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Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has
an increasing incidence worldwide. HCC can be induced by multiple etiologies,
is influenced by many risk factors, and has a complex pathogenesis.
Furthermore, HCCs exhibit substantial heterogeneity, which compounds the
difficulties in developing effective therapies against this highly lethal cancer.
With advances in cancer biology and molecular and genetic profiling, a number
of different mechanisms involved in the development and progression of HCC
have been identified. Despite the advances in this area, the molecular
pathogenesis of hepatocellular carcinoma is still not completely understood.
This review aims to elaborate our current understanding of the most relevant
genetic alterations and molecular pathways involved in the development and
progression of HCC, and anticipate the potential impact of future advances on
therapeutic drug development.
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Introduction
Hepatocellular carcinoma (HCC) is the most common primary liver 
malignancy and the sixth most common cancer worldwide1. It is an 
aggressive malignancy with a poor prognosis and is currently the 
second most common cause of cancer-related mortality. Although 
more than 80% of the estimated 782,000 new cases of HCC in 2012 
occurred in less developed regions of the world, its incidence is 
increasing worldwide, including in more developed countries1.

The most common risk factors for HCC development are chronic 
hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, and 
the prevalence of HCC mirrors the occurrence of these infections2,3. 
Other major risk factors include alcoholic cirrhosis, non-alcoholic 
steatohepatitis (NASH), consumption of aflatoxin-contaminated 
foods, and exposure to other chemical carcinogens4. Heavy alcohol 
use increases the risk for HCC and also has been reported to have 
synergistic effects with other risk factors such as obesity and viral 
hepatitis5,6. NASH is the most rapidly growing indication for liver 
transplantation for patients with HCC in the US, and the annual 
incidence of HCC in patients with NASH cirrhosis is 2.6%7,8. There 
is more recent recognition that the metabolic syndrome and its 
components such as diabetes and obesity also increase the risk for 
HCC9–11. Pre-existing metabolic syndrome has been shown to confer 
a 2.1-fold increased risk for HCC which is independent of other risk 
factors12. In this review, we describe the pathogenic mechanisms 

by which these diverse etiologic factors interact with the molecular 
milieu in the liver to drive the oncogenesis of HCC.

Natural history of precancerous lesions
Most causes of HCC mediate liver injury through the development 
of liver inflammation and fibrosis, which eventually results in the 
disordered liver architecture characteristic of liver cirrhosis; thus, 
cirrhosis precedes HCC in 80–90% of patients. Cirrhotic livers 
exhibit focal areas of abnormal, immature hepatocytes and these 
dysplastic foci (<1 mm) or dysplastic nodules (DNs) (≥1 mm) 
arising in the background of cirrhosis are considered precancerous 
lesions. DNs are classified into low and high grade on the basis of 
the presence of atypia and other morphologic features. Although 
both low- and high-grade nodules have the potential to evolve into 
HCC, high-grade DN has a much greater risk. Differentiating DNs, 
especially high-grade DN, from early HCC can be challenging, and 
an international consensus guideline provides recommendations 
for making this distinction13. The presence of stromal invasion is 
considered to be the hallmark feature that differentiates early HCC 
from DNs. HCC is also subclassified into early HCC and progressed 
HCC, with differing long-term clinical outcomes13. Early HCC 
refers to small (<2 cm) well-differentiated (grade 1) tumor nodules 
with indistinct margins and this is now accepted as a separate entity 
with a good prognosis. Figure 1 depicts the proposed natural history 
and typical features of precancerous lesions and HCC.

Figure 1. Natural history of precancerous lesions. Dysplastic foci (<1 mm) or dysplastic nodules (DNs) (≥1 mm) are considered 
precancerous lesions and are classified into low and high grade. Both low- and high-grade nodules have the potential to evolve into 
HCC, but high-grade DN have a much greater risk. Early HCCs are characterized by the presence of stromal invasion. HCC is further 
subclassified into early HCC and progressed HCC based on features noted in the figure. Abbreviations: HCC, hepatocellular carcinoma; 
HG-DN, high-grade dysplastic nodule; LG-DN, low-grade dysplastic nodule.

Page 3 of 15

F1000Research 2016, 5(F1000 Faculty Rev):879 Last updated: 12 MAY 2016



Histologic classification of hepatocellular carcinoma
HCC is clinically heterogeneous and interestingly the histopatho-
logic appearance of HCC also exhibits significant heterogeneity.  
The range of cellular differentiation extends from very well- 
differentiated to poorly differentiated tumors. HCCs also exhibit 
varied morphologic subtypes, including biphenotypic HCCs with 
combined features of hepatocellular and cholangiocarcinoma 
(4–5%), cirrhotomimetic HCC, clear cell HCC, fibrolamellar HCC, 
granulocyte colony-stimulating factor HCC with major neutrophilic 
infiltrates, lymphocyte-rich HCC, myxoid HCC, sarcomatoid 
HCC, scirrhous HCC, and steatohepatitic HCC. Despite the obvi-
ous histological diversity of HCCs, there has been only limited 
correlation of histological features with known molecular or genetic 
aberrations in HCC and almost no developed capability to translate 
histological or molecular characteristics to the selection of optimal 
therapies. Contemporary efforts to correlate histological subtypes 
of HCC with molecular features are beginning to yield fruit and 
improve our understanding of HCC pathogenesis and genotype-
phenotype correlations. The recent discovery that a chimeric fusion 
protein involving protein kinase A is present in 100% (15 out of 15) 
of fibrolamellar HCCs is one such example14,15. The chromophobe 
morphologic subtype of HCC has also been reported to exhibit 
alternative lengthening of telomeres (ALT), a specific molecular 
mechanism to overcome replicative senescence16.

