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ABSTRACT
Objectives To test the feasibility of using text mining
to depict meaningfully the experience of pain in patients
with metastatic prostate cancer, to identify novel pain
phenotypes, and to propose methods for longitudinal
visualization of pain status.
Materials and methods Text from 4409 clinical
encounters for 33 men enrolled in a 15-year longitudinal
clinical/molecular autopsy study of metastatic prostate cancer
(Project to ELIminate lethal CANcer) was subjected to natural
language processing (NLP) using Unified Medical Language
System-based terms. A four-tiered pain scale was developed,
and logistic regression analysis identified factors that
correlated with experience of severe pain during each month.
Results NLP identified 6387 pain and 13 827 drug
mentions in the text. Graphical displays revealed the pain
‘landscape’ described in the textual records and confirmed
dramatically increasing levels of pain in the last years of life
in all but two patients, all of whom died from metastatic
cancer. Severe pain was associated with receipt of opioids
(OR=6.6, p<0.0001) and palliative radiation (OR=3.4,
p=0.0002). Surprisingly, no severe or controlled pain was
detected in two of 33 subjects’ clinical records. Additionally,
the NLP algorithm proved generalizable in an evaluation
using a separate data source (889 Informatics for Integrating
Biology and the Bedside (i2b2) discharge summaries).
Discussion Patterns in the pain experience, undetectable
without the use of NLP to mine the longitudinal clinical
record, were consistent with clinical expectations, suggesting
that meaningful NLP-based pain status monitoring is
feasible. Findings in this initial cohort suggest that ‘outlier’
pain phenotypes useful for probing the molecular basis of
cancer pain may exist.
Limitations The results are limited by a small cohort size
and use of proprietary NLP software.
Conclusions We have established the feasibility of
tracking longitudinal patterns of pain by text mining of free
text clinical records. These methods may be useful for
monitoring pain management and identifying novel cancer
phenotypes.

INTRODUCTION
Pain is a debilitating part of the experience of meta-
static cancer. An automated system to categorize and
track pain in electronic medical records could provide
a powerful means to improve clinical care, and could
allow novel ‘high pain’ or ‘low pain’ phenotypes to
be defined and studied on a molecular basis. We
tested the feasibility of using natural language pro-
cessing (NLP) of text from clinical encounters to
depict meaningfully the experience of pain in patients
with metastatic prostate cancer over time.

BACKGROUND
Worldwide, prostate cancer is the second most com-
monly diagnosed cancer and the sixth leading cause
of cancer death in men.1 In the past decade, signifi-
cant effort has been made to better understand and
reduce the burden of pain on the cancer patient,2–5

the patient’s family, caregivers, and society.6 Pain
status can predict survival in metastatic prostate
cancer,7 and changes in pain status have been exam-
ined as a surrogate marker of effectiveness of new
therapies.8 9 Several validated pain survey tools have
been proposed for routine clinical care.10 11

NLP has been used to quantify associations
between diseases, conditions, and symptoms,12–16

for vocabulary discovery,17 and for cohort con-
struction.18–25 NLP applications focusing on pain
in clinical records have successfully detected the
experience of pain in free text within an electronic
medical record.26–28 Some studies suggest that, in
some scenarios, NLP of medical record text may
perform better than patient-completed surveys in
detection of clinically relevant pain.26 28

Although pain has previously been normalized
and classified manually for purposes of statistical
correlations,29 we used NLP to automatically char-
acterize the experience of pain over thousands of
records. To our knowledge, this is the first study to
combine NLP, date resolution, and statistical analysis
to create a longitudinal study of pain in the clinical
record. Our system normalized each mention of
pain in longitudinal clinical records by severity clas-
sification and number of days before death. We used
regression modeling techniques to analyze both the
newly structured data and the existing structured
data to search for phenotypic correlations with pain
in the context of metastatic prostate cancer.
Pain management is fundamental to effective

clinical care, and significant pain is a consequence
of the disordered biology of many cancers. This
study tests the feasibility of automatically tracking
patient pain over time using NLP of clinical record
text. If NLP-based pain tracking is feasible, further
study will be indicated to test the hypothesis that
adoption of NLP-based pain tracking within elec-
tronic health record systems could provide signifi-
cant added value in clinical care and in advancing
research in disease phenotyping.

