple-negative subtypes, two 
luminal clusters, a HER2 enriched and a normal-like cluster, therefore we selected eight as the 
number of epithelial clusters31,32 (Figure 4). For stromal clusters, we selected the minimum number 
of clusters need to separate T cells from other clusters (k=6).  
 
For analysis of tumor-stroma correlation, the fraction of cell type within the epithelial or non-
epithelial stromal compartment (including fibroblast, immune, endothelial and other stromal) were 
calculated. Pearson correlation was used to assess significant correlations between cell frequencies 
within their respective tissue compartments.       
 
Spatial distributions of cells were calculated in multiple ways. For analysis of cellular neighbors, 
each cell’s neighbors within a 25 µm radius (~1 epithelial cell diameter) were counted. The 25 µm 
radius was selected to replicate the mixing score biomarker previously found to be prognostic in 
TNBC15; mean number of neighbors of specific cell types were also calculated in 25 µm 
neighborhoods. Ripley’s L (a measure of clustering) and the multitype K function (Kcross; a 
measure of two cell types co-localization) functions were calculated using spatsat33 with a 
maximum radius of 100 µm. Spatial aggregates were calculated with scimap, with the default 
radius of 30 µm and purity of 60%34. Spatial latent Dirichlet allocation (LDA) analysis was done 
using spatialLDA35, using the default radius of 100 µm and 6, 8 or 10 topics for topic modelling. 
Shorter distances of ~25 µm may be interpreted as cells nearly or directly touching, while 100 µm 
represents a distance at which oxygen, nutrients and potentially other molecules diffuse in 
tissues36. Survival analysis was done as described above, using the CyCIF dataset to determine 
significant prognostic cell-cell interactions and cutoff values. These were then verified in the two 
additional datasets. Spatial and survival analysis code, and links to data are available here: 
cycIF_TMAs (https://codeocean.com/capsule/7863588/tree). 
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RESULTS 

Multiplex Imaging Enables Single-Cell Phenotyping  

We generated CyCIF data from two tissue microarrays (TMAs) containing surgical breast cancer 
specimens and analyzed publicly available breast cancer data from IMC and MIBI platforms 
generated with similar antigen targets (Figure 1). The CyCIF data was comprised of 47 biomarkers 
imaged at a resolution of 0.325 µm per pixel in entire cores with 1.2 to 1.4 mm diameters, with 1-
2 full cores imaged per patient (Figure 1 a-b, left). The IMC data included 35 biomarkers imaged 
in the largest square area contained within the TMA cores (from 0.6 - 0.8 mm diameter), at a 
resolution of 1 µm per pixel (Figure 1 a-b, center)17. The MIBI data included 36 biomarkers 
imaged in 0.8 x 0.8 mm square ROIs at a resolution of 0.5 µm per pixel (Figure 1 a-b, right)15.        
 
We used the same methods to generate single-cell phenotypes via unsupervised clustering in each 
platform. In the CyCIF dataset, we generated a 30 k-nearest neighbors (k-NN) graph using a subset 
of 23 markers common between the CycIF and IMC datasets, plus nuclear area. Markers were 
scaled by the standard deviation (SD), clipped at 20 SDs, and nearest neighbors were calculated 
using scanpy28.  We visualized the k-NN using UMAP embedding, confirming good separation of 
lineage specific markers, CD31, endothelial, E-cadherin (Ecad), epithelial, Collagen I (ColI), 
extracellular matrix, vimentin, mesenchymal cells including activated fibroblasts, and CD45, 
immune infiltrate (S 4a). The UMAP visualization showed good mixing of cells from different 
TMA sources and separation of tumor cells from different breast cancer subtypes (S 4b). We used 
the Leiden algorithm (implemented in scanpy28) to cluster the k-NN graph, resulting in 23 cell type 
clusters (S 4c). The mean expression of each biomarker in each cluster was used to annotate cell 
types (e.g., CD8 T cell, CD4 T cell, luminal ER+ tumor) and lineages (i.e., endothelial, epithelial, 
fibroblast, immune and other stromal, Figure 2 a). The most common cell types included luminal 
and luminal ER+ tumor, CD4 T cells, vimentin+ fibroblasts and quiescent stroma (Figure 2 a). To 
confirm our cell typing, we performed manual gating on lineage specific markers (S 4a). Gating 
and clustering-based cell lineages localized to similar areas of the UMAP and had 73% accuracy 
on a single cell level, as calculated using metrics.accuracy_score in scikit-learn30 (S 4e, f).       
 
In the IMC dataset, we used the same method as in the CyCIF dataset to visualize marker 
expression, TMA, and subtype and cluster cell types (S 4f-g). We used 21 markers plus nuclear 
area for clustering, resulting in 24 cell types (S 4h). Upon annotation, we found the most common 
cell types were luminal, luminal ER+, and ER+ HER2+ tumor, vimentin or fibronectin (FN)+ 
fibroblasts, quiescent stroma, and T cells (Figure 2 b). Clustering and gating-based cell lineages 
localized to similar areas of the UMAP and had 77% accuracy (S 4i-j).  
 
