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Abstract

Polyploidy poses several problems for parentage analysis. We present a new polysomic inheritance model for parentage analysis based on
genotypes or allelic phenotypes to solve these problems. The effects of five factors are simultaneously accommodated in this model: (1)
double-reduction, (2) null alleles, (3) negative amplification, (4) genotyping errors and (5) self-fertilization. To solve genotyping ambiguity
(unknown allele dosage), we developed a new method to establish the likelihood formulas for allelic phenotype data and to simultaneously
include the effects of our five chosen factors. We then evaluated and compared the performance of our new method with three established
methods by using both simulated data and empirical data from the cultivated blueberry (Vaccinium corymbosum). We also developed and
compared the performance of two additional estimators to estimate the genotyping error rate and the sample rate. We make our new
methods freely available in the software package POLYGENE, at http://github.com/huangkang1987/polygene.
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Introduction
Parentage analysis is a common technique in plant ecology and
selective breeding. This technique for identifying parents enables
researchers to assess seed dispersal (Ismail et al. 2017), pollen dis-
persal (Bezemer et al. 2016), assortative mating (Monthe et al.
2017), isolation (Tambarussi et al. 2015), current gene flow
(Duminil et al. 2016), mating systems (Tan et al. 2019), reproduc-
tive success (Watanabe et al. 2018), functional sex (Oddou-
Muratorio et al. 2018), and to increase genetic gain from selective
breeding (Norman et al. 2018).

A large proportion of plant species are polyploid, with 24% of
all plant taxa showing some form of polysomic inheritance
(Barker et al. 2016), and at least 47% of angiosperm species having
polyploidy in their ancestral lineage (Wood et al. 2009). Existing
methods of parentage analysis for polyploids use the pseudo-
dominant approach (Rodzen et al. 2004; Wang and Scribner 2014)
and exclusion approach (Zwart et al. 2016). In the pseudo-
dominant approach, the polyploid genotypes or the allelic
phenotypes are converted into pseudo-dominant phenotypes and
use diploid likelihood equations to calculate the likelihood for
parentage assignment (Gerber et al. 2000), in which each allele at
a codominant locus is treated as an independent dominant
“locus.” This approach enables rapid calculation but is inferior
to that based on polysomic inheritance methods because any
transformation of data will cause a loss of information and
thus a reduction in accuracy (Wang and Scribner 2014). The
exclusion approach excludes the parents based on Mendelian

incompatibility. However, due to the high gamete diversity (Pelé
et al. 2018) and genotyping ambiguity (Huang et al. 2014), the ex-
clusion rate is low in polyploid, especially for a parent-offspring
pair. Thus, the development of more accurate methods of parent-
age analysis for polyploids is required.

Several models for polysomic inheritance have been devel-
oped, such as double-reduction models (Muller 1914; Haldane
1930; Mather 1935), genotypic frequencies (Fisher 1943; Geiringer
1949), and transitional probabilities from a zygote to a gamete
(Fisher and Mather 1943; Field et al. 2017). On the basis of these
findings, Huang et al. (2019) derived the generalized genotypic
frequency and gamete frequency for ploidy levels fewer than 12
and derived the generalized transitional probability from a zygote
to a gamete for any ploidy level. These models provide a founda-
tion on which to establish a method of parentage analysis for
polyploids.

A unique feature of polysomic inheritance is double-reduction
such that a pair of sister chromatids are segregated into a
single gamete (Parisod et al. 2010). Double-reduction arises from a
combination of three major events during meiosis: (1) the
crossing-over between non-sister chromatids, (2) an appropriate
pattern of disjunction, and (3) the migration of chromosomal seg-
ments carrying a pair of sister chromatids to the same gamete
(Darlington 1929; Haldane 1930). Geneticists have developed
several mathematical models to simulate double-reduction:
these are the random chromosome segregation (RCS) model (i.e. with-
out double-reduction; Muller 1914), the pure random chromatid
segregation (PRCS) model (Haldane 1930), the complete equational
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segregation (CES) model (Mather 1935) and the partial equational
segregation (PES) model (Huang et al. 2019). A brief description of
each of these models is given in Supplementary Appendix A.

There are two consequences of double-reduction that will
influence parentage analysis: (1) the genotypic frequencies will devi-
ate from expected values under RCS, resulting in a bias of the esti-
mated LOD scores and (2) some unexpected offspring genotypes
may be generated (e.g. an offspring genotype AAEE is produced from
ABCD � EFGH) along with the true father being excluded. Therefore,
the complete array of diverse polyploid offspring genotypes has to
be accounted for in order to conduct a comprehensive and accurate
paternity analysis (Stift et al. 2008, 2010).