METHODS
Patient cohort
Thirty-three men from the PELICAN (Project to
ELIminate lethal CANcer) integrated clinical/molecu-
lar autopsy study of metastatic prostate cancer were
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the subjects of this study. Subjects joined the institutional review
board-approved study between 1995 and 2005. The mean age of
the study subjects at the time of diagnosis of prostate cancer was
62 years (range 42–75). The mean interval between diagnosis and
death was 6.3 years (range 0.8–15.4). Of the 33 subjects in the
study, 27 were Caucasian, five were African-American, and one
was of Hispanic background. Six subjects were seen only in com-
munity hospital inpatient, clinic and private office settings; the
remaining 27 subjects were followed in a combination of oncology
center and community hospital clinic settings.

Clinical records obtained
The study obtained and analyzed all available paper, electronic,
radiologic, radiation therapy, and pathology medical records for
each subject. Subjects provided a list of institutions and phys-
ician offices where medical care was received, and copies of
medical records from the various institutions and offices were
obtained.

Creation of electronic records for each study subject
A total of 23 887 pages of paper records were converted into
electronic text using methods described in the online appendix.
The electronic record included laboratory values, radiology
reports, pathology reports, and records of inpatient and out-
patient encounters with providers. The text recorded in 4409
inpatient and outpatient encounters is called the ‘PELICAN
corpus’ and is the focus of this study.

Integrated Life Sciences Research (ILSR) database
and removal of identifiers
The full curated electronic text of each paper record was placed
in the ILSR database, a system created to support the PELICAN
Study. The average number of inpatient or outpatient records
per year between diagnosis and death was 32 (range 4–212).
Subject date of birth, date of death, race/ethnicity, all available
serum prostate-specific antigen (PSA) concentrations, body
weight measurements, body height measurements, and radiation
therapy records were separately tabulated in ILSR by project
data curators.

Pain status categorization
A multidisciplinary team consisting of NLP software developers,
medical subject matter experts (SMEs), and statisticians devel-
oped a pain categorization model based on a conservative four-
tiered pain scale: no pain (category 0); some pain (category 1);
controlled pain (category 2); severe pain (category 3).

Natural language processing
We used ClinREAD, a proprietary healthcare-domain-oriented,
rule-based NLP system (Lockheed Martin, Bethesda, Maryland,

USA) built on AeroText (Rocket Software, Newton, Minnesota,
USA) and previously successfully used by members of the study
team in the Informatics for Integrating Biology and the Bedside
(i2b2) obesity challenge.22 30 ClinREAD was chosen because of
its availability to the project team and team familiarity with its
use. Other valid approaches, including machine learning, were
not used because of lack of available resources for the current
project. The first stage of the current project involved iterative
development and evaluation of NLP-based pain extraction and
qualification (severity, anatomy, and date) in the 4409-record
PELICAN corpus, for the purposes of discovery over a closed
dataset. During this stage, we made iterative modifications to
our entire system, data model, normalization rules, and vocabu-
lary (details in online appendix). We tested the generalizability
of the NLP methods on 889 unannotated, deidentified discharge
summaries provided courtesy of i2b2.31

The system rated each mention of experienced or explicitly
denied pain on the basis of the context in which it was found
(table 1). We developed 42 pain severity contextual rules, such
as (complete list in online appendix table 2):
[pain severity modifier] [body location] [pain term]
[pain term] [to be] [adv] [PainSeverityComplement]
[pain term] … [pain severity complement] out of [10|ten]
Vocabulary from the Unified Medical Language System (UMLS;

version 2010AB)29 was imported via the Metathesaurus from 35
level 0 source vocabularies (see online appendix table 3). We
selected 16 semantic types based on the domain of the data as
shown in online appendix table 4. Lookup tables were created
from each set of synonymous terms in order to associate each
phrase with a preferred term and a UMLS concept unique identi-
fier (CUI). A filtering process similar to that of Roberts et al32 was
used to remove irrelevant terms. After filtering, a total of 675 000
terms and phrases were contained in the study vocabulary.