The MIBI panel included more immune-specific markers than the other panels and had 15 markers 
similar to our CyCIF panel. To generate a dataset in which to audit deeper immune contexture, we 
clustered on all 33 markers plus nuclear area and eccentricity. Again, we saw good separation of 
lineage specific markers and Leiden clustering generated 22 cell types of which luminal tumor, 
fibroblasts, T cells and quiescent stroma were the most common (S 5a-c). Gating-based cell types 
showed good overlap with clustering cell types with 72% accuracy (S 5d-e).  
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Cell type fractions are similar across platforms 

As our most common cell types were similar across platforms, we were encouraged that we could 
successfully combine the data for cross-platform analysis. We visually validated individual 
clusters, as well as cell lineages by inspecting the images. In all three platforms, cell lineage 
identity and spatial distribution matched the underlying imaging data (Figure 3 a, b).  
 
For further validation, we sought to quantitatively compare the fractions of the five main cell 
lineages. We calculated the fraction of cells in each lineage for each platform and breast cancer 
subtype. Both gating and clustering cell types showed high correlation (Pearson R= 0.97 gating 
and 0.96 clustering) across platforms for ER+ (n=30 CyCIF, 170 IMC) and TNBC (n=59 CyCIF, 
50 IMC, 41 MIBI) while HER2+, which had a smaller number of samples (n=8 CyCIF, 22 IMC) 
had more variability between platforms (Figure 3 c, d, e). We did note some platform specific 
bias; for example, IMC showed a smaller fraction of immune cells defined by clustering in all 
three subtypes (Figure 3 d). Therefore, when setting high/low cutoffs for cell abundances, we 
calculated high and low relative to each platform and subtype, as opposed to the whole dataset. 
Since different antibody clones, probes and imaging systems with were used, resulting in different 
signal-to-background ratios between platforms, even for the same target, we believe this is a 
necessary step to account for technical variability.        

Hierarchical clustering defines prognostic tumor subtypes consistent across platforms 

For subtyping based on single-cell phenotypes, we calculated the fraction of epithelial or non-
epithelial stromal cells in the total epithelial or stromal cells in that sample, respectively. Fractions 
of epithelial cell types representing greater than 4% of the epithelial compartment were used to 
hierarchically cluster patients from all subtypes and platforms (Figure 4a). Given the five intrinsic 
breast cancer subtypes (luminal A and B, Erb-B2+, basal-like and normal-like)31,37 and the sub- 
classification of four subtypes within TNBC/basal-like tumors32,38, we set k=8 to capture the 
previously characterized biology of breast cancer epithelial cells. The resulting eight subtypes 
included tissues enriched for luminal, basal, luminal ER+, myoepithelial, HER2+ ER+, 
cytokeratin-low, and proliferating tumor cells, as well as a heterogeneous group not dominated by 
one phenotype (Figure 4 a). Each subtype contained a mixture of patients from multiple platforms, 
with the exception of the HER2+ER+ subtype, which was expected given that all HER2+ER+ 
patients were in the IMC dataset (Figure 4 a). Examination of images from tissues representing 
different subtypes showed the expected intensity differences in marker expression (Figure 4 b). 
The seven epithelial subtypes present in the ER+ patients were prognostic (log-rank overall-
survival (OS) p=0.00004, n=160 patients, Figure 4 c). Cox proportional hazards modelling (CPH) 
showed that the heterogeneous subtype 6 had a log hazard ratio significantly > 1, indicating poor 
prognosis (Figure 4 d). The CPH hazard ratios (HRs) were similarly ordered across the IMC and 
CyCIF platforms, with heterogeneous subtype 6 and cytokeratin-low subtype 1 having HRs > 1, 
or poor prognosis, and luminal ER+ subtype 2 and Luminal subtype 0 having HRs < 1, or good 
prognosis (S 6a). Investigation of the poor prognosis subtype 6 revealed expression of CD44 and 
EGFR in tumor (Figure 4 e, S 6b). Quantification of stromal celltypes and epithelial expression 
showed significant enrichment of CD31+ endothelial cells and CD44 expression, respectively 
(Figure 4 f-g). On the other hand, the luminal ER+ subtype was associated with better prognosis 
although not significantly, so we investigated luminal ER+ tumor cell fraction as a single variable, 
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which was found to predict longer OS (log-rank p=0.036, n=162 patients, S 6c). In a multivariate 
CPH model including stage, patient age and tumor size, the fraction of luminal ER+ tumor was no 
longer significantly associated with survival (p=0.18, S 6d). In TNBC patients, the epithelial 
subtypes had borderline prognostic significance (log-rank p=0.1; CPH p=0.051, n=98 patients, S 
6e-f). However, the epithelial subtypes did not show a consistent order in hazard ratios obtained 
from CPH modelling across platforms in TNBC (S 6g-i).  

Microenvironment subtypes associate with clinical subtype 

We then clustered patients based on the stromal cell type fraction in each tissue in a similar manner 
to the epithelial subtyping above, selecting k=6 for the number of clusters (S 7). Since the stromal 
phenotypes differed across platforms due to different markers, we clustered patients from each 
platform separately, using the fractions of stromal cell types representing greater than 2% of the 
stromal compartment. The stromal subtypes were not prognostic, with the exception of the MIBI 
platform (log-rank=0.003, CPH p=0.056, n=39 patients S 7b-g). However, we observed significant 
correlation between stromal subtypes and clinical subtypes ER+ and TNBC. In the CyCIF cohort, 
ER+ patients had significantly more of the vimentin+ stromal subtype 0 and less T cell-rich stroma 
(Chi-squared p=0.098, Bonferroni p-adj<0.05 for subtype 0, n=89 patients [ER+ and TNBC, 
including patients without clinical outcome], S 7e). In the IMC cohort, ER+ patients had more 
Vim+/FN+ fibroblast stromal subtype 0 and significantly less T cell stromal subtype 4 (Chi 
squared p=0.002, Bonferroni p-adj<0.05 for subtype 4, n=220 patients [ER+ and TNBC, including 
patients without clinical outcome] S 7h). Our characterization of stromal subtypes supports the 
observation that ER+ breast cancer is immune-poor39, and also shows significant enrichment for 
vimentin and fibronectin+ fibroblasts in ER+ relative to TNBC.    

