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Abstract: The identification of essential proteins in protein–protein interaction (PPI) networks is not only important in
understanding the process of cellular life but also useful in diagnosis and drug design. The network topology-based centrality
measures are sensitive to noise of network. Moreover, these measures cannot detect low-connectivity essential proteins. The
authors have proposed a new method using a combination of topological centrality measures and biological features based on
statistical analyses of essential proteins and protein complexes. With incomplete PPI networks, they face the challenge of false-
positive interactions. To remove these interactions, the PPI networks are weighted by gene ontology. Furthermore, they use a
combination of classifiers, including the newly proposed measures and traditional weighted centrality measures, to improve the
precision of identification. This combination is evaluated using the logistic regression model in terms of significance levels. The
proposed method has been implemented and compared to both previous and more recent efficient computational methods
using six statistical standards. The results show that the proposed method is more precise in identifying essential proteins than
the previous methods. This level of precision was obtained through the use of four different data sets: YHQ-W, YMBD-W, YDIP-
W and YMIPS-W.

1 Introduction
Essential proteins are vital for the life and/or reproduction of
organisms, and play a very important role in maintaining cellular
life. If the destruction of a certain protein would cause lethality or
infertility, it can be said that it is essential to an organism, that is,
the organism could not survive without it [1]. Compared with non-
essential proteins, essential proteins are more likely to remain in
biological evolution [2]. For example, essential proteins are
excellent targets for the development of new potential drugs and
vaccines for the treatment and prevention of diseases. There are
methods that can be used to determine essential proteins. First,
there are experimental methods such as RNA interference [3],
single gene knockouts [4], and conditional knockouts [5]; these
require considerable amounts of time and resources and are not
always applicable. The second set of methods consists of
computational methods, which are faster and cheaper than
experimental approaches. The computational methods that have so
far been used to determine essential proteins can be divided into
the following basic categories:

i. Single centrality methods include degree centrality (DC) [6],
betweenness centrality (BC) [7], subgraph centrality (SC) [8],
eigenvector centrality (EC) [9], network centrality (NC) [10]
and local average connectivity (LAC) [11], which can be used
due to abundant access to protein–protein interaction (PPI)
network data. High degree (hub) proteins in the network are
more likely to be essential [6]. Since the degree of a vertex or a
hub is noted in PPIs, most authors have confirmed the
relationship between the DC and essentiality of proteins [12],
and some have examined the reasons behind link [13].
However, according to the centrality–lethality rule, proteins
with more network associations are more likely to be essential.
However, there are significant amounts of low-connected
proteins in the network that are essential. This method also
performs poorly in incomplete PPI networks. Since PPI
networks are produced using high-throughput methods, they
have a large number of false-positive interactions; this feature
also somewhat decreases the level of precision when predicting

essential proteins. Some protein interactions are more
important than others. Moreover, false-positive interactions
behave differently from true interactions.

Second, there are methods that use a combination of
centralities such as LBCC [14] (local density, BC and in-DC of
the complex), which is considered as one of the most effective
recent methods in this category. Chau et al. suggested a
combination of centrality measures for the identification of
essential proteins [15]. Del et al. analysed 18 reconstructed
metabolic networks using 16 different centrality measures, and
found that any paired combination of single centrality
measures can improve the efficiency of predictions; however,
three or more combinations had no effect on improving the
precision of predictions [16]. Qin et al. [14] proposed a
technique called LBCC to explore essential proteins based on
the topological properties of the network using four datasets:
YMIPS, YHQ, YDIP and YMBD. The experimental results
implied that the efficiency of LBCC is superior to methods that
only use a single centrality, such as DC, EC, LAC, SC, BC and
NC. It is also better than the LIDC method [17] (local
interaction density combined with protein complexes), which
uses a combination of several centralities. This method focuses
on the size of the topology centrality, and has little predictive
power for low-connectivity essential proteins. However, in our
proposed method, we compensated for this shortcoming by
including biological features to detect low-connectivity
essential proteins. We compared our proposed method with the
LBCC method; the results show that our proposed method
leads to an acceptable increase in the precision of predicting
these essential proteins.