There are also several additional problems associated with
PCR-based markers that need to be accounted, irrespective of
ploidy. One problem is the genotyping ambiguity of polyploids
(Huang et al. 2014), in the sense that the allelic dosage of PCR-
based markers cannot be determined. For example, the genotype
AABB will appear to be identical to AAAB. Another problem arises
when using microsatellites, which are the genetic markers most
frequently used for parentage analysis. Microsatellites can have
null alleles (Ravinet et al. 2016) that cause both the lack of ampli-
fication of null allele homozygotes and the lack of detectability of
null allele heterozygotes (Wagner et al. 2006). A third problem
comes from genotyping errors, which may cause a true parent to
be mistakenly excluded due to an observed lack of shared alleles
with the offspring (Blouin 2003). Finally, inbreeding will result in
an excess of homozygotes in a population, such as when plants
self-fertilize (Ritland 2002). The genotypic frequencies used for a
parentage analysis will thus be affected by any inbreeding.

Here, we extend the disomic inheritance model of Kalinowski
et al. (2007) to account for polysomic inheritance to enable accu-
rate parentage analysis for polyploids based on genotypes or alle-
lic phenotypes. Our new polysomic inheritance model
accommodates the effects of five factors: (1) double-reduction, (2)
null alleles, (3) negative amplification, (4) genotyping errors and
(5) self-fertilization. To solve the problem of genotyping ambigu-
ity, we develop a new method so as to establish the likelihood for-
mulas for allelic phenotype data, with the effects of our five
factors of interest also being included in these formulas. We sub-
sequently use a designated simulated dataset to evaluate and
compare the performance of our new method with three other
established methods. We also use an empirical microsatellite
dataset from the cultivated blueberry (Vaccinium corymbosum) to
test the performance of all four methods. Moreover, we develop
and evaluate two models to estimate the genotyping error rate
and the sample rate (the probability that a true parent is sam-
pled). We have incorporated our new parentage analysis methods
into the software package POLYGENE, which can be freely down-
loaded at http://github.com/huangkang1987/polygene.

Methods
Here we assume that our parentage analysis model satisfies four
assumptions, which are also commonly used for diploid popula-
tion genetics methods. These four assumptions are: (1) the popu-
lation is large enough to neglect any effects of genetic drift and
there is no population subdivision; (2) that mating is random, ex-
cept for a given rate of selfing, and the probability of selfing is the
same among individuals (3) the distributions of the genotypes are
the same for males and females, and reach an equilibrium state
(i.e. genotypic frequencies do not change among generations),
and (4) the genetic markers used are neutral, autosomal, codomi-
nant and unlinked.

The multiset consisting of allele copies within an individual at
a locus is called a genotype, denoted by G or G, in which G repre-
sents an observed genotype and G represents a true genotype. For
example, fA;A;A;Bg is a genotype, abbreviated as AAAB. The
set consisting of alleles within an individual at a locus is called
an allelic phenotype, or a phenotype for short, denoted by P. For in-
stance, fA, Bg is a phenotype, written as AB for short.

Our methods are the extensions of Kalinowski et al.’s (2007)
method. In the following text, we briefly describe the scheme of
Kalinowski et al.’s (2007) method and its associated diploid model.

Scheme of simulation-based likelihood approach
The foundations for assigning parentage with confidence by a
simulation-based likelihood approach were establish by Marshall
et al. (1998). There are three typical categories in this approach:
(1) identifying the father (or one parent) when the mother (or
the other parent) is unknown; (2) identifying the father (or one
parent) when the mother (or the other parent) is known; and (3)
identifying the father and the mother (or parents) jointly. There
are two situations in the third category, the first is for dioecious
species and the sexes of individuals are recorded (termed sexes
known), and the second is for monoecious species or the sexes of
individuals are not recorded (termed sexes unknown). The proce-
dures of a parentage analysis are broadly as follows.

For each of the first two categories, two hypotheses are
established: the first hypothesis is that the alleged father is the true
father, denoted by H1; the alternative hypothesis is that the alleged fa-
ther is not the true father, denoted by H2. For the third category,
“father” needs to be changed to “parents” in both hypotheses.

Given a hypothesis H, the likelihood is defined as the probability
of some observed data given H, written as LðHÞ. Returning to H1

and H2 as described above, we call the natural logarithm of the
ratio of LðH1Þ to LðH2Þ the LOD score, or LOD as the abbreviation,
symbolically LOD ¼ ln LðH1Þ

LðH2Þ. Moreover, if a LOD is positive, it
means that H1 is more likely to be true than H2. Similarly, a nega-
tive LOD means that H2 is more likely to be true than H1.