We combined the vocabulary terms with context patterns in
order to recognize internal dates, negatives, conditionals, and
pain severity. These context patterns were developed manually.
ClinREAD, like MedLEE,33 is rule-based. Each clinical concept
(‘sign or symptom’, ‘finding’, ‘injury or poisoning’, ‘disease or
syndrome’, or ‘neoplastic process’) is associated with a date and a
body location; see online appendix for further detail. The system
resolved incomplete dates (eg, ‘in July’) based on the date of the
encounter, and resolved relative dates (eg, ‘four days prior to
admission’) based on the previous date mention. Each resolved
date is represented as a range (startdate, enddate). This date reso-
lution component was based on the development team’s previous
work34–37 and is described in the online appendix. When dates
were missing, the date of the clinical encounter was used as the
default. Date associations were used to normalize the clinical
concept to the number of days before death, for each individual
study subject. This calculation is enabled through the conversion

Table 1 Example pain severity indicators

No pain (category 0) Some pain (category 1) Controlled pain (category 2) Severe pain (category 3)

Example modifiers (occurring before pain mention) No Some Controlled Severe
Without Mild Controlling Significant
No complaint Intermittent Treatment for Crushing
Denied any Occasional Essentially controlled Excruciating
Absence of Negligible To control this Exquisite

Example complements (occurring after pain mention) Relieved Dull Controlled Intractable
Resolved Not too bad Managed [8–10]
0 [1–7] Well managed [Eight–ten]
Zero [One–seven] Unbearable

Persistent Uncontrollable
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of the midpoint of absolute date ranges to the modified Julian
format.38 Each mention of pain was associated with a severity
level from the four-tiered pain scale. A subset of 637 strings from
semantic type ‘sign or symptom’ were identified as indicating
pain, listed in online appendix table 5. The NLP algorithm used
for the study is summarized in figure 1 and as follows.
1. Generic processing

A. Text tokenization and sentence detection.
B. Find mentions of dates and numbers; identify the date

of the encounter to be used in date resolution.
C. Resolve dates in document order, and calculate Julian

format of the midpoint of each date range.
2. Find clinical data (concept extraction)

A. Find mentions of body locations using UMLS vocabu-
lary; look up preferred term.

B. Find mentions of clinical concepts using UMLS vocabu-
lary; look up preferred term.

C. Disambiguate overlapping UMLS vocabulary based on
confidence scores associated with each contextual rule.
Semantic type disambiguation of overloaded terms was
rudimentary; we used context in some cases but relied
heavily on default assumptions for terms commonly
used in the context of prostate cancer (especially for
abbreviations). For the purposes of discovery over a
closed corpus, the current disambiguation was effective,
as shown by our evaluated performance.

3. Find context information
A. Find context of UMLS vocabulary to identify negations,

conditionals, and hypotheticals, and to associate pain
severity level, body locations and explicit dates. Context
rules were manually built. The negation context rules
used much of the same vocabulary as the NegEx algo-
rithm.39 Additional rules to distinguish family history,
conditionals, and hypotheticals were manually developed
from examination of the dataset.

B. Find negated list sentences (‘The patient denies nausea,
headache, fevers, or chills.’) and negate all concept

mentions within them. These predictable sentences were
common in the dataset.

C. Convert negated instances of pain concepts to severity
scale 0.

4. Clean clinical concept data
A. Associate dates and body locations with UMLS clinical

concepts. Use the date of the encounter when an explicit
date for the event cannot be determined.

B. Assign CUIs based on vocabulary, severity, semantic type,
and body location.

C. Update structured data concepts that lack severity or
body locations where the CUI implies them (‘severe
headache’, C0239889).

D. Delete non-pain negatives, conditionals, and hypotheti-
cals from the structured dataset in order to create a set
of actual, experienced clinical concepts.

E. Calculate ‘days before death’ for each clinical concept,
using the associated Julian formatted date and a lookup
table listing the Julian formatted date of death for each
subject in the PELICAN cohort.

Although our system is proprietary, it could be replicated
using other tools. One might start with any system that extracts
concepts and identifies assertions as defined for the 2010 i2b2/
VA challenge on concepts, assertions, and relations in clinical
text.38 One could then integrate a temporal reference extraction
and normalization tool such as HeidelTime,40 GATE with the
Tagger_DateNormalizer plugin,41 or DANTE,42 filter out the
pain-related concepts, as listed in appendix table 5, and identify
the level of pain using rules defined in appendix table 2 and the
lookup table defined in appendix table 11.

Study database
NLP processing of the records database produced structured
data on each pain mention in each clinical record for all 33
study subjects. These data were combined with demographic
and other separately curated data about each subject into a
single study database suitable for statistical analysis.