ii. Methods that measure biological characteristics include
Go_ELAC [18] (local network topology and gene ontology
(GO) and PMN (based on the integration of weighted
interaction networks and functional modules) [19]. Hart et al.
showed that, according to their experimental data, a large
number of essential proteins tend to accumulate in specific
protein complexes [20]. Proteins can interact with each other
where is detected in biological experiments using co-
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expression and based on gene expression data in the duration
of time. Zhao et al. proposed a method called PEMC to
combine the topology of the network with a gene profile and
domain information for construction of weighted protein
networks in order to discover essential proteins [21]. Li et al.
presented a new method for the construction of protein
interaction network (PIN) using gene expression profiles and
sub-cellular location information. They found that if two
proteins are not expressed at the same time within the cell or
not placed in a similar compartment of the cell, their
interaction could not occur. From the spatial point of view, the
dynamics of protein expression indicates that the protein
performs its function in some cellular compartments [22]. Li et
al. proposed a new method called SPP based on sub-network
partition and prioritisation by integrating sub-cellular
localisation information. They found that their method can
significantly reduce the effect of false positives and increase
the prediction accuracy (ACC) of the essential protein
compared to existing computational methods such as DC, BC,
SC, EC, IC and NC [23]. Shang et al. employed RNA-Seq data
instead of microarray gene expression profiles to increase the
ACC of prediction [24]. Lei et al. presented a new method
called RGS based on RNA-Seq, subcellular localisation
information and Go annotation data. They measured the
network by the Go terms information and Pearson correlation
coefficient of RNA-Seq [25]. Li et al. proposed a new method
called GOS for the combination of the expression data,
ontology and sub-cellular localisation information in order to
identify the essential proteins [26]. Li et al. proposed a method
whereby calculating the topological potential value of each
protein, one can provide more accurately the importance of
each protein from the PPI network [27]. Peng et al. combined
localisation specificity (SP) for essential protein detection with
eight centrality methods separately to calculate localisation SP
centrality scores for proteins based on the protein sub-cellular
localisation interaction network. Compared with the high-
ranking centrality method, more proteins with high LCSs from
PSLINs were detected as essential. They proposed that proteins
should be localised in their sub-cellular compartments until
their expected functions could be performed, so that sub-
cellular localisation information could be useful for identifying
essential proteins [28]. Liu and Luo [18] presented an
algorithm called GO_ELAC, with the aim of identifying
essential proteins by integrating network topology and GO.
The experimental results show that the efficiency of the
GO_ELAC approach is better than methods that only use a
single centrality, such as DC, CC and LAC. It is also superior
to maximum neighbourhood component and density of
maximum neighbourhood component, which considers,
respectively, the size and maximum density of the connective
component as the vertex rank. Our proposed method, in
addition to using centrality measures and GO, examines the
neighbourhood on more levels, as well as biological properties,
compared to the GO_ELAC method. Yi et al. [19] also
developed a technique called PMN to identify essential
proteins based on functional modules and weighted PPI
networks. Using this technique, they examined the tendency of
essential proteins to fit into functional modules as a biological
feature of the proteins. Luo and Qi [17] introduced a method
called LIDC to detect essential proteins based on local
interaction density and protein complexes. The experimental
results obtained from the YMIPS dataset show that the
performance of LIDC is superior to the nine methods: DC, BC,
NC, LID [17], PeC [29], CoEWC [30], WDC [31], ION [32]
and UC [33]. We compared our proposed method with the
LBCC method, and this method compares its results with the
LIDC method. The experimental results show a significant
improvement in prediction precision for LBCC and our
proposed method compared with LIDC and LBCC,
respectively. Li et al. [29] presented a method called PeC by
combining the edge clustering coefficient with the correlation
coefficient of gene expression data. The experimental results
showed that the PeC method worked very well for the

prediction of essential proteins compared to the previous 15
proposed methods in the Saccharomyces cerevisiae network.
This method has been compared with the LIDC method.
According to [17] and the above analysis, our proposed
method also significantly improves the precision of predictions
compared to the LBCC method, and consequently, the LIDC
and PeC methods. Although these methods are considered to
have led to improvements in prediction, it is still possible to
significantly increase the precision of predictions. This is our
motivation for this study.

In this study, we use a combination of centralities, as well as
measuring the biological characteristics of essential proteins. The
input network was weighted in the proposed method in order to
eliminate false-positive interactions. By measuring the semantic
similarity between pairs of proteins based on GO, the edges of low
certainty were deleted before the creation of a weighted network.
To improve the size of the local centrality in the next step, the
precision of prediction was assisted using the idea of
neighbourhood development at the second and third levels of
indirect neighbourhoods, as well as their levels of significance.
Next, the level of precision was significantly raised by including
the biological characteristics of essential proteins, such as the
tendency of essential proteins to link with others, the necessity of
their presence in protein complexes and the assessment of their
significance in the final classifier. All of the combinations were
examined using binary logistic regression in order to calculate the
significance level. Due to the above-mentioned factors, this study
has recommended a new method to identify essential proteins
based on a combination of the best representative topological
measures of local and global centrality on the one hand, and
measures of the biological characteristics of essential proteins in
weighted PPI networks on the other. Several experiments were
conducted on modified PPI networks in Saccharomyces cerevisiae,
YHQ-W, YMBD-W, YMIPS-W and YDIP-W, as described in
Section 4.1. The proposed method was compared with three
previous ones that only used a single centrality, the most efficient
recent combinational centrality methods in the second category
(such as LBCC) and the most recent methods in the third category,
such as Go_ELAC, which uses the biological characteristics of
essential proteins [18] and PMN [19].

The experimental results show that a combination of local and
global centrality criteria measures, network topology and measures
of the biological characteristics of essential proteins increases the
precision of prediction by >10%.

2 PPI network modelling
The networks used in this research are non-directional and
weighted. With the graph G = V , E, W , it has been shown that
V = V1, V2, …, Vn  is a series of vertexes and
E = e1, e2, …, en  is a set of edges with W as the weight of each
edge. Each edge Vi, V j , weighted as Wi, j, shows the strength of
the interaction between the vertices Vi and V j based on semantic
similarity as a result of GO. The computations for the PPI networks
were made using the GFD-Net app [34] (analyse a gene network
based on GO and calculate a quantitative measure of its functional
dissimilarity), a plugin of Cytoscape tool in the weighting of some
datasets and followed by deleting false-positive interactions in
these networks. The subtraction of ‘functional dissimilarity’ from 1
led to the calculation of the ‘functional similarity’ value, called the
interaction strength, and the weight between proteins pairs. The
retrieved information can be observed from GO after the analysis
of dissimilarity.

In the field of graph theory and network analysis, there are a
number of measures to help determine the importance of vertices.
This section defines the measures of some well-known centralities.
 

Definition 1 (weighted DC): The weighted DC includes vertex i
and the total weight of the edges connecting vertex i to its
neighbours (1) [35] where Ni is a set of all the neighbours of vertex
i
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DCW i = ∑
j ∈ Ni

Wi, j (1)

 
Definition 2 (weighted BC): In the weighted BC BCW(i), vertex

i is the average value of the shortest path through vertex i (2) [35]

BCW i = ∑
s

∑
t

σst i
σst

, s ≠ t ≠ i (2)

so that sst is the total number of shortest paths between vertices s
and t; σst i  refers to the number of shortest paths from vertex s to
vertex t passing through vertex i.
 