Marshall et al. (1998) provided a statistic D for resolving
paternity, the definition of which is:

D ¼
LOD1 � LOD2 if n� 2;
LOD1 if n ¼ 1;
undefined if n ¼ 0;

8<
:

where LOD1 and LOD2 are, respectively, the LODs of the
most-likely and the next most-likely alleged fathers, and n is
the number of all alleged fathers. For a practical application, the
statistic D needs to be singly calculated for each individual off-
spring. Monte-Carlo simulations are subsequently used to assess
the confidence level of D. The symbol D0:95 represents that the
threshold of D reaches the confidence level 95%, in the sense that
if D � D0:95, the probability that the assigned parent is the true
parent is at least 0.95.

The likelihood equations used in Marshall et al. (1998) to
accommodate genotyping error miscalculate the probability of
observing an erroneous genotype. Therefore, we applied the cor-
rected equations in Kalinowski et al. (2007) in the following.

Marshall et al.’s (1998) diploid model
Marshall et al.’s (1998) diploid model (abbreviated as the Ma-
model) accounts for any genotyping errors under the assumption
that the genotype frequencies accord with the Hardy-Weinberg
equilibrium (HWE). This model consists of some likelihood for-
mulas (listed in the first half of Supplementary Appendix B)
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together with the rules and methods for a general parentage
analysis.

The likelihood formulas of the Ma-model are derived by using
the transitional probability TðG jGÞ from a true genotype G to an
observed genotype G, whose expression is:

TðG jGÞ ¼ ð1� eÞBG¼G þ ePrðGÞ; (1)

where e is the genotyping error rate, PrðGÞ is the frequency of G,
and BX is a binary variable, such that BX ¼ 1 if the expression X is
true, or BX ¼ 0 otherwise.

As previously stated, the procedures underlying the Ma-model to
perform a parentage analysis are as follows: (1) calculating LðH1Þ
and LðH2Þ, (2) finding the threshold of D, (3) calculating the LOD and
D, and (4) using the values obtained in the previous three steps to
assess the confidence level of this parentage analysis.

In the following text, we will use the first category in a
parentage analysis as an example to show how to calculate the
likelihoods LðH1Þ and LðH2Þ in the Ma-model. The expressions of
LðH1Þ and LðH2Þ are:

LðH1Þ ¼ PrðGAÞ½ð1� eÞ2TðGO j GAÞ þ 2eð1� eÞPrðGOÞ þ e2PrðGOÞ�;

LðH2Þ ¼ PrðGAÞPrðGOÞ;
(2)

where GA and GO are, respectively, the observed genotypes of the al-
leged father and the offspring, PrðGAÞ and PrðGOÞ are their frequen-
cies, and TðGO j GAÞ is the transitional probability from GA to GO.

In the Ma-model, the genotyping error is considered as the re-
placement of a true genotype with a random genotype according to
the genotypic frequencies. Thus the genotyping error does not
change the distribution of the genotypes, i.e. PrðGÞ ¼ PrðG ¼ GÞ.
Moreover, PrðGÞ can be directly calculated from the HWE prediction:

PrðGÞ ¼ p2
i if G ¼ AiAi;

2pipj if G ¼ AiAj:

(

This is because any null alleles, any negative amplification (i.e.
amplification failure due to experimental error or a poor DNA
quality, rather than a null allelic homozygote) and any inbreed-
ing/selfing are not considered in the Ma-model.

Next, the transitional probability TðGO j GAÞ is calculated under
the assumptions that GA and GO are correctly typed and that the al-
leged father is the true father, i.e. under the assumptions that GO ¼
GO and GF ¼ GA, where GO and GF are the true genotypes of the off-
spring and the true father, respectively. Therefore, TðGO j GAÞ is the
same as TðGO jGFÞ under these assumptions. Because one allele
within GO is randomly inherited from the parents, and the other is
randomly sampled from the population according to the allele fre-
quencies, the transitional probability TðGO jGFÞ can be expressed as:

TðGO jGFÞ ¼

pi if GO ¼ AiAi and GF ¼ AiAi;
pj if GO ¼ AiAj and GF ¼ AiAi;

1
2
ðpi þ pjÞ if GO ¼ AiAj and GF ¼ AiAj;

1
2

pk if GO ¼ AiAk and GF ¼ AiAj;

0 otherwise;

8>>>>>>>>><
>>>>>>>>>:

where Ai, Aj and Ak are distinct identical-by-state alleles, pi, pj

and pk are their frequencies.

