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Abstract: ABO blood system is an inborn trait determined by the ABO gene. The genetic-phenotypic
mechanism underneath the four mutually exclusive and collectively exhaustive types of O, A, B and
AB could theoretically be elucidated. However, genetic polymorphisms in the human populations
render the link elusive, and importantly, past studies using genetically determined rather than
biochemically determined ABO types were not and could not be evaluated for the inference errors.
Upon both blood-typing and genotyping a cohort of 1008 people of the Han Chinese population, we
conducted a genome-wide association study in parallel with both binomial and multinomial log-linear
models. Significant genetic variants are all mapped to the ABO gene, and are quantitatively evaluated
for binary and multi-class classification performances. Three single nucleotide polymorphisms of
rs8176719, rs635634 and rs7030248 would together be sufficient to establish a multinomial predictive
model that achieves high accuracy (0.98) and F1 scores (micro 0.99 and macro 0.97). Using the set of
identified ABO-associated genetic variants as instrumental variables, we demonstrate the application
in causal analysis by Mendelian randomization (MR) studies on blood pressures (one-sample MR)
and severe COVID-19 with respiratory failure (two-sample MR).

Keywords: ABO blood types; genome-wide association study; mendelian randomization; Chinese
cohort

1. Introduction

Discovered earliest in 1901 by Karl Landsteiner, the ABO system classifies human
blood into exclusive types of O, A, B and AB based on the presence or absence of specific A
and B antigens on the surface of red blood cells [1]. The key determinant, the ABO gene,
consists of seven exons located on chromosome 9q34.2 and encodes a glycosyltransferase
that catalyzes the transfer of carbohydrates to the H antigen to form the antigenic structures
of the ABO blood groups [2]. The amino acid sequences encoded by the A and B alleles of
the ABO gene differ minimally, and they catalyze the transfer of different carbohydrates (N-
acetyl-galactosamine or galactose) to form the A or B antigen, respectively; in comparison,
the ABO gene in individuals with blood type O does not produce A or B antigens due to a
single-base nonsense deletion [3]. The ABO gene displays a substantial spectrum of single
nucleotide polymorphisms (SNPs): over 100 unique alleles have been curated for the ABO
gene in the Leiden Open Variation Database [4]. While biochemical assessment of ABO
blood types is a routine procedure in healthcare laboratories, it was rarely conducted in
scientific research on humans for which ABO blood types are commonly genetically inferred
from pre-defined SNP allele combinations [5]. For example, UK Biobank did not determine
ABO blood types of the blood samples from cohort participants, and consequently, all
studies using UK Biobank data must genetically determine the ABO blood types [5].
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However, the errors introduced by the genetic inferences instead of the golden standard of
biochemical blood-typing were rarely evaluated, and could be significant given the large
sizes of cohorts.

The ABO gene is expressed not only in red blood cells but also in body fluids and
tissues surfaces (including epithelial cells, sensory neurons, endothelial cells, kidney, heart,
pancreas, platelets and lungs), suggesting the extension of the ABO system in clinical
importance beyond immunohematology and transfusion/transplantation medicine [6,7].
The Pancreatic Cancer Cohort Consortium (PanScan) reported that the most significant
variants associated with pancreatic cancer risk were mapped to the ABO locus [8]. A genetic
variant of rs579459 in ABO was associated with the risk of coronary artery disease [9].
Notably, COVID-19 is a novel type of coronavirus first appearing in late 2019 and causing
an ongoing global pandemic that has led to over 107 million cases and 2.3 million deaths
by February 2021 [10], ranking the COVID-19-related pneumonia as one of the most
devastating infectious diseases in the history of public health [11]. Several observational
studies discovered a preliminary association between ABO blood types and COVID-19
susceptibility [12–14]. Interestingly, in the first GWAS on COVID-19 carried out in a
European cohort (Italian and Spanish), one of the two genome-wide significant SNP hits is
rs657152 at the ABO gene (the other is rs11385942 at the LZTFL1 gene) [15]. The underlying
mechanism between ABO blood types and COVID-19 susceptibility remains absent, and it
is still highly debated if such association could be causal.