Figure 1 Natural language processing algorithm. CUI, concept unique identifier; UMLS, Unified Medical Language System.
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Identification of correlates of severe pain
We undertook a univariate logistic regression analysis to identify
correlates of severe pain for use in a multivariate model; factors
investigated included receipt of various drugs (eg, opioids,
chemotherapy, steroids), body mass index (BMI), receipt of pal-
liative radiation, and frequency of utilization of health services—
that is, we correlated severe pain, as derived by NLP processing,
with clinical and demographic factors from the structured (ie,
non-NLP-based, pre-existing) portion of the study database. For
this analysis, ‘severe pain’ was any reading of controlled or severe
pain—that is, any reading of 2 or 3 during a month of observa-
tion versus any other reading (−1=no data, 0=explicit report of
no pain, 1=reported pain not described as controlled or severe);
see online appendix for further details. We then constructed a
multiple regression model to assess the strength of associations
between the occurrence of severe pain and all defined variables
for which p was less than 0.1 in the univariate analysis. Inclusion
of a dichotomous variable indicating ‘last year before death’ con-
trolled for time effects.43 All statistical analyses were conducted
with SAS V.9.2 using the Proc Logistic procedure.

Visualization of patients’ experience of pain
We determined a pain index value for each subject during four
intervals before death, with pain index defined as the mean
monthly maximum pain value (max_pain) for months in which
a pain report was available; the monthly max_pain values used
were no pain=0, some pain=1, and controlled pain or severe
pain=2 (see figure 3). We then obtained longitudinal views of
pain status in each subject by plotting color-coded monthly
max_pain values from diagnosis until death (figure 2). When no
pain status report was available for a given month, we used the
most recent pain status as the imputed value for a given subject.

To test the possibility of visualizing a summary of pain records
from a group of subjects, we displayed the fraction of study subjects
in each pain severity up to the time of death (see online appendix
figure 2A), as well as the worst pain severity detected for each
subject for each month up to death (see online appendix figure 2b).

RESULTS
The purpose of the project was discovery over a closed dataset and
a study of feasibility. To evaluate and improve the performance of
the NLP algorithm on the dataset, we completed multiple rounds
of SME evaluation (GSB and RJT). Across all patient encounters,
the NLP algorithm identified 6387 pain mentions (mean 1.45 pain
mentions per record) and 13 827 drug mentions.

Evaluation of NLP method within PELICAN clinical
text records
After development, we evaluated performance on the closed
PELICAN corpus using the AeroText Answer Key Editor. The

SMEs separately corrected 32 automatically annotated full text
clinical encounter records randomly selected from the entire
study set to create ‘answer keys’. These 32 records contained 207
mentions of pain. The NLP developers had no influence on the
correction of the annotations. Inter-annotator agreement on pain
mention (exact token match in the text and normalized concept
name), pain start and end date (exact match), body location of
pain (exact match), and pain severity integer are shown in table
2A, B. We assessed inter-annotator agreement by scoring one
annotation set against the other. The entire team then met to
discuss and adjudicate the two sets of corrections. Pain mentions
on which there were disagreements were resolved to form the
gold standard answer key; see online appendix table 6 for exam-
ples. We then assessed system performance compared against the
gold standard answer key, requiring correct answers (region of
text, normalized concept name, body location, and pain severity
integer) to be exact matches. Recall is the percentage of pain men-
tions in the record that were correctly identified by the NLP
system. Precision is the percentage of pain mentions identified by
the NLP system that are correct. F-measure is the harmonic mean
of precision and recall, and provides a measure of overall accuracy.
F-measure for pain mention detection was 0.95, and for overall
average pain severity assignment was 0.81 (see also table 3).

Evaluation of NLP methods within i2b2 discharge
summaries
We further evaluated the generalizability of our NLP methods
using a blind test set from 889 unannotated, deidentified dis-
charge summaries from i2b2.31 Detailed methods are provided
in the online appendix. A test set of 30 discharge summaries
(containing 111 pain mentions) was chosen and kept unknown
to the NLP developers at all times during the evaluation
process. The remaining i2b2 records were designated the ‘devel-
opment set.’ Ground truth was created using the same process
as the PELICAN evaluation, with the added control that the
annotation process was supervised by a developer not involved
in the project. Inter-annotator agreement on the i2b2 corpus is
shown in table 2C, D. The SMEs adjudicated each disagreement
to obtain an approved gold standard. Several differences were
noted by the SMEs between the i2b2 and the PELICAN clinical
record corpora, including an increased frequency of ambiguously
dated pain mentions in the i2b2 corpus, as shown by the low
inter-annotator agreement for start and end dates in table 2C.
Further discussion can be found in the online appendix, as can
the adjudicated annotations for our 30-report i2b2 test set.