Now, we see that the two likelihood formulas in Equation (2)

can be used for the actual calculation as long as the values of the
genotyping error rate e and those frequencies of alleles are given.

For the second and third categories in a parentage analysis, to

calculate the transitional probabilities TðGO j GA;GMÞ and

TðGO j GA;GAMÞ in the likelihood formulas in the Ma-model (see the

first half of Supplementary Appendix B), we need to apply the

transitional probability TðGO jGF;GMÞ from a pair of true geno-
types of the true parents to a true genotype of the offspring.

Because the genotypic frequencies in the Ma-model are in HWE,

according to the Mendelian segregation (i.e. each parent ran-

domly contributes one allele to an offspring genotype),

TðGO j GA;GMÞ can be calculated by:

TðGO jGF;GMÞ ¼
1
4

X2

i¼1

X2

j¼1

BGO¼AiBj
;

where Ai (or Bj) is an allele within GF (or GM).

Polyploid model
The polysomic inheritance model (abbreviated as the polyploid

model) presented here is for use with even levels of ploidy, and
consists of some likelihood formulas and some additional condi-

tions along with the rules and methods for a general parentage

analysis. These additional conditions are: (1) which of the two

data types (genotypic and phenotypic) are to be selected,

(2) whether self-fertilization is considered, (3) whether null

alleles and/or negative amplifications are to be considered, and
(iv) which of the four double-reduction models, listed in

Supplementary Table S1, is chosen.
As for the Ma-model, our new model accommodates the effect

of genotyping errors and the presence of these errors will not

change the genotypic and phenotypic frequencies. Moreover, if

self-fertilization is considered in our model, its effect will also be

incorporated into the likelihood formulas.
For the genotypic data, the likelihood formulas for all three

categories in a parentage analysis, under either self-fertilization

or not, are given in Supplementary Appendix B. For polysomic in-

heritance, the genotypic frequencies (PrðGÞ) and transitional prob-

abilities (TðGO jGFÞ and TðGO jGF;GMÞ) need to be properly

adjusted, where the formula of PrðGÞ under inbreeding and

double-reduction is given in Supplementary Appendix C [or in
Huang et al. (2019)], and the formulas of TðGO jGFÞ and

TðGO jGF;GMÞ are given in Supplementary Appendix D.
For the phenotypic data, the likelihood formulas for all three

categories in a parentage analysis under the condition of either

self-fertilization or not are given in Supplementary Appendix E.

In such circumstances, the phenotypic frequencies (PrðPÞ) in

these formulas are calculated by Equation (A5), and the transi-
tional probabilities (TðPO j PFÞ and TðPO j PF;PMÞ) by Equation (3)

or (4). To solve the problem of genotyping ambiguity, we develop

a new method termed the PHENOTYPE method. In this method, the

prior probabilities of phenotypes and the transitional probability

from a phenotype to another phenotype will be used to establish

various likelihood formulas.

Phenotype method
We begin our discussion with the symbol G . P, whose meaning

is that G is a genotype determining the phenotype P, i.e. G � P
and 8A 2 G ! A 2 P, where � is the inclusion of multisets. If the
null alleles (e.g. Ay) are considered, the conditions should be

K. Huang et al. | 3



revised to G � P and 8A 2 G ! A 2 P [ fAyg. Under the revised
conditions, our models will accommodate the effect of null
alleles.

The formulas of transitional probabilities TðPO j PFÞ and
TðPO j PF;PMÞ are first established, whose expressions are:

TðPO j PFÞ ¼
X
GF .PF

X
GO.PO

PrðGF j PFÞTðGO j GFÞTðPO j GOÞ; (3)

TðPO j PF;PMÞ ¼
X
GF.PF

X
GM.PM

X
GO.PO

PrðGF j PFÞPrðGM j PMÞTðGO j GF;GMÞTðPO j GOÞ;

(4)

where GF (GM or GO) is taken from all genotypes determining PF

(PM or PO); PrðGF j PFÞ and PrðGM j PMÞ are two posterior probabili-
ties, which can be calculated by the Bayes formula:

PrðG j PÞ ¼ TðP j GÞPrðGÞ
PrðPÞ ;

and TðPO j GOÞ is the transitional probability from GO to PO, which
is calculated by:

TðP j GÞ ¼ BP¼1bþ BG.Pð1� bÞ;

in which b is the negative amplification rate, and P ¼1 means
that P is a negative phenotype (it may be caused by either a null
allele homozygote or a negative amplification).