Definition 3 (weighted closeness centrality): In the weighted
closeness centrality CCW(i) of a vertex i can be defined in a
weighted graph G as (3) [35]

CCW i = 1
∑ j ≠ i Cp i, j (3)

where Cp(i, j) is the cost of the shortest path p from node i to node j
and CCW(i) is a global measure that describes the way that vertex i
connects to other vertices. To calculate the cost of the shortest path
Cp(i, j), first, the cost of the edge between vertex i and vertex j is
considered Ci, j = 1/Wi, j and then the sum of the cost of all of the
edges are obtained. If there are multiple paths from vertex i to
vertex j, the shortest path is the one with the lowest cost; the
shortest path cost is shown as Cp(i, j).
 

Definition 4 (weighted EC): The weighted EC ECW(i) of vertex
i in the weighted graph G is defined as the ith component of the
principal eigenvector of A, where A is an edge weight matrix. If ρ
is an eigenvalue and e is an eigenvector, for equation re = Ae, we
can obtain ECW i = e1 i , which e1 corresponds to the largest
eigenvalue of A [35].
 

Definition 5 (weighted LAC-based centrality): In weighted
network G, the LAC-based centrality LACW(u) of vertex u is
defined as (4) [36]

LACW u =
∑s ∈ Nu ∑t ∈ Ns ∩ Nu w s, t

Nu
(4)

for given node u, Nu denotes the set of its neighbours and |Nu| does
the number of its neighbours. Parameter w(s, t) is the weight of the
edge connecting node s and node t. Parameter s is one of the
neighbours of node u, and t is the neighbour of s in Nu.

3 Proposed method
This section presents a method called DENCI, which applies a
combination of weighted degree measures of the vertex and its next
neighbours, a weighted measure of each protein in a complex set,
and the measure of its association with important proteins,
according to the following concepts:

i. Since we know that essential proteins tend to form in very
connected clusters, neighbourhood has been used on more
levels. That is the reason why we used the new independent
variable DWNN to get more neighbourhoods.

ii. Since the essential proteins gather in protein complexes, we
used the MCLUS independent variable to measure the
importance of proteins in protein complexes.

iii. Both local and global properties are important in identifying
essential proteins, so we used two independent variables,
LACW and DWNN.

iv. There are many low-connectivity proteins that are also
essential and that are ignored by methods based on topological
properties. For example, in the DIP-core dataset, there are 685
essential proteins. While 438 essential proteins are presented as
essential low-connectivity proteins with degree ≤5 (∼63.9%),
247 essential proteins are high-connectivity essential proteins
(∼36.1%) [37]. So, we tried to detect low-connectivity
essential proteins using their biological properties, which
increased the precision of identification (thanks to the new
MCLUS and Importance independent variables).

Two computational methods are usually performed to discover
the essential proteins, one which uses network topology and the
biological characteristics of essential proteins. However, many
low-connectivity proteins are also known to be essential proteins.
Thus, the identification of low-connectivity essential proteins is
performed using biological methods. We inserted all of the
individual measures (independent variables) in the logistic
regression analysis into the SPSS software; those with more
predictive power were considered in the construction of the final
equation. We removed any that were not significant
(P−value > 0.05).

The weighted edges indicate the strength of the interaction
between two proteins in the network graph. Therefore, by using
weighted measures of centrality, a greater number of essential
proteins can be detected than with centrality measures in non-
weighted networks. Here, first, the network is weighted by the
Cytoscape app GFD-Net to measure the semantic similarity
between pairs of proteins based on GO (a biological process).
Then, the topological properties of the graph are used to determine
the importance of each vertex. The vertex degree is considered one
of the most well-known measures for detecting essential proteins.
Degree centrality is usually used for local measures, but this
criterion is a poor indicator of connections in the network and most
of the literature has noted that centrality measures alone cannot
correctly predict all essential proteins. So, we use a combination of
rules to increase the precision of essential protein diagnosis.

According to Fig. 1, vertices 1 and 2 are equal in weighted
degrees but are topologically different both in terms of local
properties (number of interactions in 1 compared to 2) and global
characteristics (different positions of 1 relative to 2 throughout the
entire network). 

In a measure such as this, the importance of each vertex is
assessed through the combined total weighted of each vertex
(weighted degree (DCW)) as the local property, and the weighted
BC (BCW) is appraised as the global characteristic

CWD x = DCW(x) × BCW(x) (5)

Fig. 1  Vertexes 1 and 2 having an equal DC but with various topological properties
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However, even when two vertices have the same number and
strength of interactions but are topologically different, then the
number and strength of interactions cannot be compared properly
when identifying essential proteins (Fig. 1). Therefore, more
neighbourhood levels were examined to detect the topological
differences in vertices. On the other hand, proteins tend to be
densely associated with neighbouring vertices in order to
implement a particular biological function, and essential proteins
fall into these dense modules. The fundamental vertices in the
modules maintain the existing modules and their biological
functions. Therefore, the forms of modules can also be
incorporated into the identification of essential proteins through the
use of neighbourhoods. Since essential proteins tend to fit into
strongly associated clusters [13], the neighbourhood can be raised
at more levels (Fig. 1). Equations (6) and (7) define the use of
neighbourhood measures and local and global topological
characteristics in the diagnosis of essential proteins, Therefore,
adjacency(x) shows the set of nearest and next nearest neighbours
of vertex x, and DW(x) is the sum of ‘weighted DC multiplied by
the BC (as in (5)) of vertex x’ and nearest and next nearest
neighbours

DW x = ∑
y ∈ adjacency x

CWD y (6)

DWNN y = ∑
x ∈ adjacency y

Wy, x × DW x (7)

Tests by the software IBM SPSS Statistics using binary logistic
regression on the neighbourhood measure revealed that indirect
neighbourhood at two subsequent levels is significantly better than
at one subsequent level. The coefficient Wy, x shows the power of
the interaction between proteins and it is calculated on the edge of
the network as the edge weight. We obtained this value by
implementing the Cytoscape app GFD-Net. Using this app, the
level of dissimilarity of the two interacting proteins was calculated
based on GO data. We then subtracted it from 1 to obtain the
similarity value (see Fig. 1).