T cells are an independent prognostic factor in TNBC and high proliferation ER+ tumors 

Next, we investigated the prognostic value of multiplex imaging-defined cell types within each 
clinical subtype. We used the CyCIF dataset as a training cohort to identify cell types whose 
fraction of all cells in the tissue significantly associated with overall survival and cut-offs for high 
or low abundance. We tested the 0.33, 0.5 and 0.66 quantile to binarize tissues into low and high 
cell abundance (S 8a-c). For any cell type showing prognostic significance (log-rank p<0.05), we 
selected the cut-off with the lowest p-value for validation in the other cohorts (S 8d-e). High T and 
B cells were associated with longer OS in TNBC in multiple platforms (CyCIF p=0.006, n=18, 
IMC p=0.068, n=41, T cells; CyCIF p=0.049, n=18, MIBI p=0.0069, n=39 B cells, S 8 a, d, e). 
High macrophages (p=0.043), low endothelial cells (p=0.018) and high proliferating tumor 
(p=0.031) predicted longer OS in CyCIF TNBC samples (n=18) but were not significant in the 
other cohorts (S 8 a). In ER+ patients, high luminal ER+ tumor (IMC, p=0.034, n=132), low 
HER2+ Ki67+ (IMC p=0.058, n=132) and less cytokeratin low tumor (CyCIF p=0.067, n=30) 
were associated with longer survival, but only in a single cohort (S 8 b, e). 
 
We then combined all samples from each subtype into a single cohort for determining the 
independent prognostic value of cell type fraction when combined with the clinical variables of 
stage, patient age and tumor size in a multivariate CPH model. CD3 T cells and CD20 B cells were 
identified in all cohorts, while only the CyCIF and MIBI panels could distinguish CD4 and CD8 
T cells. The MIBI cohort lacked clinical variables of stage, age and tumor size. In combined TNBC 
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samples, high CD3, CD4 and CD8 T abundance were significantly associated with longer OS (log-
rank, Holm-Šídák multiple testing correction, p=0.01, n=98; p=0.037 and 0.0025, n=57 
respectively Figure 5 a-b, S 9 a), and they remained significant in a multivariate model (CPH 
p=0.01, n=55, (CD3); p=0.049 (CD4) and 0.0071 (CD8), n=15, Figure 5 c, S 9 b). High CD20 B 
cell abundance was associated with longer OS (log-rank, Holm-Šídák correction, p=0.011, n=98) 
but it did not remain significant in a multivariate model (CPH p=0.15, n=55, S 9 c). CD3 T cell 
abundance predicted longer RFS in the multivariate model (p=0.026, n=55, S 9 d). CD20 had 
borderline predictive value for RFS (multivariate CPH p=0.082, n=55 S 9 e), while CD8 and CD4 
T cells were not independently predictive of RFS (n=15, S 9 f-g).   
 
CD3 T cells did not predict survival in the combined ER+ breast cancer cohort (log-rank, Holm-
Šídák multiple correction,  p=0.83, n=162), however, in tumors with proliferation above the 
median, CD3 T cells did predict longer OS (log-rank, Holm-Šídák multiple correction, p=0.0013, 
n=74) (Figure 5 d-e). Low proliferation ER+ did not derive a survival benefit from high CD3 T 
cells; in contrast, low proliferation TNBC did (log-rank, Holm-Šídák multiple correction, p=0.99 
and p=0.023, S 9h). Multivariate CPH modelling revealed that CD3 T cells were independently 
prognostic for overall and recurrence-free survival in high proliferation but not low proliferation 
tumors from ER+ and TNBC subtypes (S 9 i-j). Stratification of tumors by proliferation and T cell 
abundance showed that high proliferation, high T cell tumors had the best prognosis in ER+ 
disease, while high proliferation low T cell had the worse prognosis (S 10 a). In contrast, in TNBC 
high- and low-proliferation, high-T cell tumors had similarly good survival, while high- and low-
proliferation, low-T cell tumors had similarly poor survival (S 10 a). Independent analysis in each 
platform revealed significant outcome stratification by T cell abundance and proliferation in ER+ 
patients from the IMC cohort but not the CyCIF cohort (log-rank p=0.028 and 0.4 S 10 b), and in 
TNBC patients from the IMC and CyCIF cohorts but not MIBI cohort (log-rank p=0.056, 0.012 
and 0.49 S 10 c).  
 