Because each genotype may encounter an amplification fail-
ure, the candidate genotypes determining a negative phenotype
at a locus are, strictly speaking, all possible genotypes at this
locus. This will create a problem for the calculations of the tran-

sitional probabilities. This is because there are up to
vþ K� 1

v

� �
genotypes at a locus, where v is the ploidy level and K is the num-
ber of alleles at this locus. For example, the number of genotypes
at an octo-allelic locus for tetrasomic (hexasomic, octosomic or
decasomic) inheritance is up to 330 (1716, 6435, or 19,448). For
this reason, we do not consider the candidate genotypes deter-
mining any negative phenotypes. In other words, all negative
phenotypes are discarded in the polysomic inheritance model
during the analytical process. However, they will still be used in
the allele frequency estimation so as to estimate the negative
amplification rate b and the null allele frequency py.

Next, the likelihood formulas for all three categories are
established. For example, if self-fertilization is not considered,
the likelihoods LðH1Þ and LðH2Þ for the first category can be sim-
ply obtained by replacing GA with PA and GO with PO in Equation
(2), whose expressions are:

LðH1Þ ¼ PrðPAÞ½ð1� eÞ2TðPO j PAÞ þ 2eð1� eÞPrðPOÞ þ e2PrðPOÞ�;
LðH2Þ ¼ PrðPAÞPrðPOÞ;

where PrðPAÞ and PrðPOÞ are, respectively, the frequencies of PA

and PO, which can be calculated by Equation (A5), and the transi-
tional probability TðPO j PAÞ is calculated by replacing PF with PA

in Equation (3), i.e. TðPO j PAÞ ¼ TðPO j PF ¼ PAÞ. The likelihood
formulas for each category under the condition of either self-
fertilization or not are given in Supplementary Appendix E.

Estimation of genotyping error rate
For a genotypic dataset, it is mathematically impossible to
estimate the genotyping error rate e without any additional

information (e.g. the information of pedigree or replication). We
will develop a genotyping error rate estimator based on the pedi-
gree data, including the known parents and the identified parents
(at a high confidence level, e.g. 99%). We refer to a parent-
offspring pair extracted from the pedigree data as a reference pair,
and a father-mother-offspring trio as a reference trio.

For genotypic data, we assume that the allelic dosage is known
so there are no null alleles. For the phenotypic input, all candi-
date genotypes and their gametes will be extracted, including the
genotypes with null alleles, and the pair (or trio) mismatch is
identified by whether the parent (or the parents) is able to pro-
duce the offspring (see Supplementary Appendix I for details).
Therefore, each mismatch in our models can only be caused by
genotyping errors or the false parent(s). Pair mismatches can be
used in all three categories, but trio mismatches can only be used
in the second and the third categories. In this section, we will use
pair mismatches to describe how to estimate the genotyping er-
ror rate.

Let d be the probability of observing a pair mismatch in a true
parent-offspring pair under the condition that any individual has
encountered a genotyping error. In our genotyping error model, d

is equal to the exclusion rate for the first category, i.e. the proba-
bility that two random genotypes are mismatched. We do not es-
timate d by simulation or by allele frequencies because those
approaches can be influenced by the errors in the estimated
parameters. Instead, we directly estimate d from the input geno-
types/phenotypes with a Monte-Carlo algorithm, whose proce-
dures are broadly as follows: randomly sample a large number of
individual pairs from the input samples with replacement, and
then treat each as a parent-offspring pair, and finally calculate
the probability that their genotypes/phenotypes at a locus are
mismatched, which is used as d̂ at this locus.

Let c be the probability of observing a pair mismatch in a true
parent-offspring pair. Since each mismatch observed in the true
parent-offspring pairs can only be caused by the genotyping er-
ror, if we denote E for 1� ð1� eÞ2, then c ¼ Ed. Noticing that the
estimate ĉ can be calculated from the reference pairs in a single
application or in all available applications based on the same
dataset, the single-locus estimate Êl of E at the lth locus can be
expressed as Êl ¼ ĉ l=d̂ l.

If we assume that there are nrl reference pairs at the lth locus
and that nml is the number of pair mismatches in these reference
pairs, then nml as a random variable obeys the binomial distribu-
tion Bðnrl; clÞ, so VarðnmlÞ ¼ nrlclð1� clÞ. Because 1� cl is close to
one, the variance Varðĉ lÞ can be approximately expressed as
Varðĉ lÞ � cl=nrl. Because Êl ¼ ĉ l=d̂ l and c ¼ Ed, then VarðÊld̂ lÞ
� ðEdlÞ=nrl. Now, by substituting dl with d̂ l, it follows that
VarðÊlÞ � E=ðnrld̂ lÞ. To minimize the variance of VarðÊÞ, the
inverse of VarðÊlÞ can be used as the weight to calculate the
multi-locus estimate Ê. The unified weight wl is therefore equal
to nrld̂ l=ð

P
l0 nrl0 d̂ l0 Þ, and Ê ¼

P
l wlÊl. Because the loci are unlinked,

we have VarðÊÞ ¼
P

l w2
l VarðÊlÞ, hence VarðÊÞ � E=ð

P
l nrld̂ lÞ.