The NLP system was run, as built, on the blind i2b2 test set
and scored against the approved gold standard using the
AeroText scoring tool. The initial extraction F-measure for pain
mentions in the new test set was 0.87; see appendix for

Table 2 Inter-annotator agreement on (A) pain mention, pain start and end date, and body location on the PELICAN corpus, (B) pain severity
on the PELICAN corpus, (C) pain mention, pain start and end date, and body location on the i2b2 corpus, and (D) pain severity on the i2b2
corpus

A—PELICAN corpus B—PELICAN corpus C—i2b2 corpus D—i2b2 corpus

Agreement Agreement Agreement Agreement

Pain mention 0.97 No pain 0.93 Pain mention 0.88 No pain 0.81
Start date of pain 0.93 Some pain 0.91 Start date of pain 0.79 Some pain 0.86
End date of pain 0.91 Controlled pain 0.79 End date of pain 0.74 Controlled pain 1.00
Body location of pain 0.76 Severe pain 0.85 Body location of pain 0.71 Severe pain 0.67

Severity of pain overall average 0.88 Severity of pain overall average 0.85

i2b2, Informatics for Integrating Biology and the Bedside; PELICAN, Project to ELIminate lethal CANcer.
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complete scores. A 10-hour development process was then con-
ducted to adjust for stylistic differences in the new corpus. The
system was scored again, and the system F-measures on pain
mentions and pain severity increased to 0.90 and 0.81,
respectively.

Date association accuracy was significantly lower than for the
PELICAN corpus, falling for start date from 0.90 for PELICAN
to only 0.64 for i2b2. We believe that this was the result of a
larger number of ambiguous date references in the i2b2 corpus
and differences in the annotation guides used by the SMEs to
annotate the two corpora; see online appendix for further
discussion.

Post-development measures of the NLP extraction over the
i2b2 corpus are given in table 3; the final NLP extraction of
pain in the i2b2 test set is given in the online appendix.
Developers remained blind to the test set throughout the devel-
opment process. The blind evaluation on an independent

dataset showed that, with 10 h of development time to adjust
for corpus stylistic differences, the NLP system developed for
this project is generalizable beyond the PELICAN corpus.

Pain phenotype exploration
Overall, pain increased markedly during the last 2 years of life
(figure 2). Metastatic prostate cancer was the listed cause of
death in all study cases, and none of the subjects was found to
have significant additional contributing causes of death. In the
final year of life, subject pain index varied widely, from 0.3 to
1.6, with a roughly equal distribution of subjects across this spec-
trum. The five African-American study subjects clustered at the
high end of the pain index spectrum (range 1.3–1.6) (table 4).

The system detected no severe or controlled pain in two sub-
jects (8 and 30). The number of clinical encounter records avail-
able per year between diagnosis and death for these two
subjects was 32 and 19, indicating that the lack of severe pain

Figure 2 Study subject pain ribbons
‘algograph’ display. Maximum pain
reported by each subject from prostate
cancer diagnosis until time of death
from prostate cancer. Pain data are
reported for each month. Grey, no
report; green, no pain; yellow, pain;
orange, controlled pain; red, severe
pain.

Table 3 Accuracy of natural language processing algorithm extraction of pain mentions regarding (A) pain mention, pain start and end date,
and body location on the PELICAN corpus, (B) pain severity on the PELICAN corpus, (C) post-development pain mention, pain start and end date,
and body location on the i2b2 corpus, (D) post-development pain severity on the i2b2 corpus

A—PELICAN corpus B—PELICAN corpus

TP Inc FN FP Recall Precision F-Measure TP Inc FN FP Recall Precision F-Measure

Pain mention 153 0 7 9 0.96 0.94 0.95 Explicitly no pain 19 3 2 0 0.79 0.86 0.83
Start date of pain 145 8 7 9 0.91 0.90 0.90 Some pain 75 18 1 8 0.80 0.74 0.77
End date of pain 145 8 7 9 0.91 0.90 0.90 Controlled pain 17 1 2 0 0.85 0.94 0.90
Body location of pain 51 1 23 3 0.68 0.93 0.80 Severe pain 20 0 2 1 0.91 0.95 0.93