Since the ER+ low-proliferation group was unique in not deriving survival benefit from CD3 T 
cells and had intermediate survival outcomes compared to other ER+ patients (S 10 b), we 
compared T cell abundance, spatial localization, and activation states to identify unique T cell 
characteristics in that group. There was no significant difference in T cell abundance or T cell to 
macrophage or endothelial ratio in low proliferation versus high proliferation ER+ tumors (S 10 e). 
Interestingly, high-proliferation ER+ tumors in the IMC cohort, which gained survival benefit 
from CD3 T cells, showed more clustering of CD3 T cells than low-proliferation ER+ tumors, 
quantified by the number of CD3 T cell neighbors of each CD3 T cell (Tukey HSD p=0.05, Figure 
5 f). High proliferation ER+ tumors in the CyCIF cohort, which did not gain survival benefit from 
CD3 T cells, did not show increased T cell clustering (Kruskal-Wallis p=0.61, S 10 d). Similarly, 
CD3 T cells in high-proliferation ER+ tumors from IMC cohort had higher levels of the 
proliferation marker Ki67 and the memory/effector marker CD44 than in low proliferation ER+ 
tumors, indicating a more activated functional state (Tukey HSD p=0.006 and 0.01, Figure 5 g-
h). In the CyCIF cohort, similar differences in Ki67 and CD44 expression were observed between 
ER+ and TNBC subtypes, consistent with an activated T cell state correlating with a survival 
benefit derived from increased T cell infiltration (S 10 f). High-proliferation TNBC, in which T 
cells independently predicted overall survival in the multivariate CPH model, also showed 
increased levels of PD-1, FoxP3, IDO and Lag3 expression in T cells, consistent with upregulation 
of negative feedback checkpoints following immune activation (S 10 f-g). Epithelial cells in high-
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proliferation TNBC had increased expression of the antigen presentation molecule HLA-Class-1 
and immune checkpoint PD-L1 (S 10 h). 

Analysis of pairwise tumor-immune interactions reveals conserved spatial biomarkers  

Intrigued by the finding that T-cells in high-proliferation tumors had increased T cell neighbors 
and were associated with a survival benefit (Figure 5 d, f), we leveraged cross-cohort analysis to 
systematically investigate spatial tumor-immune interactions as biomarkers in breast cancer. We 
counted the number of immune and tumor neighbors within close proximity (25m) of each cell 
and derived previously published prognostic biomarkers including immune aggregates34,40 and 
tumor-immune mixing score15. We also quantified spatial correlation of tumor and immune cells 
independent of density (Ripley’s L and Kcross functions33). For each spatial metric, subtype and 
platform, we binarized patients by the median into high and low, and tested for association with 
overall and recurrence free survival. Only a minority of spatial metrics showed correlations with 
survival across multiple platforms (S 11). Of these, spatial aggregates of CD3 T cells predicted 
longer survival in the CyCIF and IMC cohorts, and independently predicted OS and RFS in a 
multivariate CPH model (Figure 6 a-c, S 11 b). Similar to abundance, T cell spatial aggregates did 
not predict survival in the MIBI cohort (S 11 b). The Kcross function, which quantified spatial 
correlation of tumor cells and macrophages (50 m radius) showed a negative association with 
RFS in both ER+ breast cancer cohorts, with a trend towards significance in the multivariate model 
(CPH p=0.083, Figure 6 d-f). Macrophage neighbors of proliferating tumor predicted longer 
overall survival in TNBC in both the MIBI and CyCIF platforms, but were not significant in the 
multivariate model (Figure 6 g-h). Epithelial neighbors of epithelial cells (within 25m) were 
associated with longer RFS in ER+ tumors from both CyCIF and IMC platforms, but not in the 
multivariate CPH model (Figure 6 i-j). Finally, mixing score, which had been developed in the 
MIBI cohort, was shown to predict shorter survival in that cohort, but not the CyCIF and IMC 
cohorts (Figure 6 k), nor was it independently prognostic (S 11 a). Several variables, including the 
Kcross function of tumor to quiescent stroma, macrophage neighbors of T cells, and vimentin+ 
fibroblast neighbors of proliferating tumor showed opposite significant associations with survival 
in different platforms of the same subtype (S 11 c-f).  
 
Although the spatial metric for CD3 T cell aggregates was independently prognostic, this was also 
true of CD3 T cell abundance, without the spatial information (Figure 5). Therefore, in order to 
identify spatial metrics which provided additional information beyond abundance, we calculated 
the Pearson correlation between all of our spatial metrics and cell type abundance within each 
tissue (S 12). As expected, CD3 T cell abundance significantly correlated with CD3 T cell spatial 
aggregates, as well as neighbor counts among T cells, B cells, macrophages, endothelial cells and 
tumor cells (S 12). CD3 T cell abundance negatively correlated with mixing score and abundance 
of quiescent stroma and fibronectin+ fibroblasts (S 12). Tissue abundance of fibroblasts and 
quiescent stroma correlated with high neighbor counts and spatial aggregates involving those cell 
types (S 12). True to their definitions as density independent, the Kcross and Ripley’s L function 
did not correlate with cell type abundances (S 12) and are therefore most likely to provide unique 
insight not gained from abundance alone.   
 