Genome-wide association study (GWAS) is a high-throughput method sequencing
genomic variants and mapping SNPs associated with the phenotype-of-interest [16]. Hit
SNPs could be influenced by the genetic background of the population so the GWAS-
revealed ABO-disease link may even be population or ethnicity specific [17,18]. In addition,
the world has long been disproportionally represented in population diversity with regard
to GWAS cohorts, limiting the scientific applicability of the relevant discoveries [19,20].
In this study, we aim to in parallel blood-type and genotype a cohort, and thus be able
to conduct a GWAS using ABO blood types as the phenotype-of-interest. In addition,
we focus on the selection of a Han Chinese cohort to identify the set of genetic variants
that could be applied for the accurate genetic determination of ABO blood types in the
most populous ethnicity on earth. Finally, we demonstrate the application of selecting
ABO-associated SNPs as instrument variables in Mendelian randomization (MR) studies
for causal inference between the exposure (ABO blood types) and the outcomes (traits or
diseases of interest). The results and discoveries not only elucidate the genetic link behind
the ABO blood system, but also contribute to the understanding of the association of ABO
blood types with an increasing number of traits and diseases.

2. Materials and Methods
2.1. Study Design and Ethics

A group of healthy adult residents of the Han ethnicity in China were recruited as a
cohort based on multi-stage sampling from the China Multi-Ethnic Cohort (CMEC) [21].
For GWAS, traits or phenotypes in the participants were subjected to association analysis
with genomic polymorphisms.

For this study, serological testing of the ABO blood system was conducted for each
individual by means of a routine blood test: 2 mL of blood sample were collected, trans-
ported cold back to a certified clinical laboratory within 24 h and assayed for agglutination
using antisera reagents to identify blood group antigens (ABO blood types as the outcome-
of-interest). In parallel, genotyping of single nucleotide polymorphisms (SNPs) was carried
out for each individual: 1–2 mL of saliva sample were collected, transported back to a
certified genetic laboratory within 24 h, subjected to genomic DNA purification and fi-
nally genotyped on a high-throughput multi-channel platform (Thermo Fisher Scientific,
Waltham, MA, USA) using Affymetrix Axiom Precision Medicine Array chips (genomic
SNPs as the predictors). Other related health and personal information of the participants
was collected on site through face-to-face surveys by trained staff (potential confounding



Genes 2021, 12, 959 3 of 13

factors as the covariates). The methods were carried out in accordance with the relevant
guidelines and regulations.

For one-sample MR analysis, individuals’ blood pressures (systolic and diastolic) were
measured by certified medical staff; for two-sample MR analysis, genomic associations
with COVID-19 phenotype were retrieved from published literature [15].

The study design and procedure were reviewed and approved by the Research Ethics
Committee at West China School of Public Health of Sichuan University. All participants
in the cohort were informed of the research design, and have signed the Informed Con-
sent Form. The phenotype and genetic data were subjected to anonymization for the
protection of personal privacy. In observance of the Regulatory Articles of Human Genetic
Resources of P.R. China, population-based summary statistics are reported for GWAS but
no individual’s raw genotypes were published.