Vertex 1 has three neighbours, namely 2, 5 and 6, so the
adjacency is equal to adjacency 1 = 2, 5, 6  and
DWNN 1 = 2 × DW 5 + 1 × DW 6 + 3 × DW 2 . To calculate
each of the DWs according to (6)

DW 5 = CWD 6 + CWD 2 + CWD 5
+CWD 3 + CWD 4 + CWD(7) = BCW 6 × 1
+BCW 2 × 6 + BCW 5 × 2 + BCW 3 × 1
+BCW 4 × 1 + BCW(7) × 2

where for instance, BCW(5) shows the weighted BC of vertex 5,
and factor 2 is the weighted DC of this vertex. As such, the values
of DW(6) and DW(2) are obtained and included in (7). Vertex 5
has only one neighbour called vertex 1, in which direct and indirect
neighbours of vertex 1 are vertexes 6, 2, 5, 3, 4 and 7.

In PPI networks, there are generally functional modules that
play a key role in biological functions and essential proteins,
compared to individual proteins, tend to be within these functional
modules [20]. At this stage, the ranks of all proteins are calculated,
taking into account measures of the essential biological
characteristics of essential proteins and clusters. We obtained
clusters by implementing the Cytoscape app MCODE. The rank of
protein x, R(x), is defined as the total weighted degree of vertex x
with all of the proteins in clusters containing protein x. If vertex x
does not exist in any clusters, then vertex x is considered as a non-
essential protein with an R(x) value of zero. If
CP = {cp1, cp2, . . . , cpn}, and a set of protein complexes contain
protein x, then the weighted sum of this protein compared to the
other proteins within those complexes is defined as the measure of
MCLUS(x) protein

MCLUS(x) = ∑Wx, y | x, y ∈ cp1, cp2, . . . , cpn

and y ∈ adjacency x
(8)

In this section, we propose types of biological features that can be
used to detect essential proteins. One biological feature of essential
proteins is known to be the relationship between essential proteins
and other important proteins, meaning that if a protein has a
stronger relationship with other proteins, one can conclude that the
protein has a significant preference and is, therefore, a better
candidate for being an essential protein. The procedure for
selecting important proteins (SIP) is described below:

1. Initialise the dataset of the important protein, SIP = {Null}.
2. Calculate the weighted degree of each protein in the dataset.
3. Find the protein with the largest weighted degree (P_max) in

the dataset and add it to the SIP.
4. Remove P_max and its neighbouring proteins from the dataset.
5. Return to step 3 and repeat until the dataset is empty.
6. Output the SIP.

Afterwards, we calculate the weighted degree between each
protein and its neighbours, provided that the SIP has neighbours.
Therefore, we compute the importance of each protein in terms of
its relationship with other significant proteins and we show this as
Importance(x)

Importance x = ∑Wx, y | y ∈ adjacency x

and y ∈ SIP
(9)

Binary logistic regression was used to examine all combinations of
the various centrality measures using three measures:
neighbourhoods at the second and third levels (DWNN), MCLUS
and importance. In two datasets, namely YMBD and YHQ, the
weighted local average centrality (LACW) was highly significant
in comparison with the centrality measures of DCW, BCW, ECW,
CCW, NCW, SCW and ICW. Finally, these four combinations
detected higher numbers of essential proteins.

The essentiality of proteins can be judged using ratings. Before
ratings were given, all of the measures were normalised using
maximum–minimum normalisations, according to which all values
between 0.0 and 1.0 were linearly transformed. This is a simple
way of comparing levels on different scales and using different
measurement units. If max (xi j) and min (xi j), are the maximum
and minimum of the jth feature, respectively, and Xi j is the measure
of protein i at the centrality and feature of j, then the normal values
of the measures are obtained as

NM Xi j = Xi j − min Xi j
max Xi j − min Xi j

(10)

Therefore, the proposed method is defined by combining the above
concepts as

DENCI x = a × DWNN x + b × MCLUS x
+c × Importance x + d × LACW x

(11)