Genetic and epigenetic changes in the molecular 
carcinogenesis of hepatocellular carcinoma
New advances in next-generation sequencing have yielded signifi-
cant insights into the genomic landscape of HCC. Several recent 
studies have explored various aspects of HCC by using whole 
genome sequencing, whole exome sequencing, RNA sequencing, 
and genome-wide methylation assays. Results thus far describe a 
complex and heterogeneous malignancy exhibiting a wide array 
of genetic and epigenetic changes. Below, we discuss some of the 
pertinent alterations that play a role in the pathogenesis of HCC.

Gene mutations
Recurrent somatic mutations in specific genes are well recognized 
as potential drivers of carcinogenesis. Melanoma and lung cancer 
have the highest rate of mutations per genome, whereas HCCs usu-
ally have an intermediate number of mutations per genome similar 
to other solid tumors (typically 20–100 mutations per genome)17. 
The underlying etiology of liver cancer also appears to influ-
ence the occurrence of specific mutations. For example, HBV is 
associated with a relatively high frequency of mutations as it rep-
licates through RNA-mediated reverse transcription, and the HBV 
reverse transcriptase (HBV RT) does not have proofreading func-
tion. In contrast, HCV is a single-stranded non-retroviral RNA 
virus that, unlike HBV, does not integrate into the host genome. 
However, HCV can cause double-stranded DNA breaks and 
increase the mutation frequency. HCV-infected cells exhibit an 
increased mutation frequency in genes such as the immunoglobulin 
genes, BCL-6, TP53, and β-catenin (CTNNB1)18. Most recently, 
HCCs have been observed that have a hypermutated genotype with 
a mutational spectrum characteristic of that caused by the herbal 
mutagen aristolochic acid, the toxic ingredient of the Chinese 
herbal preparation wild ginger19. Below, we discuss some of the 
commonly observed somatic mutations in HCC.

Telomerase promoter mutations. Telomeres are located at the tips 
of linear chromosomes and function to protect the chromosome 
from end-to-end fusion and destruction by nucleases or ligases 
or both. Telomerase is an enzymatic protein complex made up of 
the telomerase reverse transcriptase (TERT) and the telomerase 
RNA component (TERC). Telomerase maintains telomere length 
by synthesizing specific telomeric DNA sequences and adding 
them to the end of the chromosome. Telomerase expression is usu-
ally suppressed in mature adult cells. Thus, DNA polymerase is 
unable to fully replicate the terminal chromosomal segment and 
telomeres become progressively shorter with repeated cell divisions. 
In chronic liver injury where there is high cell turnover, telomere 
shortening is accentuated. Telomere shortening beyond a certain 
critical length leads to activation of a DNA damage program which 
results in apoptosis or cellular senescence that results in the inabil-
ity of the liver to fully regenerate a normal architecture, trigger-
ing the development of liver fibrosis and, eventually, cirrhosis. The 
telomere-shortening effect of chronic liver injury can synergize with 
inherited genetic variants in the TERT and TERC genes that result 
in decreased activity of the telomerase complex to accelerate the 
premature development of liver fibrosis and cirrhosis20,21. Because 
cirrhosis is a precursor to HCC, the telomere hypothesis holds that 
this telomere shortening results in chromosomal instability that 
drives cancer initiation. Stabilization of the telomeric DNA through 
either increased telomerase expression or alternative mechanisms 
of telomerase activation is a key mechanism of cellular immor-
talization, allowing cells to survive and proliferate indefinitely22. 
Mutations in the TERT promoter region have now been shown 
to be the most common mutation in HCC and the most frequent 
mechanism of telomerase activation. The mutations result in the 
formation of novel ETS transcription factor-binding sites upstream 
of the TERT start site, which leads to increased TERT transcript 
expression. Mutations in the TERT promoter region occur in 
30–60% of HCCs23–26. Nault et al. found TERT promoter mutations 
not only in 59% of HCCs but also in 25% of cirrhotic preneoplastic 
lesions, suggesting that this is likely a driver mutation24. Interest-
ingly, TERT promoter mutations are conspicuously less common 
in HBV-induced HCCs, but these tumors have been shown to 
have recurrent integrations of HBV sequences into the TERT gene 
locus, which serves as a complementary mechanism for telomerase 
activation27–29.

TP53 pathway mutations. TP53 is a widely recognized tumor 
suppressor, and low p53 levels or mutations in p53 are found in 
multiple cancer types. Wild-type p53 promotes apoptosis and cell 
cycle arrest, therefore, inactivating mutations in the p53 gene, 
or other pathway components, may render hepatocytes suscep-
tible to the effects of other carcinogens that activate oncogenic 
pathways and may also predispose to the development of HCCs 
with a more aggressive phenotype30. The frequency of p53 gene 
mutation in HCCs ranges from 18% to 50%, depending on the 
underlying etiology. Consequently the rate of p53 mutations varies 
in different geographic regions, reflecting the regional variations 
in HCC etiology26,29,31–33. In particular, dietary exposure to fungal 
aflatoxin (AFB1) results in a specific p53 mutation most com-
monly reported at codon 249; this is considered to be a driver muta-
tion since it is also found in the normal livers of patients exposed 
to AFB134. There is strong epidemiologic synergism between 
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aflatoxin exposure and chronic HBV infection in the induction of 
HCC, and it has been shown that in patients infected with hepa-
titis B, expression of hepatitis B X (HBx) is associated with an 
approximately twofold increase in the incidence of G/C-to-T/A 
transversion mutations following AFB1 exposure35. Other genes in 
the p53 pathway that are recurrently mutated in HCC include ATM 
and RPS6KA329.