2.2. Data Analysis

A dataset of 1008 individuals with their blood typing of ABO system, genotyping
of 733,907 SNPs and related personal information (sex, age, etc.) was assembled by the
completion of routine blood tests, lab genotyping experiments and on-site surveys. SNPs on
the autosomes were used in association analysis. The raw genetic dataset was pre-processed
for quality checks at both sample and SNP levels. For GWAS, two respective models were
fit: (1) binomial logistic regression model with the ABO blood types dichotomized into
a binary phenotype (e.g., O vs. non-O), and (2) multinomial log-linear model with the
ABO blood types treated as a quaternary phenotype (O, A, B, AB). For two-allele SNP
settings, the major allele was defined as the reference allele, and the minor allele was thus
selected as the effect allele. Locus genotypes were coded as the copies of minor allele,
accordingly assuming an additive effect. The top ten principal components (PCs) from
principal component analysis (PCA) on SNPs in linkage equilibrium were included in
modeling for the adjustment of any remaining genetic substructures. In accordance with
common GWAS practice, sex and age were included as covariates in modeling, but in the
case of ABO blood types, inclusion or omission of sex and age would not lead to significant
differences because the ABO blood types for individuals are determined from birth (do not
change as the age grows), and are inherited in an autosomal rather than sex-dependent
manner (no association with the sex). We include sex and age in the linear models as
covariates to match the general practice of published GWAS for many diseases or traits (for
which sex or age is actually associated with), but in parallel, we have conducted GWAS
analysis without adjusting sex and age, and the top hit SNPs remain the same (the no-sex-
and-age GWAS results are not included in this manuscript to avoid redundancy, but in case
they are useful, are available to other researchers by contacting Mengqiao Wang). With a
commonly used significance level of 0.05 adjusted by one million (the number of SNPs
assayed is 733,907), a conservative Bonferroni corrected threshold of 5 × 10−8 (−log10(p) of
7.3) was used exclusively for screening hit SNPs (see Supplemental Materials Tables S3–S9
for summary statistics). In binary scenarios of ABO blood types (Tables S3–S6), the selection
of SNPs for predictive modeling is an iterative process of (1) screening for strong OR with
significant p value, and (2) avoidance of linkage disequilibrium (r2 < 0.8). In these tables, #
suffix in SNP annotates the subset of hit variants selected and to be evaluated for binary
classification performances in Table 1. For example, rs529565 is the top ranked SNP for
O vs. non-O and selected for binary classification evaluation (thus annotated with the
suffix as rs529565#. With linkage analysis from Figure S5A, those hit variants with high
linkage (r2 ≥ 0.8) to rs529565 would not be selected for binary classification evaluation
(thus no # suffix: rs657152 with r2 = 0.94 to rs529565). Iterating the above analysis for
all hit SNPs leads to the selection of # suffix genetic variants to be evaluated (Table 1).
The inverse-variance-weighted (IVW) and weighted median methods were applied for
Mendelian randomization analysis.
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Table 1. Classification performance of selected SNPs in GWAS for binary ABO blood types.

SNP Accuracy Sensitivity Specificity PPV NPV F1 AUC

O vs. non-O
rs2039184 0.64 0.49 0.72 0.5 0.72 0.49 0.61

rs76321958 0.63 0.38 0.77 0.48 0.69 0.43 0.58
rs7864821 0.67 0.55 0.73 0.54 0.75 0.55 0.64
rs9919007 0.86 0.96 0.81 0.73 0.97 0.83 0.88
rs8176740 0.68 0.68 0.68 0.54 0.79 0.6 0.68
rs7853989 0.69 0.99 0.52 0.54 0.99 0.7 0.75
rs4962040 0.67 0.82 0.58 0.53 0.85 0.64 0.7
rs529565 0.98 0.97 0.99 0.98 0.98 0.97 0.98
rs630014 0.65 0.88 0.53 0.5 0.89 0.64 0.7
rs651007 0.75 0.99 0.61 0.59 0.99 0.74 0.8
rs7030248 0.58 0.64 0.55 0.44 0.73 0.52 0.59
rs1752337 0.66 0.69 0.65 0.52 0.79 0.6 0.67
rs493014 0.49 0.94 0.25 0.41 0.87 0.57 0.59

rs9411396 0.65 0.66 0.65 0.51 0.77 0.57 0.65
rs12763 0.59 0.58 0.6 0.45 0.72 0.51 0.59

rs3118662 0.72 0.43 0.88 0.67 0.73 0.52 0.66
full set 0.99 0.99 0.99 0.99 1 0.99 0.99

A vs. non-A
rs2039184 0.54 0.78 0.42 0.39 0.8 0.52 0.6
rs7864821 0.56 0.8 0.45 0.4 0.82 0.54 0.62
rs9919007 0.74 0.93 0.66 0.56 0.95 0.7 0.79
rs7857390 0.6 0.56 0.62 0.41 0.75 0.47 0.59
rs7853989 0.63 0.98 0.47 0.46 0.99 0.62 0.73
rs8176720 0.77 0.62 0.83 0.63 0.83 0.63 0.73
rs8176719 0.68 1 0.52 0.5 1 0.66 0.76
rs630014 0.6 0.47 0.66 0.4 0.73 0.43 0.57
rs635634 0.92 0.98 0.89 0.81 0.99 0.88 0.93
rs7030248 0.7 0.84 0.64 0.52 0.89 0.64 0.74
rs7025162 0.6 0.9 0.47 0.44 0.91 0.59 0.68

rs13289928 0.59 0.61 0.59 0.41 0.76 0.49 0.6
rs635634 +
rs8176719 0.99 0.97 0.99 0.99 0.99 0.98 0.98