The genotyping error rate e can now be estimated by the for-
mula ê ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� Ê

p
. Moreover, because e � E=2, the variance

VarðêÞ can be approximately expressed as VarðêÞ � e=ð2
P

l nrld̂ lÞ.
As described above, the inverse of VarðêÞ can be used to weight ê
in multiple applications and datasets.

When the polyploid phenotypes are used, pair mismatches
will be rare. Specifically, they are rare for the first category,
because the single-locus exclusion rate is low (e.g. 0.01 for the
hexaploid phenotypes at a hexa-allelic locus). Therefore, it is in-
accurate to estimate e by pair mismatches. Relative to the first
category, the single-locus exclusion rate for the second or the
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third categories is high (e.g. 0.27 for the hexaploid phenotypes at
a hexa-allelic locus). Hence, we can use trio mismatches to reli-
ably estimate the genotyping error rates for the second and the
third categories, and the details are described in Supplementary
Appendix F.

Estimation of sample rate
For an individual offspring, the probability that one of its true
parents is sampled is defined as the sample rate, denoted by ps.
The probability that an alleged parent (or a pair of alleged
parents) of an offspring is assigned at a confidence level is called
the assignment rate, denoted by a. Specifically, we denote ac for the
assignment rate when the true parent(s) is sampled, and au for
the assignment rate when the true parent(s) is not sampled.
Therefore, a is a weighted average of ac and au.

We now develop a simple but robust estimator to estimate the
sample rate from the assignment rate and begin our discussion
with how to estimate the sample rate by using one application.
For convenience, we will replace “the father” with “one parent”
and “the mother” with “the other parent” in the first and the sec-
ond categories in a parentage analysis.

For the first and the second categories, we have
a ¼ psac þ ð1� psÞau, so ps can be estimated by:

p̂s ¼
â � âu

âc � âu
: (5)

For the third category, if the sexes are known, then
a ¼ p2

s ac þ ð1� p2
s Þau, so ps can be estimated by:

p̂s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â � âu

âc � âu

s
: (6)

If the sexes are unknown, then a ¼ pcac þ ð1� pcÞau, where pc is
the probability that the true parents are sampled, which can be
expressed as pc ¼ sups þ ð1� suÞp2

s , in which su is the proportion of
selfed offspring in this application. Hence p̂c ¼ â�âu

â c�âu
, and the sam-

ple rate ps can be estimated by:

p̂s ¼
ŝu �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

u þ 4p̂c � 4ŝup̂c

q
2ŝu � 2

: (7)

The value of p̂s may be less than zero or greater than one. If
this happens, we will truncate the value into the acceptable
range ½0; 1�. We will also set multiple confidence levels to esti-
mate the selfing rate su for increased accuracy. For the situations
of multiple applications and multiple confidence levels, the esti-
mation of the sampling rate is shown in Supplementary
Appendix G, along with the estimation of su.

Evaluation
In this study, we use a computer simulation to create the geno-
typic and phenotypic datasets with disomic, tetrasomic or hexa-
somic inheritance, and then perform our parentage analysis by
using these datasets. The performances of four methods under
the same conditions are compared by four typical applications,
where one method is the PHENOTYPE method, and the others are
named the DOMINANT method (Rodzen et al. 2004) (named after
the pseudo-dominant data used in this method), the SIBSHIP

method (Wang 2016) (originating from the application “sibship
reconstruction”) and the EXCLUSION method (Zwart et al. 2016). The
accuracies of these four methods under natural conditions are

tested with an empirical microsatellite dataset for the highbush
blueberry (Huber 2016). In addition, the performances of the gen-
otyping error rate estimation and the sample rate estimation are
also evaluated using the simulated datasets.

Both the DOMINANT and the SIBSHIP methods rely on first trans-
forming the polyploid codominant phenotypic data into pseudo-
dominant data. The same procedure as Kalinowski et al. (2007) is
used for the DOMINANT method, and the likelihood formulas under
this method are listed in Supplementary Appendix H, whose deri-
vations are given by Gerber et al. (2000). Under the SIBSHIP method,
a simulated-annealing algorithm is used to find the classification
of optimal full-sib (or half-sib) families for the whole dataset by
maximizing the likelihood, which is implemented in the software
package COLONY (Wang and Scribner 2014). Under the EXCLUSION

method, the effects of double-reduction and null alleles are
incorporated, and the details of this method are described in
Supplementary Appendix I.