where a, b, c and d show the coefficients for the Importance of
each calculation, which are part of essential protein identification;
the functions DWNN, MCLUS and importance have also been
described above. The information to the logistic regression is fed
through 19 independent variables that use three columns of the
dataset. Two columns are related to the name of the proteins and a
column is related to the weight of the interactions between them.
Values of 16 independent variables (weighted and unweighted
centrality measures) are obtained using the Cytoscpe software
along with the CytoNCA plugin, whose input information is the
dataset that has the same three columns. Three other independent
variables were also implemented by the C# language, which their
values were obtained through the network, or the three data
columns, and some of the centrality measures obtained from the
CytoNCA. For fitting the binary logistic regression model, first, the
response variable was converted to a binary response variable.
Then, values of 19 independent measure variables were inputted to
the model (16 variables for weighted and unweighted centrality
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measures, two variables for biological properties and one for the
combination of local and global centrality measures for neighbours
of higher levels). The results of the Wald test and its comparison
with the significance level of 0.05, indicated that only the variables
DWNN, MCLUS, importance and LACW (four independent
variables) were significantly related to the type of protein (whether
it was essential or non-essential). Since the value of R2 for the four
above-mentioned combinations was >5, the best combination of
independent variables was finally selected. The value of parameters
a, b, c and d was obtained using value Bi, which can be verified
according to the significance level (Sig) and the Wald test. The
influence of each of the parameters a, b, c and d was determined
using its Wald value. We normalised value of four independent
variables based on (10), before conducting experiments using
binary logistic regression in order to improve value of the four
parameters. For example, the parameter values and its Wald values
were: [(a = B1 = 0.221, Wald = 27.902, Sig = 0.000), (b = B2 = 
0.338, Wald = 40.531, Sig = 0.000), (c = B3 = 0.270, Wald = 31.120,
Sig = 0.000) and (d = B4 = 0.189, Wald = 25.203, Sig = 0.000)] for
the YMBD-W dataset. For the YMIPS dataset, the parameter
values and its Wald values were: [(a = B1 = 0.239, Wald = 30.403,
Sig = 0.000), (b = B2 = 0.314, Wald = 39.945, Sig = 0.000), (c = B3 
= 0.298, Wald = 35.172, Sig = 0.000) and (d = B4 = 0.148, Wald = 
12.837, Sig = 0.009)]. Due to the large number of records (samples)
in our input datasets, if the samples are increased, the proportions
of the coefficient values do not change and remain stable. With the
increase of the numbers of samples, very low changes were
observed in the coefficients; by considering a large number of
samples in our input datasets, the changes were low and the
presence of such changes is normal.

4 Results and discussion
4.1 Experimental data

In this study, S. cerevisiae was used as the experimental organism
to evaluate the efficiency of the proposed method, DENCI, because
this organism has the most complete data. The PPI network
datasets were collected from the MIPS database [38], the DIP
dataset [39], and two datasets from the website of Gerstein Lab
(Gersteinlab.org). Accordingly, four datasets were obtained from
the MIPS database, Gerstein Lab and the DIP dataset, before being
weighted and named as YMIPS-W, YMBD-W, YHQ-W and
YDIP-W, respectively, after the removal of false-positive
interactions. The dataset YMIPS-W consists of 4199 proteins with
11,656 interactions. YMBD-W was selected from the original
datasets of MIPS, BIND and DIP, and comprises 2242 proteins and
10,260 interactions. YHQ was compiled by Yu et al. [40], and was
named YHQ-W after being weighted. It contains 4291 proteins
with 21,150 interactions. The dataset YDIP-W also includes 4786
proteins with 24,216 interactions. The essential proteins of S.
cerevisiae were collected from the MIPS [38], Saccharomyces
Genome Database (SGD) [41], Database of Essential Genes (DEG)
[42] and Saccharomyces Genome Deletion Project databases [1]. A
protein is known as an essential protein if it exists at least in one
essential database. The details of the datasets are presented in
Table 1. 

The protein complexes were directly obtained from four protein
complex datasets, namely CM270 [38], CM425 [43], CYC408 and
CYC428 [44, 45], which contained 745 protein complexes (in
comparison with 2167 proteins). These four real protein complexes
were collected within an integrated protein complex. Only those
complexes with over two vertices are retained in a complex

protein. CM270 is a gold standard protein complex downloaded
from the MIPS database [38], which includes 270 complexes and
1230 proteins. CM425 [43] was integrated from the MIPS database
[38], Aloy et al. [46] and the SGD database [47] contained 425
complexes and 1970 proteins. The CYC428 and CYC408 complex
datasets were obtained from the CYC2008 set from Wodak Lab
[44, 45]. The four protein complexes were combined into a new
complex for this study, consisting of 745 protein complexes.

4.2 Evaluation methods

Typically, several statistical measures, such as sensitivity (SN),
specificity (SP), positive predictive value (PPV), negative
predictive value (NPV), F-measure (F) and accuracy (ACC), are
used to effectively determine the identification of essential proteins
using different methods [10, 17]. These measures were used to
assess the effectiveness of the proposed method, DENCI. The four
variables are defined as follows:

• True positive (TP): essential proteins correctly selected as
essential.

• False positive (FP): non-essential proteins incorrectly selected as
essential.

• True negative (TN): non-essential proteins correctly selected as
non-essential.

• False negative (FN): essential proteins incorrectly selected as
non-essential.

Next, six statistical measures are introduced as mentioned
above.

Sensitivity: the ratio of proteins accurately selected as essential
to the total number of essential proteins

SN = TP
TP + FN (12)

Specificity: the ratio of non-essential proteins accurately selected as
non-essential to the total number of non-essential proteins

SP = TN
TN + FP (13)

Positive predictive value: the ratio of proteins accurately selected
as essential

PPV = TP
TP + FP (14)

Negative predictive value: the ratio of proteins accurately selected
as non-essential

NPV = TN
TN + FN (15)

F-measure: the harmonic mean of SN and PPV is referred to as F-
measure

F = 2 × SN × PPV
SN + PPV (16)

Accuracy: the ratios of proteins correctly regarded as essential and
non-essential in all of the results

ACC = TP + TN
P + N (17)

where P denotes the number of essential and N shows the number
of non-essential proteins.

Table 1 Information on the four PPI datasets: YHQ-W,
YMBD-W, YMIPS-W and YDIP-W
Dataset Proteins Interaction Essential proteins
YMIPS − W 4199 11,656 973
YMBD − W 2242 10,260 712
YHQ − W 4291 21,150 1056
YDIP − W 4786 24,216 1122
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4.3 Comparison of the results of the proposed method with
other prediction measures

In this section, the results of the proposed method are compared
with those of the following three categories of prediction methods,
using the four datasets described in the experimental data section.
Using the combined classification measures of the proposed
method, we obtained a value for each protein; this value shows the
importance of each protein (vertex) compared to other proteins.
The higher the importance of each protein, the higher the
probability that the protein will be essential. Therefore, based on
the calculated value from (11) for each protein, they were sorted
downwards to predict the top 100 up to the top 600. Moreover,
20% of the dataset was selected as essential proteins. Next, we
compared the top 100 to the top 600 essential protein with the
essential proteins of the benchmark, to see how many of them were
rightly identified. We measured the precision of identifying the
essential proteins using statistical measures. The prediction results
of the 12 methods for the four different networks are shown in
Figs. 2–5. 