Neighborhood analysis reveals multicellular spatial biomarkers 
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Finally, we analyzed multicellular spatial neighborhoods by considering all stromal cells within 
100 m radius of each tumor cell. We used spatial latent Dirichlet allocation (LDA) to model the 
neighborhood around each tumor cell as a combination of topics, utilizing a spatial parameter to 
increase the likelihood that adjacent cells share the same topics35. In LDA analysis, each topic can 
be enriched for multiple cell types and each cell type can be present in multiple topics. In our 
CyCIF data, for example, topic-0 in TNBC tissues was enriched in macrophages, vimentin+ 
fibroblasts and CD4 T cells, while CD4 T cells are found in topic-0, 4, 5 and 6 (Figure 7 a). After 
topic modelling, K-means clustering was run on the single-cell topic matrix to define “tumor 
neighborhood” clusters which contained one or more topics (Figure 7 b). Clustering the topic 
matrix rather than the neighbor count matrix is believed to be less sensitive to noise34  and allows 
for smooth transitions between neighborhoods as opposed to arbitrary cutoffs35. We did observe 
transitioning/mixed neighborhoods within both TNBC and ER+ cluster results (Figure 7 b-d, S 
13). The spatial LDA neighborhood clusters were annotated based on their topics and examination 
of the images showed neighborhoods reflected the spatial distribution of the markers in the tissue 
(Figure 7 c-d). A TNBC tissue in our CyCIF cohort, for example, showed tumor cell 
neighborhoods with more T cells (blue) on the tumor margin, with adjacent macrophage-rich 
tumor neighborhoods (purple) (Figure 7 c-d). These neighborhoods transition into a mixed 
neighborhood (brown), and finally a vimentin+ FB neighborhood (green) distant from the 
infiltrating T cells (Figure 7 c-d). Similar neighborhoods were identified in the IMC cohort (S 
13a), and a combined survival analysis showed that T cell-rich neighborhoods were associated 
with longer overall survival (log-rank p=0.011) and vimentin+ FB neighborhoods were associated 
with shorter survival in TNBC (log-rank p=0.0039, Figure 7 e). T cell neighborhoods trended 
towards significance in a multivariate CPH model of overall survival (p=0.056, Figure 7 f) and 
recurrence-survival (p=0.072, S 14a). Vimentin+ fibroblast neighborhoods around tumor cells were 
significantly associated with shorter overall and recurrence-free survival in the multivariate model 
(p=0.03 OS, 0.023 RFS Figure 7 f, S 14b). Interestingly, vimentin+ fibroblast abundance alone 
was not prognostic, although neighborhood abundance was correlated with fibroblast abundance 
(S 15). Finally, similar to other groups 34, we found that directly clustering the neighborhood counts 
using Kmeans (rather than running LDA and clustering the topics) did not result in robust 
neighborhood clustering, as judged by the inconsistency of prognostic value of neighborhoods 
defined in this manner (S 16). 
 
In ER+ breast cancer, we identified similar neighborhoods within CyCIF and IMC cohorts that 
matched the spatial distribution of markers in the images (S 13b-e). Patients with more mixed 
fibroblast neighborhoods around tumor cells trended towards shorter overall survival in both 
cohorts and a multivariate CPH model (S 14c). Quiescent stroma neighborhoods showed 
association with longer recurrence-free survival in both cohorts, but this did not remain significant 
in the multivariate model (S 14d).  

Tumor phenotypes correlate with stromal cell abundance and spatial neighborhoods 

We hypothesized that there would be significant correlation between tumor cell types and the 
surrounding stromal cell neighborhoods, correlations that could shed light on biologically and 
clinically relevant tumor-stroma crosstalk. First, we visualized a matrix of pairwise correlation 
between epithelial and stromal cell fractions and spatial LDA neighborhoods across subtypes (S 
15a, c). Epithelial cell types were inversely correlated with each other, indicating most tumors had 
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just one main epithelial cell type (S 15a, c). The exception was luminal tumor, which correlated 
with cytokeratin low tumor in ER+ breast cancer, indicating mixing of these phenotypes within 
the same tissues (S 15c). This conclusion is supported by our hierarchical clustering, which 
revealed luminal tumor as the main epithelial cell type likely to be found mixing with other 
phenotypes in the same tissue (Figure 4 a). 
 
Immune cells exhibited distinct tissue-level correlations in the different subtypes. In TNBC, T 
cells correlated with proliferating tumor, and macrophages correlated with CD4 T cells (S 15a). In 
ER+ breast cancer, T cells correlated with B cells while proliferating tumor, macrophages and 
endothelial cells were correlated with each other but not T cells (S 15c). Vimentin+, FN+, and 
ColI+ fibroblasts, as well as quiescent stroma were inversely correlated with immune cells (S 15a, 
c). In both subtypes, spatial LDA neighborhoods correlated strongly with the abundance of their 
respective enriched cell types; however, neighborhoods showed unique correlations to other cell 
types present. For example, proliferating and luminal ER+ tumor cell abundances did not correlate 
with total T cell abundance in ER+ breast cancer, but they did correlate with the fraction of T cell 
neighborhoods (S 15c). In TNBC, vimentin+ and fibronectin+ fibroblast abundances were not 
correlated, but their respective neighborhoods were inversely correlated, suggesting tissue 
exclusivity for a single fibroblast phenotype near tumor cells (S 15a, b). Therefore, although spatial 
neighborhoods tend to correlate with cell abundance, they do reveal unique features of tumor-
stromal organization in tissues.  
 

DISCUSSION 

Our approach of combined analysis across multiple platforms shows the power of our methods for 
biomarker discovery. We were able to incorporate analysis of two publicly available imaging 
datasets with our own CyCIF data for efficient discovery of robust biomarkers.       
 
We utilized our optimized method for CyCIF19 to generate multiplex imaging data of 42 markers 
in a single tissue section from two TMAs with clinical follow-up. Our dataset alone represents a 
valuable new clinical cohort that provides improved plex, resolution, and ROI size compared to 
previously published datasets15,17. Using our image processing and analysis pipeline, we generated 
single cell phenotyping data from our CyCIF dataset and two publicly available datasets15,17. The 
advantage of using mplexable for image processing and feature extraction is the ability to match 
nuclear and cell segmentation results from separate deep-learning segmentation models and extract 
features from subcellular compartments such as the nucleus and cytoplasm (S 1b). We found that 
cell type fractions across cohorts from the same breast cancer subtype were highly correlated 
across platforms.  
 