full set 1 1 1 1 1 1 1
B vs. non-B
rs77843399 0.78 0.22 0.96 0.65 0.79 0.32 0.59
rs8176720 0.81 0.47 0.92 0.65 0.84 0.54 0.69
rs8176719 0.6 1 0.47 0.38 1 0.55 0.73
rs635634 0.63 0.99 0.51 0.4 0.99 0.57 0.75
rs7030248 0.74 0.95 0.67 0.48 0.98 0.64 0.81
rs7025162 0.69 0.58 0.73 0.41 0.84 0.48 0.65
rs493014 0.75 0.36 0.88 0.49 0.81 0.41 0.62
rs3118662 0.67 0.37 0.77 0.34 0.79 0.35 0.57

rs7030248 +
rs635634 0.85 0.95 0.82 0.63 0.98 0.76 0.88

full set 0.99 0.99 0.99 0.96 1 0.97 0.99
AB vs. non-AB

rs9919007 0.54 0.96 0.5 0.14 0.99 0.24 0.73
rs8176746 0.75 1 0.73 0.23 1 0.38 0.87
rs687289 0.91 0.99 0.9 0.44 1 0.61 0.94
rs8176681 0.63 0.9 0.6 0.16 0.99 0.27 0.75
rs507666 0.68 0.97 0.65 0.19 1 0.31 0.81
rs3118662 0.74 0.55 0.76 0.16 0.95 0.24 0.66

full set 0.91 0.99 0.9 0.46 1 0.62 0.94
Note: PPV/NPV—positive/negative predictive value; F1—F1 score; AUC—area under the ROC curve.

Statistical analysis and data visualization were conducted using version 4.0.0 of the R
statistical environment (R core team, 2020) and PLINK 1.07 [22]. Single-machine parallel
computing of GWAS was run on a Windows platform with an Intel CPU (32G RAM,
3.6 GHz, 8 cores).
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2.3. Analytical Resources

The core codes of binomial and multinomial models used in this study are avail-
able from the following public GitHub repository: GWAS-ABO https://github.com/
westchinabiomedicaldatascience-Wang-lab/GWAS-ABO (accessed on 6 November 2020).
The authors have provided the relevant information (allele frequency, p value, OR, etc.) for
hit SNPs in Supplemental Materials.

3. Results
3.1. A GWAS on ABO Blood Types in a Chinese Population

An initial cohort of 1008 individuals fully participated in blood-typing, genotyping
and on-site surveys. Upon sequential steps of data pre-processing, a final dataset of
921 independent individuals was ready for GWAS analysis (87 individuals dropped: 7
for failure in genotyping, 1 for low sample call rate and 79 for genome-wide identity-by-
descent pairwise relatedness). The cohort was summarized for baseline characteristics
that are comparable across the four levels of ABO blood system (Table S1). In addition,
with robustness in sampling, the distribution of ABO blood types in this cohort is similar
to other Chinese or Asian populations (Table S2). Upon blood-typing and genotyping, a
GWAS was conducted to screen and map genetic variants key to the determination of ABO
blood types (Figure S1). For the outcome, two analytical methods are applied in parallel:
(1) dichotomize ABO blood types into four sets of binary outcomes (e.g., O vs. non-O, with
A, B and AB individuals combined into the non-O group), and (2) treat ABO blood types
with respect to their innate status as a quaternary outcome (four levels of O, A, B and AB).

3.2. GWAS on ABO Blood Types Based on Binomial Models

For the binomial models, all hit SNPs are mapped exclusively to the ABO gene and its
nearby regions (Tables S3–S6, Figures S2–S4), validating ABO blood system as a classical
Mendelian phenotype determined by a single gene. Certain hit SNPs are in strong linkage
disequilibrium (LD) (Figure S5) and display similar estimates for both the p value and odds
ratio (Tables S3–S6). Accordingly, based on LD screening (threshold of r2 < 0.8) to avoid
the most notable redundant variants, a subset of hit SNPs are selected in each binomial
model (annotated with # symbols in Tables S3–S6) and respectively evaluated for binary
classification performances calculated with the baseline type prevalence as the threshold,
and as well as the area under the ROC curve (AUC) defined by a series of thresholds
(Table 1, 16 SNPs in O vs. non-O, 12 SNPs in A vs. non-A, 8 SNPs in B vs. non-B, 6 SNPs in
AB vs. non-AB): rs529565 alone is almost sufficient to differentiate O vs. non-O groups;
rs635634 displays the best performance in A vs. non-A groups, boosted by the further
inclusion of rs8176719; similarly, rs7030248 excels in the comparison of B vs. non-B groups,
with additional support from the inclusion of rs635634, and rs687289 stands out as the key
variant for differentiating AB vs. non-AB groups.