Regarding the YHQ-W dataset in Fig. 2, it is shown that except
for DENCI, the highest number of essential proteins, 75(CCW),
149(CCW), 212(CCW), 263(CCW), 303(CCW) and 348 (LBCC),
were identified on six levels ranging from the top 100 to the top
600. In comparison, DENCI had 90,180,258, 331, 399 and 452
correct essential proteins with precision prediction of at least 20,
20, 21, 25, 31 and 29% on six levels ranging from the top 100 to
the top 600. Values of a, b, c and d in DENCI were equal to 0.143,
0.184, 0.358 and 0.313, respectively.

For the YMBD-W dataset, Fig. 3 shows that the number of
essential proteins predicted correctly by DENCI was 76, 154, 233,
287, 348 and 391, respectively, which is the best performance of all
the methods. After the DENCI method, the most recent LBCC
method has the second performance with 65, 120, 176, 231, 275
and 315 essential proteins correctly identified on six levels ranging
from the top 100 to the top 600. DENCI performs better than
LBCC, and the prediction precision increased by more than 28, 16,
32, 24, 26 and 24% on the six levels from the top 100 to the top
600. Values of a, b, c and d in DENCI were equal to 0.221, 0.338,
0.270 and 0.189, respectively. For the YMIPS-W dataset, Fig. 4
shows that LBCC produced the best results on the top 100 level,
while DENCI performed better on the five levels from the top 200
to the top 600. On all six levels, the number of essential proteins
identified correctly by LBCC was 75, 145, 199, 248, 305 and 343.
In comparison, the number of essential proteins identified correctly
by DENCI was 74, 149, 216, 273, 328 and 373, respectively. In the
top 100, the prediction results of DENCI were very similar to those
of LBCC (<2% difference), and on the five levels from the top 200
to the top 600, the prediction precision increased by more than 2, 8,
10, 7 and 8%. Values of a, b, c and d in DENCI were equal to
0.239, 0.314, 0.298 and 0.148, respectively. For the YDIP-W
dataset, Fig. 5 shows that the number of essential proteins
predicted correctly by DENCI was 81, 150, 216, 268, 319 and 377,
respectively, which indicates the best performance. After the
DENCI method, the PMN method had the second best performance
with 78, 144, 214, 268, 313 and 367 essential proteins identified on
six levels from the top 100 to the top 600. DENCI performs better
than PMN, and the prediction precision increased by more than 4,
3, 1, 1 and 2% on the top 100, 200, 300, 500 and 600 levels. The

Fig. 2  Number of true essential proteins predicted by DENCI and the other 11 previously proposed methods for the YHQ-W network
 

Fig. 3  Number of true essential proteins predicted by DENCI and the other 11 previously proposed methods for the YMBD-W network
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precision of the two methods was only equal on the top 400 level.
Values of a, b, c and d in DENCI were equal to 0.186, 0.275, 0.363
and 0.174, respectively. Therefore, our experiments show that
DENCI can identify more proteins than other methods in all cases
except for one case where it identifies the same number of proteins,
and one case where it identifies 2% less. The reason for the success
of the results is that the method simultaneously considers local and
global centralities, as well as biological characteristics. The results
of other methods (Figs. 2 and 5) show that local or global centrality
methods perform better for dense components and methods using
biological features perform better for sparse components with low
connectivity. The proposed method has all of the previously
mentioned benefits.

4.4 Validation by six statistical methods and the precision-
recall curve

In this section, DENCI is compared with 11 prediction measures in
three categories listed by six statistical methods, as described in
Section 4.2. The proteins were ranked in descending order based
on the values of the 12 centrality measures. The top proteins (top
20%) were selected as essential and the rest were considered as
non-essential proteins. According to the results in Table 2, the
values of the six statistical methods for DENCI were mostly higher
than for the other methods, particularly for the three networks of
YHQ-W, YMBD-W and YMIPS-W, indicating that DENCI can
correctly predict a higher number of essential proteins. Values of a,
b, c and d in DENCI were equal to (0.143, 0.184, 0.358, 0.313),
(0.221, 0.338, 0.270, 0.189), (0.239, 0.314, 0.298, 0.148) for the
YHQ-W, YMBD-W and YMIPS-W dataset, respectively. 

The Precision-Recall curve is a statistical method that assesses
the stability of the 12 prediction measures. This curve is drawn as
follows:

Precision n = TP n
TP n + FP n (18)

Recall n = TP n
P (19)

where TP(n) shows the total number of essential proteins correctly
detected as essential and FP(n) indicates the total number of non-
essential proteins inaccurately recognised as being essential among
the nth top identified proteins. The total number of essential
proteins under consideration is named P.

The YHQ-W network (Fig. 6) revealed that DENCI performed
better than the other methods. The other networks revealed that
DENCI performed better than the other methods. 

In an analysis using six statistical methods and the precision-
recall curve, DENCI not only showed a better prediction precision
compared to the other 11 methods, but it also showed a more stable
efficiency, particularly in the three networks of YMBD-W, YHQ-
W and YMIPS-W.