Since we were able to identify similar epithelial phenotypes across platforms, we combined patient 
data from all platforms and identified eight epithelial subtypes through hierarchical clustering. Our 
subtypes were similar to the intrinsic breast cancer subtypes37, including a luminal ER+ luminal 
A-like group with good prognosis, a cytokeratin low group previously shown to share features 
with luminal B tumors16, and a HER2 enriched group. Triple-negative breast cancers also fell into 
categories similar to those defined by gene expression profiling32, including a highly proliferative, 
basal-like 1 (BL1)-like group, a luminal androgen receptor (LAR)-like group with luminal 
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differentiation states, and subtypes of basal/myoepithelial phenotype reminiscent of the basal-like 
2 (BL2) group. Our proliferative subtype was correlated with immune infiltrate, which was in turn 
correlated with better prognosis, supporting a link between our proliferative subtype and the good-
prognosis proliferative BL1 subtype38. We also identified a heterogeneous subtype with low 
cytokeratin and elevated CD44 expression that may represent tumors with mesenchymal features. 
The ER+ tumors in this subtype had significantly worse prognosis, and subsequent analysis 
showed increased angiogenesis in these tissues. An EMT-program in breast cancer cells is linked 
to increased vascular endothelial growth factor A expression, increasing angiogenesis and the 
capacity for tumor initiation41, a mechanism that could explain these correlated tumor and stromal 
phenotypes and their association with poor outcome.  
 
Tumor infiltrating lymphocytes have been linked to good prognosis in TNBC42, and we confirmed 
that T cells are an independent prognostic factor in TNBC in the multiplex imaging datasets 
analyzed herein. Furthermore, we showed that CD3 T cells were independently prognostic 
specifically in high-proliferation ER+ and TNBC.  
 
Previous gene expression profiling studies linked anti-tumor immunity and proliferation. Nagalla 
et al. found that immune signatures were prognostic solely in breast cancer patients with the 
highest proliferation gene expression43. Subsequently, the same group showed that immune gene 
signatures were prognostic in highly proliferative basal-like, HER2-enriched and luminal B 
subtypes, but not those with low proliferation44. In luminal A and claudin-low subtypes, immune 
gene signatures were not prognostic, regardless of proliferation44. Similarly, in our analysis, CD3 
T cell infiltration was not independently prognostic in low-proliferation ER+ and TNBC (S 9 i, j).  
 
Our analysis of immune functional states showed increased T cell proliferation, activation and 
checkpoint molecules and epithelial antigen presentation in high-proliferation tumors, consistent 
with IFNγ pathway activation. Consistent with our analysis, gene network analysis previously 
showed activation of TNFα/IFNγ signaling pathways in tumors with productive anti-tumor 
immunity and TGF-β, an immunosuppressive cytokine, in tumors with unproductive anti-tumor 
immunity44. TGF-β also has anti-proliferative effects and is associated with good outcome in ER+ 
breast cancer cohorts45, suggesting that it could mechanistically link lower proliferation rates with 
immunosuppression.  
 
More recently, the group mentioned above showed that immune gene signatures were prognostic 
exclusively in tumor-mutation burden (TMB)-high breast cancer tumors46. Thirty-seven percent of 
basal-like tumors had high TMB, while only 11.5% of luminal A tumors did46, explaining the poor 
immunogenicity of the latter subtype. Together, these data point to a model of high TMB 
correlating with high-proliferation and both linked to productive anti-tumor immunity. It had been 
hypothesized that oncogenes driving sustained proliferation also induce DNA replication stress, 
which generates genomic instability and would increase TMB47. In summary, TMB would 
hypothetically provide a mechanistic link between proliferation and anti-tumor immunity and 
should be investigated in future studies. 
 
Interestingly, high proliferation ER+ tumors showed no significant difference in CD3 T cell 
infiltration, or checkpoint marker intensity, but a significant increase in the number of T cell 
neighbors of each T cell, suggesting that spatial metrics could serve as improved biomarkers over 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.31.525753doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.525753
http://creativecommons.org/licenses/by-nd/4.0/


cell abundance alone. Herein, our investigation of spatial biomarkers yielded mixed results. For 
example, T cell aggregates predicted survival in TNBC but so did T cell abundance. Several 
biomarkers gave conflicting results in different cohorts (S 11). We also showed significant 
correlation between many spatial metrics and cell abundance, but the Ripley’s L and Kcross 
functions did not suffer from that limitation (S 12). 
 
Using the Kcross function we identified tissues with significant compartmentalization versus 
mixing of macrophages and tumor, with the latter phenotype associated with shorter RFS in ER+ 
breast cancer. Tumor associated macrophages (TAMs)48 and TAMs specifically in the tumor core49 
have been associated with shorter overall survival independent of breast cancer subtype, but the 
prognostic value of macrophages specifically in ER+ patients was not established in these studies. 
Similarly, studies evaluating macrophages in the tumor stroma (TS) versus tumor nest (TN) found 
CD6850 and CD163 positive macrophages51 in the TS but not TN independently predicted shorter 
survival. This is the opposite of our findings which suggest tumor-nest macrophages (which would 
presumably have higher Kcross) are associated with survival; however, the prior mentioned studies 
did not specifically analyze ER+ breast cancer patients separately and did not quantify the degree 
of TN versus TS localization (i.e. what Kcross does) but rather analyzed them separately. Our 
finding should be further investigated in future cohorts, and the specific prognostic value of 
macrophage-tumor spatial correlation in ER+ breast cancer determined.  
 