Other common somatic mutations and hepatitis B virus integra-
tions in hepatocellular carcinoma. Some of the other common 
mutations in HCC involve the Wnt/β-catenin pathway, including 
mutations in the β-catenin (CTNNB1) (18–40%), AXIN1 and 
AXIN2 genes31–33. These, along with other alterations in Wnt/β- 
catenin pathway components, are discussed below. Additional 
recently identified mutations in HCCs involve members of the 
chromatin remodeling pathway (ARID1A and ARID2) and the 
Janus kinase (JAK)/signal transducers and activators of transcrip-
tion (STAT) pathway (JAK1, IL6R, and IL6ST), genes involved 
in ubiquitination (KEAP1), genes involved in RAS/MAPK sig-
naling (RPS6KA3) and genes in the oxidative stress pathway 
(NFE2L2)36.

HBV is known to recurrently integrate into the host genome and 
promote hepatocarcinogenesis37. Several studies of the sites of 
HBV integrations in the hepatocyte genome have identified genes 
recurrently targeted by HBV integration, including TERT, MLL4, 
RARβ, CCNE1, Cyclin A2, FN1, ROCK1, SENP5, ANGPT1, 
platelet-derived growth factor (PDGF) receptor, calcium signaling-
related genes, ribosomal protein genes, epidermal growth factor 
receptor (EGFR), and mevalonate kinase carboxypeptidase28,37–40. 
Several of these integrations are proposed to have direct or indi-
rect pathogenic roles in the development for HCC. For example, 
MLL4 encodes a histone methyltransferase that plays an impor-
tant role in epigenetic modification of gene expression41. Also, 
HBV integration into specific genes has been noted to alter gene 
expression; for example, Sung et al. reported that samples with 
HBV integration had significantly higher expression of the TERT, 
MLL4, and CCNE1 genes than tumors not harboring HBV DNA 
integrations in these genomic regions39. Moreover, HBV viral inte-
gration also results in deletions or translocations of the host genome 
and ultimately increases chromosomal instability, which also 
predisposes to cancer initiation42–44.

Copy number variations and gene rearrangements
Copy number variations are structural alterations of the genome in 
which small or large segments of the chromosome are either ampli-
fied (gain of genomic DNA) or deleted (loss of genomic DNA). 
Such structural variations promote carcinogenesis by increased 
expression or activation of oncogenes and decreased expres-
sion or inactivation of tumor suppressors. A recent study of 125 
HCCs reported focal amplifications in 32% of the HCCs, identify-
ing CCND1 and FGF19 as genes recurrently amplified in HCC32. 
Focal deletions appeared to be even more prevalent, being present 
in 40% of HCCs; deletions commonly involved the CDKN2A 
(encoding the p16 tumor suppressor), CDKN2B, AXIN1, and IRF2 
genes32. Another study, of 286 HCC patients, identified 29 recur-
rently amplified regions and 22 recurrently deleted regions with 
a high level of copy number changes. Genes commonly involved 
with copy number variations included CCND1, MET, CDKN2A, 

and CDKN2B45. Other studies of smaller sample cohorts similarly 
reported regions exhibiting significant copy number variations 
and used this analysis as a strategy for identifying potential HCC 
driver genes46,47. Several of these alterations have known associated 
pathogenic mechanisms; for example, a proportion of HCCs acti-
vate TERT by focal amplification in the TERT region, and dele-
tion of AXIN1 is one of the mechanisms mediating Wnt/β-catenin 
pathway activation in HCC.

Another form of somatic variation contributing to carcinogenesis 
is chromosomal rearrangements, which can result in the fusion of 
two genes by chromosome translocation, inversion, or deletion. 
In a recent breakthrough study, such a gene fusion was described 
in fibrolamellar HCC. This is a variant of HCC that arises in non- 
cirrhotic livers, usually in young persons, and has a distinct 
morphology. A chromosomal rearrangement involving an approxi-
mately 400-kilobase deletion in chromosome 19 results in the 
formation of a chimeric RNA encoding a protein containing the 
amino-terminal domain of DNAJB1 (a homolog of the molecular 
chaperone DNAJ), fused in frame with PRKACA (the catalytic 
domain of protein kinase A). This fusion appears to be highly 
specific for fibrolamellar HCCs, being identified in 100% of 
fibrolamellar HCCs, suggesting that this genetic alteration likely 
contributes to tumorigenesis and the unique morphology of this 
HCC subtype14,15.

Epigenetic modifications
Epigenetics is defined by the presence of heritable states of gene 
expression without alteration in DNA sequences. Deregulated 
epigenetics contributes to carcinogenesis by influencing multiple 
mechanisms, including gene transcription, chromosomal stability, 
and cell differentiation. Epigenetic mechanisms include changes in 
the methylation, hydroxymethylation48, or acetylation (or a combi-
nation of these) of particular DNA regions or of the histone proteins 
around which DNA is organized, as well as mechanisms of gene 
regulation by non-coding RNAs.

DNA methylation. Dysregulated methylation targets multiple gene 
regions in HCC and is characterized by global and site-specific 
hypomethylation as well as site-specific hypermethylation. Global 
hypomethylation in liver cancer affects the structural-nuclear func-
tion by promoting chromosomal and genetic instability, whereas 
regional hypermethylation is often associated with silencing of 
tumor suppressor genes49. Etiological factors such as chronic HBV 
and HCV infection may cause dysregulated methylation during 
liver carcinogenesis50,51. Deng et al. reported on a subset of 15 genes 
that were found to be preferentially methylated in HCV-related 
HCC; the methylated genes belong to signaling pathways such as 
RAS/RAF/ERK and the Wnt/β-catenin pathways52. Methylation of 
the GSTP1 and E-cadherin promoters has been reported to pref-
erentially occur in hepatitis B-related HCC53. Another epigenetic 
mechanism for tumorigenesis by HBV is targeted deregulation of 
DNA methyltransferases (DNMTs) by HBx, which promotes both 
specific regional hypermethylation and global hypomethylation50.