Severity of pain overall average 131 22 7 9 0.82 0.81 0.81

C—i2b2 corpus D—i2b2 corpus

TP Inc FN FP Recall Precision F-Measure TP Inc FN FP Recall Precision F-Measure

Pain mention 105 0 6 17 0.95 0.86 0.90 Explicitly no pain 18 1 0 3 0.95 0.82 0.88
Start date of pain 74 31 6 17 0.67 0.61 0.64 Some pain 67 10 2 14 0.85 0.74 0.79
End date of pain 73 32 6 17 0.66 0.60 0.63 Controlled pain 5 0 3 0 0.63 1.00 0.81
Body location of pain 64 0 42 10 0.60 0.86 0.73 Severe pain 4 0 1 0 0.80 1.00 0.90

Severity of pain overall average 94 11 6 17 0.85 0.77 0.81

FN, false negative; FP, false positive; i2b2, Informatics for Integrating Biology and the Bedside; Inc, incorrect; PELICAN, Project to ELIminate lethal CANcer; TP, true positive.
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reports in these two subjects was not due to a lack of clinical
encounters. We found no evidence that these subjects died
earlier in the course of their disease from non-cancer causes.
Since bone pain is the major source of pain in men with meta-
static prostate cancer, we reviewed bone scan findings in these
two subjects, and both demonstrated widespread bone changes
consistent with metastatic prostate cancer, similar to scan results
from all other study patients.

Correlates of severe pain
In the initial univariate analysis, all considered variables except
for receipt of definitive radiation and maximum recorded BMI
correlated significantly with severe pain. African-American eth-
nicity was borderline associated with severe pain (OR 1.5,
p=0.09). Receipt of opiates (OR 25.6, p<0.001), palliative radi-
ation (OR 13.8, p<0.0001), and being in the last year of life
(OR 9.9, p<0.001) were strongly associated with severe pain.
See online appendix for detailed univariate analysis results.

In the multivariate analysis, only five of the 12 remaining
factors were significantly associated with severe pain (p<0.1):
receipt of palliative radiation, opioids, or chemotherapy; being
in the last year of life; and the number of outpatient visits (table 4).
Receipt of non-steroidal anti-inflammatory drugs (NSAIDs), cor-
ticosteroids or sex-steroid-manipulating drugs were not signifi-
cantly associated. These findings are consistent with current
clinical practice, where palliative radiation44 45 and opioids46

are treatments typically reserved for severe pain, and NSAIDs,
corticosteroids, and sex-steroid drugs are used more generally
across the pain spectrum.46 Similarly, the last year of life is clin-
ically known to be when severe pain is most common46 and

when clinical encounters are most frequent. The multivariate
model found no significant association with increasing serum
PSA concentration, age at diagnosis, or decline in BMI to
<90% maximum after controlling for the effects of time. There
was a non-significant trend associating African-American ethni-
city with more severe pain.

The model and findings were robust, explaining 83% of the
variability in the data. When we excluded six patients who were
seen only in a community setting and who had fewer recorded
clinical encounters, the patterns of association remained
unchanged. Moreover, when we removed from the model all
variables that were not significant in the univariate analysis, the
strengths of the associations (adjusted ORs) of the remaining
variables and p values changed only marginally.

DISCUSSION
In multivariate regression analysis, pain status detected by NLP
correlated statistically with parameters clinically known to be
associated with increased pain. Conversely, pain status detected
by NLP was not associated with parameters not expected to be
clinically associated with pain status, such as administration of
definitive radiation with curative intent. These results suggest
that meaningful NLP-based pain status monitoring is feasible.
While this project used a rule-based NLP system, machine-
learning-based NLP tools should be tested in future work.

Text in longitudinal data is valuable for the study of symptoms
such as pain, where the clinical unstructured description may be
more complete than it is in structured data.28 NLP techniques
convert such unstructured data into structured data, which is typ-
ically more amenable to rigorous analysis and display.