We utilized spatial LDA modelling to analyze multicellular neighborhoods of stromal cells 
surrounding tumor cells. In addition to T cell neighborhoods predicting good prognosis in TNBC 
as expected, we identified a neighborhood enriched for vimentin+ fibroblasts (VIM+ FB) that was 
independently associated with shorter survival in TNBC. Given the high levels of vimentin and 
low levels of alpha-SMA, these cells may be an inflammatory phenotype similar to CAFs that 
differentiate under TNFα + IL-1β stimulation52. Interestingly, TNFα + IL-1β have been shown to 
stimulate pro-metastatic chemokine expression (CXCL8, CCL2 and CCL5) and aggressive 
characteristics in TNBC cell lines, mediated in part by direct CAF-tumor cell contact in co-
cultures53, consistent with close proximity between CAFs and tumor in cellular neighborhoods.  
   
The limitations of our study include different antibody probes and imaging systems resulting in 
different signal-to-background ratios for biomarkers across platforms. Therefore, we relied on 
matching hand-annotated clusters across platforms for our integrated analysis. Since our 
annotations may not correspond to the same cell types in each platform, this introduces uncertainty. 
Some well-defined phenotypes, such as T cells and proliferating tumor, are relatively 
straightforward. However, variable performance of antibodies, such as anti-ER, for example, could 
lead to variability in the classification of phenotypes such as luminal ER+ versus luminal tumor 
across platforms. To correct for platform-specific bias in cell types, we binarized patients into 
high/low expression within each subtype and platform. However, such binarization may not reflect 
underlying heterogeneity in quantitative biomarker abundance.  
 
Another limitation of our study is the use of 1-2 TMA cores per patient for analysis. It has been 
shown that a limited number of TMA cores (≤3) are needed to binarize patients in to high and low 
TILs, although a larger number of cores (≥11) are needed to accurately estimate the mean TIL 
abundance54,55. Our survival analysis relied on binarizing patients; therefore, the use of TMAs may 
be appropriate in this context. Lacking large tissue sections, we had no way to quantify sensitivity 
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of spatial metrics to sampling bias introduced by analyzing small ROIs, but our discovery that a 
number of spatial metrics showed opposite survival associations in different cohorts suggests 
caution when interpreting spatial biomarker results (S 11). Analysis of multiple cohorts should help 
identify robust spatial biomarkers. The optimal tissue area for various composition and spatial 
analytics remains an open and important question in the field.     
 
Overall, our spatial analysis supports the utility of spatial information in uncovering novel 
biomarkers of patient outcome in breast cancer. The tools developed in this study can be utilized 
to analyze additional cohorts for further characterization of biomarkers in breast cancer and other 
tumor types.   
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FIGURES 

 
Figure 1. Breast cancer multiplex imaging datasets from different platforms. 

a. We generated CyCIF data from two breast cancer TMAs and obtained publicly available IMC and MIBI data from 
three additional breast cancer TMAs. b. The antibody panels from the three datasets included markers for cytokeratins, 
adhesion molecules, hormone receptors, receptor tyrosine kinase (RTK) signaling, cell growth and division, 
endothelial, immune and stromal cells. CyCIF scale = 130 um, IMC scale = 100 um, MIBI scale = 96 um. 
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Figure 2. Unsupervised clustering defines cell types in CyCIF and IMC breast cancer 

datasets. 
a. Heatmap of mean fluorescence intensity of each marker in CyCIF cell type clusters. Twenty-two markers and one 
morphology feature (nuclear area) were used for clustering. Clusters were annotated by lineage: endothelial, epithelial, 
fibroblast, immune or stromal (left color bar on heatmap) and named based on marker expression (right labels on 
heatmap). b. The number of cells of each cluster in the CyCIF dataset. c. Heatmap of mean fluorescence intensity of 
each marker in IMC cell type clusters with same annotation schema as (a). d. The number of cells of each cluster in 
the IMC dataset. 
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Figure 3. Concordance in abundance of cell types in breast cancer tissues across 

imaging platforms. 
a. Representative images from the three multiplex imaging platforms showing epithelial (orange), immune (red) and 
fibroblast (green) markers. b. Gated cell types showing cell location and lineages: epithelial (orange), immune (red), 
fibroblast (green), endothelial (blue) and stromal (purple). c. Gated cell lineage totals per subtype (ER+, HER2+ and 
TNBC), per platform (IMC, CyCIF and MIBI). d. Cell type cluster lineage per subtype, per platform. c-d. Pearson’s 
correlation between platforms shown in figure title (r=0.xx) e. Number of cells analyzed (top) and number of patients 
(bottom), colored by subtype, per platform.     
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Figure 4. Prognostic breast cancer subtypes in integrated multiplex imaging data. 