CDKNA2 promoter hypermethylation leading to suppression of 
p16 is a commonly observed event in HCC54,55. P16 is a cell cycle 
regulator and a tumor suppressor; hence, its suppression promotes 
tumor progression. Other commonly methylated genes in HCC 
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include RASSF1A56, GSTP157,58, SOCS-359, and MGMT60. More 
recently, whole genome approaches to characterizing changes 
in methylation have resulted in more comprehensive assess-
ments of gene methylation in cancer and allowed integration of 
whole genome methylation with whole genome gene expression 
data, identifying genes whose expression is truly modulated by 
methylation61–63.

Histone modification. Histones regulate gene expression by 
determining the open or closed state of chromatin; thus, the level 
of gene expression depends on the post-translational modifica-
tions of histones in the transcriptional unit. Post-translational 
histone modifications such as acetylation and methylation of lysine 
and arginine residues, phosphorylation of serine and threonine 
residues, and ubiquitination of lysines are directed at the histone 
tails that protrude from the nucleosomes. The role of such DNA-
protein modifications in liver carcinogenesis and HCC progres-
sion is not fully understood. High levels of trimethylated histone 
H3 lysine 4 (H3K4me27) have been shown to correlate with 
reduced overall survival and poor prognosis in HCC64. In another 
study, high levels of H3K27me3 correlated with aggressive tumor 
features such as vascular invasion, large tumor size, multiplicity 
of tumors, and poor differentiation, and predicted worse progno-
sis in HCC65. The regulation of histone modifications appears to 
be specific to different etiologies. For example, in patients with 
HBV, the oncogenic HBx protein can interact directly with the 
CBP/p300 histone acetyl-transferase complex, thus altering gene 
transcription and promoting tumorigenesis66.

Chromatin remodeling. Chromatin remodeling describes the 
process of dynamic changes in chromatin structure that regulate 
gene expression, apoptosis, and DNA repair. Disruption in chro-
matin remodeling can contribute to cancer initiation and pro-
gression. Awareness of the influence of chromatin remodeling 
processes in HCC development and growth is increasing. For 
example, the switch/sucrose non-fermenting (SWI/SNF) complex 
is a multi-protein complex essential for chromatin remodeling. 
SWI/SNF comprises dozens of proteins, including SMARCB1 
and SMARCA4, and plays a key role in epigenetic regulation of 
gene expression. Recent studies have described frequent muta-
tions in SW1/SNF chromatin remodeling complex genes such as 
ARID1A, ARID1B, and ARID2 in HCC67. ARID2, which encodes a 
SW1/SNF regulatory subunit protein, was found to be mutated in 
18.5% of HCV-related HCCs68. Most ARID1A and ARID2 muta-
tions detected in cancer cells to date are inactivating mutations, 
suggesting that both proteins function as tumor suppressors.

The polycomb group of chromatin remodeling proteins also 
plays a role in heritable gene silencing. There are two polycomb 
repressive complexes, denoted PRC1 and PRC2. The mecha-
nisms by which they repress gene expression are incompletely 
understood, but PRC1 is believed to work through ubiquitin 
ligases which covalently modify histone tails, whereas the main 
function of PRC2 is to methylate histone H3K2769,70. EZH2, 
a subunit of PRC2, is a methyltransferase that mediates gene 
silencing71. EZH2 mRNA transcript and protein levels are con-
sistently elevated in HCC in comparison with non-tumor liver tis-
sues, and high levels of EZH2 are associated with HCC invasion 
and metastasis and poor prognosis72,73. EZH2 has been shown to 

promote hepatocarcinogenesis by silencing Wnt antagonists and 
consequently activating Wnt/β-catenin signaling72. Knockdown of 
EZH2 in liver cancer cell lines also reduces levels of the repres-
sive H3K27me3 histone, resulting in re-expression of a distinct 
subpopulation of tumor suppressor miRNAs that control cell motil-
ity and adhesion74.

MicroRNAs. MicroRNAs (miRNAs) are small non-coding RNAs 
that regulate the translation of many genes. They have emerged 
as key factors regulating multiple biological processes, includ-
ing development, differentiation, and cell proliferation. MiRNAs 
mediate carcinogenesis and progression of HCC by directly or 
indirectly controlling the expression of key proteins involved in 
cancer-associated pathways.