Figure 3 Pain index by subject in
last months of life. Five African-
American subjects have asterisks
added to their study subject numbers.
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Relief of pain is essential in the management of many acute
and chronic diseases, and convenient automated monitoring of
patient pain status could provide a valuable new tool for
improving quality of life and care. Real-time, easy-to-interpret
views of the pain status history of an individual patient or a
group of patients, as shown in figure 2 and online appendix
figure 2, could allow busy clinicians to identify patients most in
need of increased pain management intensity, and allow
researchers to perform visual and quantitative comparison of
groups of subjects participating in clinical trials of novel therap-
ies or novel clinical interventions.

NLP-based determination of pain status may help to identify
clinically significant molecular differences between prostate
cancers. For example, a study of the molecular differences in
the cancers of the two men who apparently experienced no
severe pain could provide important clues to the biological
determinants of severe pain in metastatic prostate cancer.
Similarly, the trend toward increased pain experienced by the
five African-Americans compared with the other men in the
study is consistent with an oncology clinical trial which found
that African-American men were more likely than white men to
have extensive disease and bone pain.47

Limitations and future directions
Our study has several limitations. First, the dataset was relatively
small, covering just 33 patients. Second, it was difficult to distin-
guish pain mentions that were not related to the subjects’ meta-
static prostate cancer. Although SME review of the records
revealed only rare examples of pain not related to prostate
cancer in the current study, future studies should implement
formal methods to identify and link pain to a relevant disease
source. Third, it was difficult to distinguish pain control status
from the patient’s current experience of pain. This study
defaulted to ‘controlled’ pain as one of the pain categories
because there were multiple records where the patient was
noted to be taking opioids for pain, but no current pain level
was provided. Fourth, we may have slightly biased our

annotation of the PELICAN corpus by using system outputs to
initialize annotations. This technique has been shown to
improve consistency, reduce annotation time,48 and improve
inter-annotator agreement.49 50 We minimized possible bias by
having the annotators work independently and by submitting
the results to team scrutiny and collaborative discussion. In
essence, the answer key was generated by compiling the answers
of four (overlapping) SMEs: two humans, the system itself, and
the team as a whole. The similar evaluation results obtained on
the separate i2b2 corpus, which used isolated test and develop-
ment sets, suggest that any bias was minimal. Finally, the use of
proprietary ClinREAD and AeroText NLP software may limit
reproducibility. However, this limitation is at least partially miti-
gated by our provision of detailed rules, as well as results from
our analysis of the i2b2 corpus. Investigators interested in
further analysis of the study dataset using other methods and
under appropriate confidentiality protection are invited to
contact the senior author.

CONCLUSIONS
Electronic health records have greatly facilitated detection and
understanding of disease phenotypes and their relationship with
genetic and non-genetic factors.51–55 The study reported here,
which we believe to be the first to use NLP to obtain longitu-
dinal pain status information in a cohort of patients, shows that
NLP-based monitoring of patient pain status is feasible and gen-
eralizable to new datasets, and provides a number of
phenotype-oriented observations useful for guiding future
research. Future studies should focus on comparison of
pain-status tracking by NLP versus other validated pain survey
tools, and on practical integration of the two methods in set-
tings where electronic health records are in routine use.
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Table 4 Multivariate regression analysis of natural language
processing-detected pain and clinical variables detects clinically
expected associations between pain status and administration of
palliative radiation and opioid drugs, as well as months before
death, and number of inpatient and outpatient visits

Variable
OR point
estimate 95% CI p Value

Received palliative radiation 3.61 1.90 to 6.84 <0.0001
Log PSA concentration 1.09 0.86 to 1.38 0.492
Age at diagnosis 1.00 1.00 to 1.00 0.655
African-American 1.56 0.80 to 3.05 0.190
Subject BMI <90% of
maximum

1.02 0.62 to 1.67 0.935

Chemotherapy administered 1.75 1.01 to 3.04 0.046
NSAID administered 1.34 0.78 to 2.29 0.284
Opioid drug administered 6.91 4.07 to

11.74
<0.0001

Steroid drug administered 1.21 0.70 to 2.06 0.497
In last year of life 2.52 1.46 to 4.36 0.001
Number outpatient visits 1.29 1.12 to 1.48 0.001
Number inpatient visits 1.30 0.75 to 2.26 0.350

BMI, body mass index; NSAID, non-steroidal anti-inflammatory drug; PSA,
prostate-specific antigen.
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