a. All ER+ and TNBC patients were hierarchically clustered based on the fraction in each patient’s tissue of the seven 
most common epithelial cell types. This resulted in eight epithelial (Epithel.) subtypes. b. Representative CyCIF 
images of subtype 2 luminal ER+ tumor (top) and subtype 1 cytokeratin-low tumor (CK low, bottom). c. Kaplan-
Meier curves (p-value from log-rank test) and Cox proportional hazard (CPH) models comparing overall survival 
(OS) in the seven epithelial subtypes present in ER+ tumors. c-d. N number of patients given in figure titles. E. 
Representative IMC image of poor prognosis ER+ tumor. Scale bar = 50 m. f. Fraction of endothelial cells in tissue 
stromal cells of each epithelial subtype. Kruskal-Wallis H-test P-value given in figure title. Post-hoc Tukey HSD used 
for pairwise comparisons between groups. g. CD44 intensity in epithelial cells from poor prognosis epithelial subtype 
6 compared to other ER+ patients in the IMC cohort. P-value from Mann-Whitney U rank test given in figure title.    
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Figure 5. T cell infiltrate has prognostic value in TN and high proliferation ER+ breast 

cancer.  
a. CyCIF images of T cell high and low TNBC tissues. b. Kaplan-Meier analysis of abundance of CD3 T cells versus 
OS in TNBC (high = above the median) c. Multivariate CPH modeling adding patient age, tumor size and stage to 
CD3 T cell high variable defined in (b). d. Kaplan-Meier analysis of abundance of CD3 T cell versus OS in all ER+ 
patients (top) and ER+ patients with high (above the median) tumor proliferation (bottom). b-d. All Kaplan-Meier p-
values obtained from the log-rank test and multiple testing corrected with Holm-Šídák method; cutoff quantile for 
high/low indicated in figure, e.g. 0.5 indicates the median was used to binarize patients. CPH modelling p-values for 
cell type variable given in figure titles. n number of patients given in figure titles. e. Images of functional state of T 
cells in ER+ (top) and TNBC tumor (bottom). f. Mean number of T cell neighbors (within 25 m) of T cells in tissues 
from high and low proliferation ER+ or TNBC tumors in IMC cohort. g. Ki67 intensity indicating proliferation levels 
of T cells in tissues from high and low proliferation ER+ or TNBC tumors in IMC cohort. h. CD44 intensity in T cells, 
indicating memory/effector phenotypes in IMC tissues. f-h. Kruskal-Wallis H-test P-value given in figure title. Post-
hoc Tukey HSD used for pairwise comparisons between groups. 
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Figure 6. Prognostic tumor-immune spatial correlations in breast cancer cohorts 

a. Spatial aggregates in CyCIF data on a TNBC tissue. Gray values indicate cells in areas of tissue with no aggregates. 
b. Overall survival Kaplan-Meier analysis of TNBC patients with high versus low CD3T cell spatial aggregates in 
CyCIF (left) and IMC (right) cohorts. c. Multivariate CPH modeling of TNBC patient survival adding patient age, 
tumor size and stage to CD3 T cell spatial aggregate variable defined in (b). d. Examples of tissues with low (left) and 
high (right) tumor-to-macrophage Kcross functions. Scatterplots show spatial locations of tumor (purple) and 
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macrophages (orange) in tissue, relative to all cells (gray). Line plots show theoretical Kcross function values at 
increasing distance (orange) versus observed values in blue. e. Recurrence-free survival Kaplan-Meier analysis of 
high versus low tumor-to-macrophage Kcross values at a 50 μm radius in ER+ patients for CycIF (left) and IMC 
cohorts (right). f. Multivariate CPH modeling of ER+ patient survival with clinical variables and Kcross variable 
defined in (e.). g-h. Overall survival Kaplan-Meier analysis and CPH modelling of number of macrophage neighbors 
in a 25 μm radius of proliferating tumor in TNBC cohorts. i-j. Recurrence-free survival Kaplan-Meier analysis and 
CPH modelling of number of epithelial neighbors in a 25 μm radius of other epithelial cells in ER+ cohorts. k. Overall 
survival Kaplan-Meier analysis of TNBC patients with high versus low tumor-immune mixing score in MIBI (top), 
CyCIF (middle) and IMC cohorts (bottom). b-k. All Kaplan-Meier p-values obtained from the log-rank test, n given 
in figure titles, cutoff quantile for high/low indicated in figure, e.g. 0.5 indicates the median was used to binarize 
patients. CPH modelling p-values for spatial variable given in figure titles, n number of patients given in figure titles.  
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Figure 7. Multicellular neighborhoods surrounding tumor cells in TNBC.  

a. Heatmap of stromal cell enrichment in spatial latent Dirichlet allocation (LDA) topic models of 100 μm tumor 
neighborhoods. b. Heatmap of fraction of each topic in each neighborhood cluster resulting from K-means clustering 
(k=8) of spatial LDA topics from (a). c. CyCIF staining of tissue showing tumor (panCK), T cell (CD4 and CD8) 
fibroblast (vimentin), macrophage (CD68) and endothelial (CD31) markers. d. Tissue from (c) with tumor cells 
colored by their spatial LDA neighborhood cluster from (b). Tumor cells colored by T cell- (blue), macrophage- 
(purple), mixed fibroblast- (brown) and vimentin+ fibroblast-neighborhoods (green). e. Kaplan-Meier analysis of 
overall survival versus high or low T cell (left) and vimentin+ fibroblast neighborhoods in TNBC tissues (right). p-
values obtained from the log-rank test; n given in figure titles. Cutoff quantile for high/low indicated in figure, e.g., 
0.33 indicates the lower tertile was used to binarize patients. f. CPH modelling of overall survival with clinical 
variables plus spatial LDA neighborhoods from (e). p-values and n number of patients given in figure title. 
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