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Maintaining mitochondria in beige adipose tissue
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ABSTRACT
Individual cell types vary enormously in the amount of different organelles they contain. One such
organelle is the mitochondrion. Understanding how mitochondrial levels are controlled is essen-
tial since so many disease states seem to involve mitochondrial function. The beige adipocyte is
an inducible form of adipocyte that emerges in response to cold exposure and some other
external stimuli. To perform its thermogenic function, its level of mitochondria increases drama-
tically. If the stimuli are removed the mitochondrial levels return to base line. Following the
withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype
through mitophagy-mediated mitochondrial degradation. The beige cell is therefore a dynamic
model for studying the mechanism of mitochondrial biogenesis and degradation.
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A dynamic model of mitochondrial biogenesis
and degradation

Mitochondria misregulation occurs in human diseases,
such as obesity, diabetes and cancer.1 The beige cell is
a type of cold-inducible, mitochondrian-rich adipocyte
and appears in the white adipose tissue (WAT).2 Adult
human do not have interscapular brown adipose tissue
(BAT), but showed brown-adipose-tissue activity in the
supraclavicular region by static positron emission
tomography of 18F-fluorodeoxyglucose in combination
with computed tomography (18F-FDG PET-CT).3,4 The
BAT activity is significantly related with cold-challenge,
body mass index and age, which are actually beige
adipocytes.5,6 It can be distinguished from the classical
interscapular brown adipose tissue (iBAT). Classical
brown adipocytes develop prenatally from a Myf5,
Pax7, Engrailed-1 positive progenitor population.7–9

Beige adipocytes postnatally develop from PDGFα/β,
Ebf2, Sca-1, SMA positive progenitor population.10-13

Mitochondria biogenesis in white adipose tissue (WAT)
can be activated by cold or β3 adrenergic agonist
(β3-AR).14 In the past decade, research interests were
intensely focused on the transcriptional control of those
mitochondrial-rich adipocyte. Transcription factors
PRDM16, PGC-1α, et al, switch on beige adipose spe-
cific gene transcription and protein expression, thus
promote mitochondria biogenesis in WAT.15,16

Recently, a new type of glycolytic beige adipocyte is
found from β-adrenergic receptor less mouse under

chronic cold adaptation, in which presented enhanced
glucose oxidation.17 The thermal stress induced pro-
genitor cell plasticity in adipose tissue is still on the
beginning of its discoveries.

Adipose tissue is able to sense environmental tem-
perature and secretary factors.18 Growth factors are
regulating fat storage and fatty acid transport. Beige
cell can be induced by inhibiting several cellular growth
factors signaling pathways such as those controlled by
VEGF-A, VEGF-B, PDGFRα and TGFβ pathway.19-21

Exercise training results in adaptations of mitochondria
biogenesis in both skeletal muscle and subcutaneous
adipose.22-24 At the epigenetic level, methylation or
acetylation enzymes are important in sensing and reg-
ulating the differentiation of beige cell. For example,
EHMT1 controls brown adipose cell fate and thermo-
genesis through the PRDM16 complex. Beige cell can
be induced by the external β3-AR agonist CL316,243 in
WAT of wild type mice, but not in the adipose specific
EMHT1 knockout mice.25 The Sirtuin family is a class
of stress responsive protein deacetylase and mono-ADP
ribosyltransferase enzymes. The Chang lab has discov-
ered that Sirt1 is playing a major role in high-fat-diet
induced liver metabolic damage.26 Cold-inducible Sirt6
regulates thermogenesis in both brown and beige fat.27

Beige-to-white transition

The balance between energy-storage and energy-
expenditure is always a systematic regulation process.
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When normal conditions are restored, the enriched
mitochondria in beige cells disappear. After withdrawal
of cold or β3-AR agonist stimuli, there always follows
mitochondria degradation and the beige-to-white tran-
sition in WAT.28 The mitochondria uncoupling protein
UCP1 and the oxidative phosphorylation complex
OXPHOS are specific markers of mitochondria forma-
tion during the transition to beige adipocytes. As the
Kajimura lab reported recently, the expression of mito-
chondria marker UCP1 and OXPHOS were both
rapidly decreased in the beige adipocyte after with-
drawing stimuli.29 During beige-to-white adipocyte
transition, gene-annotation enrichment analysis found
that the majority of the cluster I gene was related to
mitochondria in cellular components, the electron
transport chain and oxidation reduction related biolo-
gical process.14 Thus, the phenotype of mitochondria
degradation right after withdrawal of stimuli is well
established in mouse inguinal adipose tissue.