Chronic hepatitis and hepatocarcinogenesis are associated with 
profound changes in miRNA expression75. MiR-155, a positive 
regulator of liver inflammation, is upregulated in both serum and 
monocytes of patients with chronic HCV. The HCV core, NS3, 
and NS5 proteins and the HCV-induced TLR4 and TLR8 ligands 
all mediate increased miR-155 and tumor necrosis factor alpha 
(TNFα) production in chronic HCV infection, and this in turn 
promotes hepatocarcinogenesis by activating Wnt signaling76. 
MiR-122, one of the most abundant liver-specific miRNAs, is 
downregulated in about 70% of HCCs77. MiR-122 acts as a tumor 
suppressor, inducing apoptosis of HCC cells by directly targeting 
the Wnt/β-catenin pathway. Suppression of miR-122 is associ-
ated with intrahepatic metastases and tumor recurrence after sur-
gical resection78–80. In a phenomenon reflecting the complexity of 
cancer genetic mechanisms, deletions in miR-122a have been 
shown to promote the epithelial-mesenchymal transition (EMT) 
and spontaneous HCC formation in mouse models81. Other 
miRNAs such as miR-224, miR-224-3p, and their precursors are 
upregulated in HCV-associated cirrhosis, HCV-associated HCC, and 
HBV-associated liver failure compared with normal liver tissue82. 
Apoptosis inhibitor 5 (API-5) and SMAD4 have been identified 
as target genes for miR-224, and expression of miR-224 is associated 
with poor survival83. Overexpression of miR-224 increases SMAD4 
protein in murine granulosa cells without increasing SMAD4 
RNA levels, suggesting a post-transcriptional role for miR-22483. 
Tumor suppressive miRNAs, including miR-1, miR-124, miR-214, 
miR-34-A, and miR-449, target mRNAs involved in cell growth, 
metastasis, or suppression of apoptosis and usually are downregu-
lated in HCC. In contrast, oncogenic miRNAs, including miR-221, 
miR-224, miR-21, and miR210, promote tumor progression and 
are upregulated in HCCs84. There are active efforts under way to 
exploit modulation of miRNA levels for HCC therapy85.

Long non-coding RNAs. Long non-coding RNAs (lncRNAs) are 
another class of transcribed RNAs that do not encode proteins. 
LncRNAs regulate gene expression and protein synthesis by 
diverse mechanisms. Aberrant expression of lncRNA can affect 
genes involved in hepatocarcinogenesis, microvascular invasion, 
and metastasis. Most lncRNAs are undetectable or expressed at low 
levels in normal liver tissue but upregulated in HCCs. Alterations 
in several lncRNAs have been described in HCC. In HBV-related 
HCC, HBx induces upregulation of an lncRNA known as highly 
upregulated in liver cancer (HULC), which in turn suppresses the 
expression of p18 and facilitates proliferation of HCC86. Depletion 
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of HULC results in significant deregulation of several genes 
involved in liver cancer, and higher HULC levels are observed in 
the plasma of patients with higher histological grades of HCC or 
positive HBV status87. HULC is specifically increased in blood 
and tumor tissues of patients with HCC and may have utility as a 
biomarker for HCC. Another lncRNA, designated lncRNA-HEIH, 
has also been shown to be overexpressed in HCC88. Downregula-
tion of lncRNA-HEIH induced G

0
/G

1
 cell cycle arrest. The level of 

overexpression of lncRNA-HEIH was associated with recurrence 
of tumor in HBV-related HCC and was also an independent risk 
factor for survival88. Lnc-RNA-Dreh, also known as the HBx-
related lncRNA, acts as a tumor suppressor by targeting the 
intermediate filament protein vimentin in HBV-associated HCC, 
leading to inhibition of growth and metastases both in vitro and 
in vivo89. The novel lncRNA-associated microvascular invasion in 
HCC (lnc-MVIH) has been found to promote tumor growth and 
intrahepatic metastasis through activation of angiogenesis90. It has 
been shown that lnc-MVIH inhibits secretion of phosphoglyc-
erate kinase 1 (PGK1), a glycolytic enzyme known to inhibit 
angiogenesis90,91. The lncRNA HOX transcript antisense RNA 
(HOTAIR), which can reprogram chromatin to promote cancer 
metastasis, has been found to be overexpressed in HCC, and 
patients with HOTAIR overexpression had significantly poorer 
prognosis and higher recurrence rates than those with low HOTAIR 
expression92,93. Mineral dust-induced gene (MDIG), an lncRNA 
regulated by the c-myc oncogene, was also found to be over-
expressed in HCC. MDIG expression was noted in the nuclei of 
neoplastic cells and had higher expression in larger and poorly 
differentiated HCCs94.

Another mechanism by which lncRNAs induce hepatocarcinogen-
esis was recently described by Lau et al., who demonstrated that 
HBV viral integrations into the host genome can result in viral-
human chimeras which function as lncRNAs and can promote 
tumorigenicity95. An HBV integration in chromosome 8 resulted in 
co-transcription of long-interspersed nuclear element 1 (LINE1), 
which is usually silent in the human genome, with the HBx gene 
of HBV. They were further able to demonstrate that the HBx-
LINE1 chimera was functionally relevant as it led to Wnt/β- 
catenin pathway activation and resulted in tumor progression. Other 
recently described lncRNAs which play a role in hepatocarcino-
genesis and also have the potential to serve as biomarkers include 
MALAT96, HOTTIP97, and MEG398.

Key signaling pathways in liver carcinogenesis
Alterations in numerous signaling pathways occur in cancer, and 
several specific pathways have been observed to be dysregulated 
in HCC. Changes in liver tissues induced either by chronic viral 
infection or by exposure to hepatotoxic agents cause upregula-
tion of components of a number of cellular signaling pathways. 
The predominant pathways involved in HCC pathogenesis include 
pathways regulating growth factor signaling such as the insulin-
like growth factor (IGF), epidermal growth factor (EGF), PDGF, 
fibroblast growth factor (FGF) and hepatocyte growth factor 
(HGF/MET); pathways related to cell differentiation such as the 
WNT, Hedgehog, and Notch pathways; and pathways related 
to angiogenesis such as the vascular endothelial growth fac-
tor (VEGF) and FGF pathways. The major signaling mediators 
downstream of the receptor tyrosine kinases are the Ras/Raf/MEK/
ERK and P13K/AKT/mTOR cascades99. There are also substantial 

contributions to liver carcinogenesis from pathways regulating 
the tumor microenvironment and pathways that disrupt anti-tumor 
immunity88,100. Below, we describe the most commonly altered 
pathways and the mechanisms that lead to specific pathway activa-
tion. Besides improving our understanding of the pathogenesis of 
HCC, this information is valuable for the identification of novel 
drug targets.