Therefore, the most significant hit SNP selected for each blood type in the binomial
models is rs529565 for O vs. non-O, rs635634 for A vs. non-A, rs7030248 for B. vs. non-B
and rs687289 for AB vs. non-AB. However, among these four selected SNPs, the pair of
rs529565 and rs687289 are in high LD (r2 = 0.97, Figure S5B), so a common SNP of rs8176719
in LD with both of these SNPs could be selected to replace them: rs529565 is in high LD
with rs8176719 (r2 = 0.95, Figure S5B), and rs687289 is in high LD with rs8176719 (r2 = 0.98,
Figure S5B). In addition, rs8176719 is not in high LD with the other two selected SNPs of
rs635634 (r2 = 0.35, Figure S5B) and rs7030248 (r2 = 0.09, Figure S5B), so these three SNPs
present a group of independent variants associated with the ABO blood types and would
be later evaluated for multi-class classification performances.

3.3. GWAS on ABO Blood Types Based on Multinomial Models

Dichotomizing ABO blood types into a binary phenotype is a common practice in
previous studies, but such an operation leads to the loss of information and would reduce
statistical power. In addition, predicted probabilities for each blood type from the four

https://github.com/westchinabiomedicaldatascience-Wang-lab/GWAS-ABO
https://github.com/westchinabiomedicaldatascience-Wang-lab/GWAS-ABO
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binomial models do not add up to one, leading to the difficulty in appropriately assigning
un-blood-typed but genotyped individuals to a specific predicted blood type. To overcome
such issues, we treat ABO blood types as a quaternary phenotype (with type O defined as
the reference level), perform a multinomial analysis for GWAS and consistently uncover
associated variants mapped exclusively to the ABO gene and nearby regions (Tables S7–S9,
Figure 1 and Figure S6). There are in total 19 hit SNPs shared across all three multinomial
models (Tables S7–S9), and some of these genetic variants display high LD (Figure S7).
Predictive probability for an individual’s blood type based on personal genotypes of these
19 commonly significant hit SNPs reveals four major patterns (Figure 2): (1) 10 SNPs are
associated with the likelihood of type O; (2) 7 SNPs (including rs8176719) are associated
with higher probability of type A and type B for single copy of minor alleles but of type AB
for dual copies; (3) rs9919007 is associated with higher probability of type B for single copy
but of type A and type AB for dual copies; (4) rs7030248 is predominantly associated with
type B. These distinct patterns reveal hit SNPs associated with the respective type of the
ABO blood system.
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blood types in the cohort.

The set of three independent hit SNPs identified from binomial models are well
represented in the hit SNPs from multinomial models: rs8176719 and rs7030248 are among
the 19 common hit SNPs (Tables S7–S9); rs635634 associates with A vs. O (Table S7)
and AB vs. O (Table S9). With overall parameters such as accuracy, F1 micro and F1
macro calculated for multi-class performances and classical binary parameters evaluated
for by-blood-type binary performances, the genetic variants of rs8176719, rs635634 and
rs7030248 are evaluated both singularly and combinatorically in the multinomial models
(Figure S8). These three SNPs display a synergistic effect in that additive combination
sequentially improves both multi-class and binary classification performances. With all
three SNPs combined, almost perfect prediction of ABO blood types could be achieved in
the multinomial models for the cohort (Figure S8C). Only 19 out of a total of 916 individuals
are wrongly assigned (Table S10), and for these 19 off-target predictions, a partial on-target
effect is present (Table S11) since there is no mispredictions of type O for type AB or vice
versa, considering these two types are biochemically more distinct among all four types.
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Effectiveness and robustness in predicting ABO blood types with the set of three SNPs is
also validated by the sequential boost observed in both precision–recall curves (Figure S9)
and ROC curves (Figure 3). Indeed, the “rs8176719 + rs635634 + rs7030248” multinomial
model leads to well-separated predicted probabilities for ABO blood types in all possible
scenarios (Figure 4).
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multinomial model. The dashed horizontal lines annotate the prevalence of respective ABO blood types in the cohort. Note:
due to the limited sample size and the factor of minor allele frequency, not all allele combinations (33 = 27) of the three
SNPs are represented in the cohort (the 16 combinations represented are tabulated in Table S10; the other 11 combinations
are not present in the cohort, so the prediction of ABO blood types for these genotype sets could not be evaluated for
prediction performances).