The mitochondrial uncoupling protein UCP1 is an
important marker for brown adipose tissue as well as
beige adipose, and has been linked to thermogenesis.
However beige fat thermogenesis is UCP1 dispensable.
A recent study has discovered UCP1-independent ther-
mogenesis pathways specifically in beige adipose.
SERCA2b-mediated calcium cycling regulates UCP1-
independent thermogenesis.29 Enhanced Ca2+ cycling
by activation of α1 – and/or β3-adrenergic receptors or
the SERCA2b-RyR2 pathway stimulates UCP1-
independent thermogenesis in beige adipocytes. The
beige adipocytes of UCP1 deficient mice presented
enhanced glycolysis, tricarboxylic acid metabolism and
pyruvate dehydrogenase activity for ATP-dependent
thermogenesis. In UCP1 knockout mice, beige cell can
be highly induced by β3-AR agonist CL316,243, as well
as mitochondrial degradation directly acquired after
stimuli withdraw.28 The oxygen consumption rate
(OCR) of WAT decreased to wild type OCR level
after 15 days, which presented a UCP1-independent
manner in the beige-to-white transition. Thus, beige
cell biogenesis and degradation of mitochondria is
UCP1-independent.

The majority of studies about mitochondrial
integrity are in mice for which the role of housing
temperature in determining the relevance of any
outcomes should be considered. To remove the tem-
perature induced differences, a comparison in ambi-
ent temperature and in thermoneutrality (30°C)
could be set up respectively for the animal study
of mitochondria clearance in beige adipose tissue.28

Mitophagy controls mitochondrial quantity and
quality

Mitophagy is the degradation of mitochondria by
autophagy.30 To maintain the integrity and function
of cells, it is important to eliminate damaged and
aged mitochondria.31-33 During the beige-to-white
transition, mitochondria are degraded in the adipose
tissue by activation of autophagy.14 Transcriptional
regulators of mitochondrial biogenesis Pgc-1α, Nrf1/2,
Tfam, et al. directly decrease in the early phase of beige-
to-white transition.34-36 Changes in the autophagy and
lysosome pathways were highly relevant in the gene
enrichment analysis. Based on some sets of gene profil-
ing data, autophagy related genes Atg5, Atg4b, Atg12,
Atg16 were increased in the transition process.37-40 In
others, autophagy related components and lysosomal
enzyme related genes Cts, Arsg, Naga were also highly
increased during the transition.41-43 The microtubule-
associated protein 1A/1B-light chain 3 (LC3) is known
to form a stable association with the membrane of
autophagosomes.44,45 When GFP-LC3 mice are
employed in the experiments, GFP-LC3 and mitochon-
dria marker Tom20 co-localization indicates autopha-
gosome formation. After 7 days of CL316,243 treatment
to induce the beige phenotype, the number of GFP-LC3
punctate was significantly decreased in the beige adi-
pose. 15 days after stopping the treatment, the autop-
hagic flux was back to a natural level. LC3-II protein
expression was consistent with the co-localization
result. The degradation of LC3-II has indicated that
autophagy/ mitophagy process is attenuated by external
β3-AR stimuli in beige cell.

Mitophagy plays a major role in beige cell mitochon-
dria clearance. In a recent study, we employed the genetic
model of mt-Keima mouse, which specifically expresses
Keima protein in the mitochondria.29 The coral derived
fluorescent protein Keima senses environmental pH
value, giving green fluorescence in a regular cellular
environment.46,47 In mitophagy, when the lysosome
structure is formed and an acidic environment is gener-
ated, Keima protein gives a red fluorescence. The red to
green fluorescence signal ratio can be precisely quantified
by flow cytometry. The mt-Keima mouse presented
a high level mitophagy-red/green ratio in white adipose
tissue. After injecting mice for 7 days with the β3-AR
agonist CL316,243 beige adipocyte biogenesis and atte-
nuated mitophagy were induced in the inguinal adipose
tissue and the red/green ratio shifted back to normal.
After withdraw of the stimuli, the mitophagy signal gra-
dually increases and recovers to regular level in 15–-
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30 days. Thus using the mt-Keima mouse to measure the
adipose tissue mitophagy stage or level reveals that the
external β3-AR stimuli also induces beige cell biogenesis
by attenuating the high levels of mitophagy that occur in
normal WAT. Recently, Shirihai lab demonstrated that
peridroplet mitochondria have higher pyruvate oxidation
and ATP synthesis capacity, with unique structure and
function that supports triacylglyceride synthesis.48 It
opens up a new area in mitochondria biology.
Meanwhile, the mitophagy levels between peridroplet
mitochondria and cytoplasmic mitochondria in different
environmental or physiological conditions could be char-
acterized by the mt-Keima model.