WNT/β-catenin signaling pathway
The WNT/β-catenin signaling pathway is implicated in embryo-
genesis, differentiation, cell proliferation, and tumorigenesis and is 
one of the most commonly disrupted pathways in HCC101. Nineteen 
Wnt ligands have been described and there are 10 transmembrane 
frizzled receptors to which they bind, leading to either canonical 
(β-catenin-dependent) or non-canonical (β-catenin-independent) 
Wnt pathway activation. Activation of the canonical Wnt signaling 
pathway results in accumulation of β-catenin in the cytoplasm and 
translocation to the nucleus, where it binds to transcription factor 
TCF/LEF and activates downstream target genes. Gene mutations 
that activate WNT/β-catenin signaling are seen in up to 50% of 
HCCs. The most common are activating mutations in CTNNB1, 
which result in stabilization of β-catenin32. Additionally, muta-
tions in AXIN1 (in 3–16% of HCCs) and AXIN 2 (in about 3% 
of HCCs) which are both negative regulators of the Wnt pathway, 
as well as inactivation of the tumor suppressor gene adenomatous 
polyposis coli (APC), contribute to Wnt pathway activation32. 
There are multiple additional mechanisms of Wnt pathway acti-
vation. In fact, those HCCs that exhibit Wnt/β-catenin pathway 
activation without CTNNB1 mutation appear to be distinct from 
those with CTNNB1 mutations. HCCs with Wnt/β-catenin path-
way activation without CTNNB1 mutation are preferentially seen 
in HBV-infected patients and are associated with high chromo-
somal instability and an aggressive phenotype102. In contrast, HCCs 
with CTNNB1 mutation are usually low-grade tumors with good 
prognosis103,104.

There are several other mechanisms for activation of Wnt sig-
naling in HCCs apart from mutations involving the pathway. A 
subset of HCCs with Wnt pathway activation in the absence of 
CTNNB1 mutation show evidence of crosstalk with the transform-
ing growth factor-beta (TGFβ) pathway102. Overexpression of Wnt 
ligands105 or frizzled receptors106 and epigenetic changes in secreted 
frizzled-related protein-1107 are other mechanisms by which the 
Wnt pathway is activated in HCC.

Receptor tyrosine kinase pathways
Activation of receptor tyrosine kinases induce the Ras-mitogen-
activated protein kinase (MAPK or extracellular signaling regulated 
kinase, or ERK) and phosphatidylinositol 3-kinase (PI3K)-Akt 
kinase signaling pathways in about 50% of HCCs108. Ligand bind-
ing and phosphorylation of several growth factor tyrosine kinase 
receptors, including the EGFR, FGFR, HGFR/c-MET, the stem 
cell growth factor receptor (c-kit), and VEGFR, lead to activation 
of the MAPK and PI3K pathways. Ras/Raf/MEK/ERK (MAPK) 
pathway activation in turn activates proto-oncogene cFos and 
transcription factor AP-1/c-Jun, which induce transcription of 
genes that drive cell proliferation109. Activation of the PI3K-Akt 
kinase signaling pathway through the insulin or IGF receptors 
(such as IGFR1) results in disruption of the mammalian target of 
rapamycin (mTOR) pathway, which occurs in about 40% to 50% 
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of cases of HCC, thus promoting carcinogenesis110. This pathway 
can also be dysregulated by constitutive activation of PI3K because 
of loss of function of the tumor suppressor gene PTEN by either 
mutation or epigenetic silencing. Sorafenib, which is currently the 
only approved therapy for advanced HCC, acts in part by block-
ing the RAS/MEK/ERK pathway111. Although the role of EGFR 
mutations in HCC pathogenesis is small, the EGFR pathway 
appears to play a significant role in HCC initiation, as a polymor-
phism in the EGF gene (SNP rs44449030) (G/G versus A/A) was 
associated with a fourfold increased risk for HCC in patients with 
cirrhosis112. Another receptor tyrosine kinase pathway that has 
garnered increased attention recently is the HGF-MET pathway. 
Expression of a MET gene signature was associated with vascu-
lar invasion and poor prognosis in human HCC, and in a subgroup 
analysis of the Sorafenib HCC Assessment Randomized Protocol 
(SHARP) trial, high plasma HGF levels were found to correlate 
with poor survival in patients who received sorafenib113,114. The 
FGF family consists of 23 members whose multiple ligands interact 
with four FGF receptors (FGFR1-4), of which FGFR4 is the most 
abundant receptor expressed in hepatocytes. The ligand FGF19 
binds to FGFR4 and regulates bile acid synthesis and hepato-
cyte proliferation. Recent data have shown that FGF19-FGFR4 
pathway activation may play a key role in a proportion of HCCs 
and this pathway is a potential therapeutic target115,116. A new 
small molecule-specific inhibitor of FGFR4 has been shown to be 
efficacious against HCCs with an intact FGF pathway117.

A number of receptor tyrosine kinases use heparan sulfate as a 
co-receptor, and heparan sulfate on the cell surface or in the extra-
cellular matrix can also serve as a storage or concentration site 
for heparan sulfate-binding ligands. A pair of heparan sulfate 
sulfatases, SULF1 and SULF2, have been shown to modulate HCC 
carcinogenesis and tumorigenesis through effects on the affinity 
of heparan sulfate for heparan sulfate-binding receptor tyrosine 
ligands. Besides the efforts to identify specific inhibitors of receptor 
tyrosine kinases, there are efforts under way to develop sulfatase 
inhibitors as potential anti-cancer agents118–120.