3.4. Causal Inference by Mendelian Randomization

It was reported that type B is more susceptible to hypertension [23]. We measured
the systolic and diastolic pressures of the cohort, and using the validated set of three
ABO-associated SNPs (rs8176719, rs635634 and rs7030248) as instrumental variables in
one-sample MR, two methods of inverse-variance weighted (IVW) and weighted median
argue against a potential causal relationship between the exposure of ABO blood types and
the outcome of blood pressures in the Han Chinese population (Figure 5A).

The COVID-19 GWAS project not only discovers ABO-mapped rs657152 as a hit SNP
but also validates the association using inferred blood types for a higher risk in blood group
A (OR of 1.45) and a protective effect in blood group O (OR of 0.65) [15]. With estimates of
the instrumental variables selected for ABO blood types retrieved from this study (ethnicity
of Han Chinese) and for severe COVID-19 with respiratory failure retrieved from published
literature (ethnicities of Italian and Spanish), we conduct a two-sample MR in which both
IVW and weighted median methods strongly support a causal link (p < 0.001, Figure 5B) in
the A vs. non-A as well as O vs. non-O contrasts with differential COVID-19 susceptibility.
However, the direction of MR relationship in this study (A type is less susceptible and O



Genes 2021, 12, 959 10 of 13

type is more susceptible to the risk of severe COVID-19 with respiratory failure) is not
consistent with the direction reported in the COVID-19 GWAS study [15].
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4. Discussion

Our extensive characterization of the ABO genomics validates the ABO blood system
as a classical Mendelian phenotype determined exclusively by a single ABO gene. Therefore,
perfect prediction of ABO blood types based on genetic variants is theoretically possible. We
demonstrate that while dichotomizing ABO blood system into a set of binary phenotypes is
capable of identifying key genetic variants, treating the phenotype as a quaternary trait and
applying a multinomial model would confer higher statistical power and simultaneously
evaluate the probabilities of an individual for all four types. A key contribution of our
study lies in the simultaneous genotyping and blood-typing of the cohort members so the
genetics-based model could be evaluated and optimized for predictive performances. In
contrast, past studies subjectively infer blood types from genotypes without quantifying the
potential error rate. To make the practice more error-prone, past genetic association studies
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on ABO blood types generally use individuals’ self-reported rather than biochemically
determined ABO blood types, raising concerns for the identity and strength of the hit SNPs
used for ABO inference.

In this study, a predictive model based on rs8176719, rs635634 and rs7030248 leads to
strong performances in multi-class classification, suggesting these three SNPs combined
would be sufficient to explain a major proportion of the diversity in the ABO blood system
within the Han Chinese population. Given that the allele frequencies of the hit SNPs
are comparable but still disparate among different ethnicities (Figure S10), the predictive
models from this Han Chinese cohort should be applicable to other ethnicities with po-
tentially limited sacrifice of forecast accuracy. Nevertheless, there is still a small portion
of individuals mistakenly assigned using the three-SNP-based predictive model, suggest-
ing that a complete understanding of the underlying genetic-phenotypic link between
ABO polymorphisms and ABO blood system would in the future require better-informed
genotyping (e.g., whole gene sequencing is preferred for both full coverage of all possible
genetic variants and as well for the haplotypes). Such efforts combined with larger sample
size and populations of different ethnicities should deepen our understanding of the ABO
genomics and also optimize a predictive model that precisely or even perfectly determines
blood types solely based on genetics.