PINK-Parkin signaling is the key regulator of mito-
chondrial degradation.49 Loss of mitochondrial mem-
brane potential (depolarization) leads to PTEN-induced
putative kinase 1 (PINK1) accumulation on the mito-
chondrial outer membrane.50 PINK1 recruits Parkin, an
E3 ubiquitin-protein ligase, which ubiquitinates pro-
teins on the outer mitochondrial membrane and starts
the autophagic degradation of dysfunctional mitochon-
dria. At a cellular level, PINK1-Parkin mediated mito-
phagy can be visualized by FCCP or CCCP treatment in
the Parkin over-expressed model.51 CCCP is able to
induce Parkin translocation to the mitochondria in
mature beige adipocytes.28 Accumulation of damaged
mitochondria has been linked to Parkinson’s disease,
Alzheimer’s disease, diabetes and age-related disorders,
but the mechanism of accumulated mitochondria clear-
ance in adipose tissue is still not clear.52-55 In a study of
Drosophila, Parkin mutant flies significantly decreased
the rate of mitochondrial protein turnover.56 In the
mouse adipose beige-to-white transition, Parkin also
mediates the mitochondria clearance. After external
β3-AR stimuli, beige cells can be induced in both wild
type mice and Parkin deficient mice.28 15 days after
withdrawing the stimuli, beige cells disappeared in the
wild type mouse, but still existed in the WAT of Parkin
deficient mouse. When the oxygen consumption rate
(OCR) was measured by Seahorse method the Parkin
deficient mouse sustained a significant high level OCR
than the wild type mouse in both basal and isoproter-
enol stimulated condition, which indicates that Parkin-
dependent mitophagy is the key mechanism in beige
cell mitochondrial clearance.

Control mitochondrial clearance by
phosphorylating parkin

Parkin-mediated mitophagy plays a major role in beige
cell mitochondrial clearance. In the CCCP induced-

mitophagy beige cell model, Parkin translocation can
directly be visualized. Norepinephrine can stimulate the
cAMP signaling through β3-AR, activating PKA phos-
phorylation which phosphorylates downstream
proteins.6 Parkin translocation can be attenuated by
pre-treatment of norepinephrine stimulated β3-AR sig-
naling, presumably inhibiting mitophagy.28 Pre-
treatment with PKA inhibitors prevents the attenuated
translocation when Parkin phosphorylation is prevent-
ing mitochondria degradation. In immunoprecipitation
assay, norepinephrine induces Parkin phosphorylation
which can also be blocked by the PKA inhibitors. The
results suggest that Parkin recruitment into the mito-
chondria can be regulated by PKA signaling (Figure 1).

Recently, the Daumke and Wang labs have indepen-
dently discovered that the structural plasticity of mito-
chondrial crista junctions is controlled by MIC60/
Mitofilin.57,58 PINK1 phosphorylates inner mitochon-
drial membrane protein MIC60, which stabilizes
MIC60 oligomerization. An earlier research was also
focused on this pathway and found that PKA activation
reduces PINK1 protein levels through phosphorylation
of MIC60 and prevents the recruitment of Parkin to the
mitochondria.59 Nevertheless, the function of MIC60/
Mitofilin in beige cell mitochondria clearance is still
unclear. Temporal inhibition of the MIC60-Parkin axis
in the adipose tissue could be a novel approach to
retain thermogenic beige adipocytes.

Figure 1. Parkin Phosphorylation attenuats mitophagy.
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Conclusions

A powerful tool to understand how mitochondrial
levels are controlled is the beige adipocyte, an inducible
regulator of thermogenesis. In the white to beige tran-
sition, mitochondrial levels are increased. In the beige
to white transition, they are lowered. In both cases, the
change in mitochondrial level is due to both expression
of mitochondrial genes and the control of mitophagy.
The uncoupling marker UCP1 does not play an impor-
tant role in this regulation. Using single cell measure-
ments of RNA levels, a complete description of the
control of mitochondrial levels in adipocytes should
soon be available. Such data should provide insights
into how mitochondrial levels are regulated and into
metabolism associated human diseases.
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