Simulated data
In order to evaluate these methods, we create some theoretical
monoecious populations, each consisting only of individuals with
disomic to decasomic inheritance for the genotypic data or diso-
mic to hexasomic inheritance for the phenotypic data. We as-
sumed that the population under scrutiny is genotyped at L
unlinked loci under the PES model (Huang et al. 2019). The num-
ber of loci L is set from three to 12 (genotypes) or three to 18 (phe-
notypes) at an interval of three. The distance (in centimorgans)
between each of these loci and its corresponding centromere is
drawn from the uniform distribution Uð0; 100Þ. The single chro-
matid recombination rate rs is obtained by Haldane’s mapping
function. Each locus is located with six amplifiable alleles that
have uniform initial frequencies, with the initial null allele fre-
quency set as 0.1 for the phenotypic data. For the genotypic data,
null alleles are not simulated because the dosage of alleles within
each genotype is known.

Huang et al. (2019) derived the genotypic frequencies under
each of the four double-reduction models listed in
Supplementary Table S1. However, the analytical solution of ge-
notypic frequencies under inbreeding/selfing and double-
reduction is still unknown. As an alternative, we give an approxi-
mated solution in Supplementary Appendix C by using the in-
breeding coefficient F as an intermediate variable with the
assumption that any inbreeding is only caused by self-
fertilization. With this approximation, we generate the genotypes
of the founder generation by Equation (A4). In order to let the
genotypic frequencies reach their equilibrium state and avoid se-
vere genetic drift, 2000 individuals are generated for the founder
generation, and the population is allowed to reproduce for ten
generations, each generation consisting of 2000 individuals.

During reproduction, the parents of each offspring are either
two distinct individuals randomly chosen from the previous
generation at a probability of 1� s, or the same individual (for
self-fertilization) randomly chosen from the previous generation
at a probability of s. The selfing rate s is set as three levels
(0, 0.1 and 0.3). The following three procedures are designed to
simulate meiosis: (1) the chromosomes are randomly paired and
the alleles are exchanged between the pairing chromosomes at a
probability of rs; (2) the chromosomes are randomly segregated
into two secondary oocytes; and (3) the alleles within a chromo-
some are randomly segregated into two gametes. Fertilization is
then simulated by the merging of two gametes.

Next, we reproduce two additional generations, each consist-
ing of 100 individuals, to be used as the parents and offspring for
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the subsequent analyses. To simulate the missing parents, 90%
of parents and all offspring are sampled. To simulate the geno-
typing errors, each genotype is swapped with the genotype of an-
other individual at the same locus at a probability of 1

2 e (where e
is set as 0.01). To simulate negative amplification, each genotype
is randomly set as 1 at a probability of b (where b is set as 0.05).
The phenotypes are obtained by removing both the null and the
duplicated alleles within genotypes. Then the generated geno-
typic (or phenotypic) dataset is used to perform the parentage
analysis. The allele frequency estimation is described in
Supplementary Appendix J.

For the first two categories in a parentage analysis, each is
designated its own application [named Application (i) or (ii)].
Application (iii) refers to a third category in which the alleged
fathers and the alleged mothers are drawn from two different
collections (representing that the sexes are known). Application
(iv) also refers to the third category in which the alleged fathers
and the alleged mothers are drawn from the same collection (rep-
resenting that the sexes are unknown).

In Application (i), for each of the 100 offspring, 89 individuals
from the parental generation are used as alleged fathers.
Application (ii) is performed for the offspring with their mother
sampled. In this application, for each offspring, the true mother
is known, and 89 individuals from the parental generation are
used as the alleged fathers. For Applications (i) and (ii), the al-
leged fathers will include the true father if sampled but will ex-
clude the true mother (except when the offspring is the product
of self-fertilisation) to avoid interference. In Application (iii), for
each offspring, 45 individuals (including the true father if sam-
pled) from the parental generation are considered as the alleged
fathers, with the remaining 45 individuals (including the true
mother if sampled) as the alleged mothers. In Application (iv), for
each offspring, all 90 individuals in the parental generation are
considered as the alleged parents. We perform 100 replications
for each configuration and calculate the average correct assign-
ment rate for each configuration. Here, a configuration is defined
as a combination of the parameters v, L and s. A correct assignment
therefore means that the true parents have been assigned and
the value of D is higher than the corresponding threshold.