4.5 Validation by the jackknife method

The jackknife method, developed by Hellman et al. [48], was used
to evaluate all of the measures as a whole, including single-
centrality measures, combined centrality methods and methods
based on measures of biological characteristics. First, the proteins

Fig. 4  Number of true essential proteins predicted by DENCI and the other 11 previously proposed methods for the YMIPS-W network
 

Fig. 5  Number of true essential proteins predicted by DENCI and the other 11 previously proposed methods for the YDIP-W network
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were ranked in descending order for the values obtained through
the 12 prediction methods. The jackknife curve was then drawn
according to the cumulative number of essential proteins. As
shown in Fig. 7, the x-axis shows that the proteins were ranked in
descending order from left to right according to the values
calculated by the specific prediction method. The y-axis represents
the number of real essential proteins among the nth top proteins,
where n is the numbers along the x-axis. As shown in Fig. 7, the
curve arranged according to the DENCI method is significantly
better than those arranged according to the other prediction
measures in the three prediction method categories from the YHQ-
W datasets. Values of a, b, c and d in DENCI were equal to 0.143,
0.184, 0.358 and 0.313, respectively. Taking into consideration the

curves, DENCI is an effective approach for the prediction of
essential proteins. 

4.6 Validation by the Receiver Operating Characteristic
(ROC) curve

The ROC curve is a curve that shows SN against ‘1-SP’. The curve
is a suitable measure to estimate a method. The identification of
essential proteins is a two-class case of classification. This kind of
classification is thought of as an imbalanced classification because
the number of non-essential proteins is twice or thrice that of the
essential ones in PIN networks. Therefore, ROC can effectively
estimate the performance of a method. As shown in Fig. 8, the

Table 2 Comparative analysis of DENCI and the other 11 previously proposed methods in terms of SN, SP, PPV, NPV, F-
measure and ACC with four different datasets
Dataset Methods SN SP PPV NPV F-measure ACC
YMBD − W BCW 0.256 0.881 0.431 0.771 0.321 0.718

CCW 0.275 0.888 0.464 0.777 0.346 0.729
ECW 0.257 0.881 0.431 0.773 0.322 0.719
SCW 0.212 0.865 0.354 0.759 0.265 0.696
DCW 0.248 0.878 0.417 0.769 0.311 0.714
NCW 0.242 0.876 0.406 0.767 0.303 0.711
ICW 0.237 0.874 0.397 0.766 0.296 0.709

LACW 0.246 0.877 0.412 0.768 0.308 0.713
LBCC 0.372 0.873 0.555 0.766 0.445 0.724
PMN 0.252 0.879 0.424 0.770 0.316 0.717

GO_ELAC 0.243 0.876 0.408 0.768 0.305 0.712
DENCI 0.425 0.941 0.717 0.822 0.533 0.806

YHQ − W BCW 0.295 0.864 0.404 0.797 0.341 0.729
CCW 0.371 0.888 0.509 0.819 0.429 0.765
ECW 0.273 0.857 0.370 0.793 0.315 0.720
SCW 0.273 0.857 0.370 0.793 0.315 0.720
DCW 0.383 0.892 0.524 0.822 0.443 0.771
NCW 0.375 0.889 0.514 0.820 0.434 0.767
ICW 0.362 0.885 0.495 0.817 0.418 0.761

LACW 0.384 0.892 0.525 0.822 0.443 0.771
LBCC 0.449 0.876 0.524 0.839 0.483 0.776
PMN 0.388 0.894 0.533 0.824 0.449 0.773

GO_ELAC 0.375 0.889 0.515 0.820 0.434 0.767
DENCI 0.475 0.921 0.652 0.849 0.549 0.815

YMIPS − W BCW 0.223 0.808 0.289 0.748 0.252 0.656
CCW 0.200 0.800 0.263 0.738 0.227 0.643
ECW 0.156 0.784 0.205 0.723 0.177 0.619
SCW 0.161 0.786 0.212 0.725 0.183 0.622
DCW 0.264 0.822 0.345 0.759 0.299 0.676
NCW 0.250 0.817 0.324 0.757 0.282 0.670
ICW 0.217 0.806 0.284 0.744 0.246 0.652

LACW 0.238 0.813 0.309 0.752 0.269 0.664
LBCC 0.430 0.866 0.481 0.841 0.454 0.769
PMN 0.387 0.889 0.505 0.832 0.316 0.717

GO_ELAC 0.243 0.876 0.408 0.768 0.305 0.712
DENCI 0.437 0.903 0.567 0.847 0.494 0.799

YDIP − W BCW 0.267 0.838 0.354 0.776 0.305 0.741
CCW 0.343 0.863 0.456 0.798 0.392 0.781
ECW 0.334 0.860 0.444 0.795 0.382 0.776
SCW 0.337 0.862 0.447 0.796 0.384 0.777
DCW 0.348 0.865 0.462 0.799 0.398 0.783
NCW 0.335 0.860 0.442 0.797 0.381 0.777
ICW 0.306 0.851 0.406 0.787 0.349 0.761

LACW 0.367 0.871 0.484 0.806 0.418 0.794
LBCC 0.410 0.873 0.512 0.811 0.454 0.776
PMN 0.394 0.880 0.523 0.813 0.449 0.807

GO_ELAC 0.347 0.865 0.460 0.799 0.397 0.782
DENCI 0.412 0.886 0.547 0.819 0.470 0.817
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ROC curve is higher for DENCI than for others in YHQ-W. Values
of a, b, c and d in DENCI were equal to 0.143, 0.184, 0.358 and
0.313, respectively. Taking into consideration the ROCs, our
proposed method, DENCI, is an effective method for predicting
essential proteins. 