Vascular endothelial growth factor and other angiogenesis 
pathways
HCC is a highly vascular tumor and angioneogenesis is a dominant 
feature of this tumor, with the hepatic artery as the major source 
of its blood supply. VEGF and angiopoetins play a prominent role 
in promoting and sustaining neoangiogenesis in HCC121,122. These 
principles have been used for developing effective therapeutic 
strategies against HCC, such as transarterial chemoembolization 
(TACE), which works by blocking the arterial supply to the tumor, 
and sorafenib, which inhibits the angiogenic effects of growth fac-
tors such as VEGF. In spite of the rich vascular supply, hypoxia 
is present in focal areas of the tumor because of disorganized 
capillarization and the presence of leaky, immature vessels123. 
Hypoxia in HCC, in turn, leads to induction of growth factors such 
as hypoxia-inducible factors 1 and 2 (HIF 1 and 2) and IGFs that 
promote further tumor angiogenesis by transcriptional activation 
of hypoxia-responsive genes and lead to tumor progression and 
metastases124,125. HIFs have also been shown to impart chemo- and 
radio-resistance to HCC tumors, leading to failure of transarterial 
therapies126, and hence their overexpression is associated with poor 
prognosis.

Transforming growth factor-beta pathway
The TGFβ pathway has long been recognized to play a dual role 
in cancer: it has the ability to suppress cellular growth in the early 
stages of cancer initiation and the paradoxical ability to promote 
invasiveness and angiogenesis in later stages127. With this in mind, 
Coulouarn et al. used transcriptome analysis to identify early and 
late TGFβ signatures in HCC and showed that the late TGFβ sig-
nature was associated with shortened survival time compared with 
patients with the early TGFβ signature. Also, tumors expressing late 
TGFβ-responsive genes displayed an invasive phenotype and 
increased tumor recurrence128. The poor prognosis observed is 
likely explained by the observation that, in late stages of HCC, 
TGFβ is known to promote EMT, which is a key mechanism 
involved in promoting tumor metastases129. In another widely rec-
ognized transcriptomic classification of HCCs, the subgroup S1 
was noted to be associated with WNT pathway activation which 
was the result of TGFβ activation102. These data suggest that TGFβ 
pathway activation is likely involved in a significant subset of 
HCCs and hence is a rational drug target130. In recent work from our 
group, we have shown that the heparan sulfate sulfatases promote 
HCC tumor progression by activating the TGFβ pathway118,131.

JAK/STAT pathway
STATs are activated by a variety of cytokines, hormones, and 
growth factors. The activation occurs through tyrosine phospho-
rylation by JAKs. Activated STATs stimulate the transcription of 
suppressors of cytokine signaling (SOCS) genes that, in turn, bind 
to phosphorylated JAKs and their receptors to inhibit this pathway, 
thus preventing over-activation of cytokine-stimulated cells. There-
fore, SOCS are a part of a negative feedback loop in the JAK/STAT 
pathway. JAK stimulation of STATs activates cell proliferation, 
migration, differentiation, and apoptosis, and deregulation of the 
inhibitors leads to human diseases, including cancer. Inactivation 
of the JAK-binding proteins SOCS1 and SSI-1 and activation of the 
JAK/SKAT pathway have been reported in HCC132,133.

Ubiquitin proteasome pathway
The ubiquitin proteasome system is involved in cellular protein 
degradation. After being tagged with ubiquitin, cellular proteins 
are degraded by the proteasome. The ubiquitin-activating enzyme 
E1 mediates ATP-dependent transfer of ubiquitin to a ubiquitin- 
conjugating enzyme (E2), which in turn transfers the ubiquitin 
either directly to the substrate protein or to a downstream ubiquitin 
ligase E3, which then ubiquitinates the specific substrate or 
substrates109. Several cancer-related proteins such as the tumor 
suppressors p53, p27, pRb, PTEN, the EGF receptor tyrosine 
kinase, TGFβ, and other cell cycle regulators and oncogenic mole-
cules are regulated by the ubiquitin-proteasome system134. E3 ligases 
that have been shown to function as tumor suppressors in HCC 
include the mouse double minute 2 (MDM2) and BRCA1, which 
target p53 for ubiquitination and degradation135; Smad ubiquitini-
zation regulatory factor-2 (Smurf-2), which targets Smad proteins 
and the TGFβ receptor complex for degradation136; and the FRA6E 
fragile site protein Parkin, which targets cyclin E and P38137.

Immune escape mechanisms in hepatocellular carcinoma
The liver faces a constant stream of exogenous antigens from the 
gut reaching it via the portal vein and hence has a unique tolero-
genic immune environment. HCC tumor cells developing in this 
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background are able to evade immune surveillance by several 
mechanisms. Regulatory T cells (Tregs) are a subset of CD4+ 
T cells that suppress effector CD8 T cells, thus playing an impor-
tant negative role in anti-tumor immunity138. Several studies have 
shown that HCC tumor tissues appear to be infiltrated with Tregs 
and also that patients with HCC have an increased number of cir-
culating Tregs, thus implying that they likely play a pathogenic 
role in HCC139. Another mechanism of immune suppression in 
the tumor microenvironment is an increase in immunosuppressive 
cytokines—such as interleukin-4 (IL-4), IL-5, IL-8, and IL-10—
with simultaneous suppression of immune activating cytokines: 
IL-1, TNF, and interferon gamma140. This unique cytokine signature 
has been shown to promote tumor metastases, and circulating levels 
of IL-10 were reported to be associated with poor prognosis140–142. 
An alternate mechanism of immune evasion that has gained recent 
attention is modulation of tumor immunity by the programmed 
cell death-1 (PD-L1/PD-1) immune checkpoint pathway143,144. 
Increased expression of PD-L1 in tumor cells induces apoptosis 
of effector T cells and contributes to immune evasion144. Immune 
checkpoint inhibitors are being increasingly recognized as effective 
therapeutic option for cancers like melanoma, and a recent early 
report from a phase I/II study has suggested that, in patients with 
advanced HCC, the anti-PD-1 monoclonal antibody nivolumab has 
clinical efficacy without significant toxicity145.