An interesting observation from GWAS is that the top hit SNPs with the lowest p value
or highest odds ratio are not necessarily those missense variants that confer structural
changes to the glycosyltransferase encoded by the ABO gene. This raises an unverified
issue if the ABO blood system could be solely determined by the exons of the ABO gene,
or would be dependent on genetic variants both in the exons and introns. Undoubtedly,
we only genotyped a subset of all possible missense genetic variants, and there also exists
high LD in the region. Therefore, it would be meaningful for future research to conduct
whole-gene-sequencing-based association studies to appropriately resolve this issue.

The involvement of the ABO blood system in biology and health has been ever increas-
ing. Historically, ABO blood-typing is widely applied in paternity testing in an “exclusion”
basis before being replaced by the genotyping-based “confirmation” methods [24]. ABO
blood system is also essential in daily medical operations of blood donation/transfusion
and organ transplantation [25,26]. There is even an ABO personality theory popular in
certain regions of the world [27,28]. The fact that ABO variants are discovered in large-
scale GWAS for association with an increasing number of traits and diseases naturally
leads to the necessity to differentiate causality from non-causal association. MR is a fast-
developing field to address such causal inferences, but certain key concerns exist. First,
the exposure of ABO blood types is treated as a binary variable, which is uncommon but
not impossible in MR [29]. Second, the assumptions of MR are essential for the validity
of causal interpretation, and regarding ABO blood types, an assumption that might fail
to meet is that the ABO gene or variants could be pleiotropic. Finally, there is always a
potential but hard-to-evaluate issue regarding ethnicity confounding in two-sample MRs,
which could have profound consequences when the p value is marginally significant or
insignificant (e.g., around 0.05). For the above reasons, the causal inference results from
our two-sample MR study between ABO and COVID-19 should be viewed as preliminary
rather than conclusive.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12070959/s1, Figure S1. Schematic diagram for the study design of GWAS on ABO
blood types in a Chinese population. Figure S2. Manhattan plots for the binary (2-level) outcomes:
O vs. non-O (A), A vs. non-A (B), B vs. non-B (C) and AB vs. non-AB (D) in the cohort. Figure S3.
Quantile-quantile plots for the binary (2-level) outcomes: O vs. non-O (A), A vs. non-A (B), B vs.
non-B (C) and AB vs. non-AB (D) in the cohort. Figure S4. Regional association plots for the binary
(2-level) outcomes: O vs. non-O (A), A vs. non-A (B), B vs. non-B (C) and AB vs. non-AB (D) in the
cohort. Figure S5. Linkage analysis (r2) between ABO-associated hit SNPs for the binary (2-level)
outcomes: O vs. non-O (A), A vs. non-A (B), B vs. non-B (C) and AB vs. non-AB (D) in the Chinese
(CHB + CHS) from the 1000 Genomes. Figure S6. Regional association plots for the quaternary
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(4-level, reference level of type O) outcomes of A vs. O (upper), B vs. O (middle) and AB vs. O (lower)
in the cohort. Figure S7. Linkage analysis (r2) between ABO-associated hit SNPs for the quaternary
(4-level, reference level of type O) outcomes: A vs. O (A), B vs. O (B) and AB vs. O (C) in the
Chinese (CHB + CHS) from the 1000 Genomes. Figure S8. Confusion matrix (left) and classification
performance parameters (right) for the prediction of ABO blood types based on rs8176719, rs635634,
rs7030248 (A), and their combinations (B and C). Figure S9. By-blood-type precision-recall plots for
rs8176719, rs635634, rs7030248, and their combinations. Figure S10. Allele frequency of common hit
SNPs in the multinomial models from this study among the globe and five super-ancestries from
the 1000 Genomes. Table S1. Summary of the general and by-type baseline characteristics. Table S2.
Distribution of ABO blood types across Asian ethnicities. Table S3. Summary of GWAS on the binary
trait of O vs. non-O blood types. Table S4. Summary of GWAS on the binary trait of A vs. non-A
blood types. Table S5. Summary of GWAS on the binary trait of B vs. non-B blood types. Table S6.
Summary of GWAS on the binary trait of AB vs. non-AB blood types. Table S7. Summary of GWAS
on the quaternary trait of A vs. O blood types. Table S8. Summary of GWAS on the quaternary trait
of B vs. O blood types. Table S9. Summary of GWAS on the quaternary trait of AB vs. O blood types.
Table S10. Frequency summary of individuals with the defined set of SNPs (n = 916). Table S11.
Summary of individuals with wrongly predicted ABO blood types (n = 19).
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