4.7 Analysis of the difference between DENCI and other
measures

This section carefully discusses why DENCI functions well in the
four datasets for the prediction of essential proteins. The
differences between DENCI and the other prediction measures are
examined using a few different proteins. If A ∩ B is considered as
the set of proteins predicted by the two methods of A and B, then
A − B and A ∪ B, will be the protein sets predicted by Method A
but not predicted by Method B, and the set of proteins predicted by
method A or B, respectively. The efficiency of DENCI was
compared with that of the other 11 approaches in terms of the
prediction of the top 100 proteins (Table 3). As can be seen, for the
YHQ-W dataset in column DENCI ∩ M, the overlap rate of
proteins predicted by DENCI and the other 11 methods (DCW,
BCW, ECW, CCW, LACW, NCW, SCW, ICW, LBCC, Go_ELAC
and PMN) was <32%, whereas DENCI had no overlaps with ECW
and SCW in the proteins predicted by these methods. The overlap
rate between DENCI and LBCC was 16%. Values of a, b, c and d
in DENCI were equal to 0.143, 0.184, 0.358 and 0.313,
respectively. The fifth column shows the true essential proteins in
the DENCI-M dataset, while the sixth column represents those in
the M-DENCI dataset. The number of true essential proteins
identified by DENCI was higher than that identified by the other
prediction methods. Regarding YMBD-W, the column DENCI ∩ M
suggests that the overlap in the proteins predicted by DENCI and
those predicted by the other 11 approaches is no more than 32%.
The fifth and sixth columns indicate that DENCI identified a
greater number of true essential proteins than did the other

Fig. 6  Precision and recall curves of DENCI and 11 other methods for the YHQ-W network
 

Fig. 7  Jackknife curves of DENCI and 11 other methods for the YHQ-W network
 

Fig. 8  ROC curves of DENCI and the other methods for the YHQ-W
network
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prediction methods, such as LBCC. Values of a, b, c and d in
DENCI were equal to 0.221, 0.338, 0.270 and 0.189, respectively.
Our proposed method is a multi-information fusion measure
(MCLUS, Importance, DWNN and LACW), and one of the
features of our approach is that it also considers low-connectivity
essential proteins. The YMBD-W dataset has a total of 61
components, consisting of 41 two-protein components, ten three-
protein components, three four-protein components, one five-
protein component, one eight-protein component, one nine-protein
component, one ten-protein component, one 31-protein component
and one 2053-protein component. Therefore, there are many low-
connectivity proteins in this dataset. Our proposed method, which
focuses on identifying low-connectivity proteins using the two
independent variables of MCLUS and Importance, identifies low-
connectivity essential proteins. Given that the YDIP-W dataset has
a total of 15 components, including 13 two-protein components,
one three-protein component and one 4757-protein component, the

number of low-connectivity essential proteins is therefore much
less than in the YMBD-W dataset. The proposed method and all of
the methods discussed in Table 3 proteins in common. 

5 Conclusion
A number of methods has been recommended to identify essential
proteins; however, most of them are based on the topological
features of PPI networks. The majority of topology-based methods
only focus on the local and global properties and their SN to the
network topology. Our research demonstrated an innovative
method called DENCI, which is based on a combination of both
neighbourhood and biological features measures for PPI networks.
An analysis of DENCI showed that the neighbourhood measure
was significant up to the third level. Then, DENCI and the other
methods were implemented on four PPI networks, YMIPS-W,
YMBD-W, YHQ-W and YDIP-W. Comparisons were made

Table 3 Analysis of the differences between DENCI and the other 11 previously proposed methods for predicting proteins, Tep,
true essential protein; S1, DENCI-M; S2, M-DENCI
Dataset Methods DENCI ∩ M S1 Tep in S1 Tep in S2
YHQ − W BCW 14 86 69 33

CCW 32 68 56 35
ECW 0 100 89 26
SCW 0 100 89 26
DCW 15 85 74 22
NCW 9 91 80 24
ICW 19 81 70 24

LACW 11 89 78 41
LBCC 16 84 73 50
PMN 1 99 88 18

GO_ELAC 15 85 74 21
YMBD − W BCW 11 89 70 39

CCW 32 68 56 35
ECW 2 98 76 31
SCW 2 98 76 31
DCW 11 89 62 14
NCW 11 89 78 41
ICW 13 87 59 37

LACW 5 95 12 42
LBCC 18 82 62 14
PMN 14 86 69 33

GO_ELAC 17 83 66 16
YMIPS − W BCW 15 88 58 11

CCW 12 88 61 9
ECW 0 100 73 10
SCW 0 100 73 10
DCW 11 89 73 10
NCW 6 94 67 17
ICW 12 88 61 12

LACW 9 81 64 18
LBCC 23 77 58 39
PMN 38 62 35 21

GO_ELAC 3 97 70 7
YDIP − W BCW 14 86 69 30

CCW 42 58 41 33
ECW 20 80 63 33
SCW 22 78 61 33
DCW 24 76 59 33
NCW 16 84 67 24
ICW 14 86 69 33

LACW 19 81 64 35
LBCC 43 57 40 31
PMN 68 32 15 11

GO_ELAC 19 81 64 33
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between DENCI, traditional methods, the most significant recent
combined centrality method and the most important measures of
biological features in terms of the number of true essential proteins
that they were predicted. On the six levels from the top 100 to the
top 600 proteins, DENCI performed better than traditional
methods, as well as measures of biological features, especially for
the YHQ-W, YMBD-W and YMIPS datasets. The prediction
precision of the DENCI method was superior to the most efficient
methods in each of the three categories. Experimental results in the
four datasets, based on six statistical analyses, the Precision-Recall,
ROC curve and the jackknife method, indicate that DENCI was in
most cases more efficient than the other recent prediction methods.
In the future, additional information such as domain data and gene
expression data should be integrated for the effective and accurate
prediction of essential proteins.
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