Cancer stem cells in hepatocellular carcinoma
The origin of self-renewing cells in HCCs is not clearly understood, 
and, recently, growing evidence supports the novel notion that 
tumor initiation is likely driven by a subset of cells with stem cell  
features. These cancer stem cells (CSCs) are considered to be 

responsible not just for tumor initiation but also for tumor persist-
ence, relapse, and metastasis, thus leading to a more aggressive 
tumor phenotype146. CSCs also render a tumor chemoresistant and 
radioresistant, which may explain why HCCs are generally resist-
ant to conventional chemotherapies and also why newer-generation 
therapies like sorafenib, which do not target CSCs, are associated 
with frequent tumor relapse after therapy. Hence, identification and 
characterization of signaling pathways and biomarkers associated 
with CSCs are priorities for developing new paradigms of molecu-
lar cancer therapeutics in the treatment of HCC147. CD133 antigen 
is considered to be a marker for CSCs, and HCCs with high CD133 
expression were associated with poor survival and high recur-
rence rate148. One of the mechanisms identified in the induction of 
stemness in HCCs is IL-6-mediated activation of STAT3, which in 
turn leads to transcriptional activation of CD133149. Another study 
described CD24 to be a functional marker of liver tumor-initiating 
cells that drives tumorigenesis through STAT3-mediated regulation 
of a self-renewing gene NANOG150. Further understanding of the 
role of CSCs in the pathogenesis of HCC will hopefully unveil new 
therapeutic targets.

Conclusions and future directions
HCC is a heterogeneous malignancy resulting from diverse causes 
of chronic liver injury, with viral hepatitis being the most com-
mon etiology. Regardless of the etiology, there appears to be a final  
common pathway in the pathogenesis of HCC in which repeated 
hepatocyte damage sets up a vicious cycle of cell death and regener-
ation which eventually results in genomic instability and initiation 
of HCC (Figure 2). Recent advances in next-generation sequencing 
are playing a pivotal role in providing a more comprehensive 

Figure 2. Pathogenesis of Hepatocellular Carcinoma. Chronic exposure of the liver to injury from viral hepatitis, alcohol abuse or NASH 
causes repeated hepatocyte damage and sets up a vicious cycle of cell death and regeneration which eventually results in cirrhosis. The 
resultant genomic instability leads to initiation of HCC. Step wise accumulation of multiple genetic events including gene rearrangements, 
somatic mutations, copy number alterations, epigenetic changes and growth factor pathway alterations eventually lead to tumor 
progression and metastases. Abbreviations: Hep B, hepatitis B; Hep C, hepatitis C; HCC, hepatocellular carcinoma; NASH, non-alcoholic 
steatohepatitis.
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Table 1. Major molecular events in the pathogenesis of hepatocellular carcinoma.

Genomic alterations Gene mutations TERT promoter23–26 
TP5326,29,31–33 
CTNNB131–33 
AXIN1, AXIN231–33 
ATM29 
RPS6KA329 
JAK1, IL6R, IL6ST36 
ARID1, ARID267,68

Gene amplification/Deletions CCND132 

FGF1932 

CDKNA2A, CDKNA2B32,45 

AXIN132 

IRF232 

MET45

Epigenetic modifications DNA Methylation GSTP153,57,58 
E-Cadherin53 
CDKNA254,55 
RASSF1A56 
SOCS-359 
MGMT60

MicroRNA MiR-15576 
MiR-12278–80 
MiR-22482–84 
MiR-184 
MiR-22484 
MiR-2184

Lnc RNA HULC86,87 
HEIH88 
Dreh89 
MVIH90,91 
HOTAIR92,93 
MDIG94 
LINE195

Growth factor pathway 
alterations

Major signaling pathways Wnt/β –catenin101,102 
Tyrosine kinase pathways- 
              EGF112, 
              HGF/c-MET113,114,  
              FGF115,116  
              VEGF121,122 
IGF124,125 
HIF 1,2126 
TGF β128,129 
Hedgehog

understanding of the genomic landscape of HCC and in identifying 
driver mutations (Table 1). Also, recognition of specific molecular 
pathways commonly involved in HCC initiation and progression is 
facilitating recognition of novel drug targets for HCC. Currently, 
sorafenib is the only systemic therapy approved for the manage-
ment of advanced HCC. A deeper understanding of the molecular 
pathogenesis of HCC will be instrumental for new drug discovery, 
which is desperately needed for the thousands of patients with this 
lethal malignancy.

There are several challenges to applying the knowledge gained 
from understanding the molecular pathogenesis of HCC in the 
care of patients diagnosed with this malignancy. The signifi-
cant epidemiologic and molecular heterogeneity of HCC has 
to be overcome before individualized recommendations can be 
derived from broad generalizations. With further discovery of 
molecular subclasses, we can hopefully identify more homogenous 
subgroups that can be specifically targeted for drug development. 
Also, there is an urgent need to identify and validate biomarkers 
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that can be used for early, non-invasive diagnosis and for prog-
nostication. The most critical need of the hour is recognition of 
druggable molecular targets that can promote drug discovery 
efforts. Further endeavors to create better experimental models, 
such as patient-derived xenografts, will encourage personalized 
drug discovery.
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