For the PHENOTYPE method, there are many models to estimate
the allele frequencies and the related parameters, and the ideal
way is to try each and then choose the optimal one with the
smallest Bayesian information criterion (BIC) (as in Huang et al.
2020). However, it is time consuming to evaluate each of them in
each simulation. As an alternative, we choose two models that
work well in most situations: PES0:25 þ py þ bþ s for the pheno-
typic data and PES0:25 þ bþ s for the genotypic data. They denote
the PES models with rs ¼ 0:25 together with the considerations of
null alleles (for phenotypes only), negative amplification and
self-fertilization. Because the estimations of genotyping error
rate e and sample rate ps depend on the number of assigned
parents, the performance of a less efficient method will be re-
duced again due to the inaccurate estimations of e and ps. As the
aim of our simulation is to evaluate the performance of four
methods, not the influence of the estimations of e and ps, the true
values of e and ps are used as the a priori information. We perform
2000 Monte-Carlo simulations to obtain various critical values of
the statistic D, and the correct assignment rates under three criti-
cal values (0, D0:8 and D0:95) are recorded.

For both the DOMINANT and the SIBSHIP methods, the frequency
pdom of the dominant allele at a pseudo-dominant marker is esti-
mated by p̂dom ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p̂tar

p
, where p̂tar is the observed proba-

bility that a randomly sampled phenotype contains the target

allele. For the DOMINANT method, we implement the calculations of
likelihood formulas listed in Supplementary Appendix H in our
simulation program. We also perform 2000 Monte-Carlo simula-
tions to obtain the thresholds of D, and record the correct assign-
ment rates under the same thresholds as above. For the SIBSHIP

method, we write the pseudo-dominant phenotypes, the allele
frequency estimates and other necessary parameters into a
COLONY V2.0.6.5 input file. To avoid interference by the other cases,
a unique input file for each case is generated. After calling colo-
ny2p.exe by a command-line mode, the results can be read from
the output files. The probability of the identified parent(s) is used
as a confidence level to compare with the PHENOTYPE and DOMINANT

methods. The EXCLUSION method is implemented in our simulation
program. In this method, the alleged parent (or parent-pair) with
the fewest mismatches is assigned. If multiple alleged parents (or
parent-pairs) have the same number of mismatches, none of
them is assigned. For this method, any confidence level is
unavailable.

Empirical data
We used a microsatellite dataset from the highbush blueberry
(Vaccinium corymbosum) (Chapter 5, Huber 2016) to test the same
four methods. The highbush blueberry has tetrasomic inheri-
tance with no evidence of fixed heterozygosity (that indicates di-
somic inheritance; Krebs and Hancock1989).

The blueberry samples were collected from Agriculture Agri-
Food Canada blueberry plots in Abbotsford and Agassiz, BC.,
Canada (Huber 2016). Five controlled crosses, each with 25 to 30
offspring, were collected, resulting in a collection of 150 individu-
als, 143 of which were offspring. All samples were successfully
amplified at 15 microsatellite loci, with the number of alleles
sampled ranging from three to ten (mean 6 SD is 5.60 6 2.33).

There are altogether seven parents in these five controlled
crosses. To increase the difficulty of our analysis, we also add 120
simulated false parents which are generated by randomly copy-
ing the phenotypes from the real individuals. Following the four
applications for the simulated data, we designed four similar
applications for these empirical data. Application (I) or (II) refers
to identifying the father when the mother is either unknown or
known. There are 286 cases (twice the number of offspring) for
each application, and each case has either 60 alleged fathers (in-
cluding one true parent and 59 false parents) for Application (I) or
the known mother together with 60 alleged fathers (including
one true parent and 59 false parents) for Application (II).
Application (III) refers to identifying the father and the mother
jointly in which the alleged fathers and the alleged mothers are
drawn from two different collections. There are 143 cases for this
application, each of which has 30 alleged fathers (including the
true father and 29 false fathers) and 30 alleged mothers (includ-
ing the true mother and 29 false mothers). Application (IV) refers
to identifying the father and the mother jointly in which the al-
leged fathers and the alleged mothers are drawn from the same
collection. There are also 143 cases for this application, each of
which has 60 alleged parents of unknown sex (including two true
parents and 58 false parents). The false parents used in each case
are randomly sampled from a total of 125 false parents (including
120 simulated individuals and 5 natural individuals).

We randomly sample five to 15 loci from the dataset. For each
value of L, 100 datasets are generated, each including 150 true
individuals and 120 false parents. These datasets will be used to
perform our parentage analysis by using the same four methods
as described in the previous section. The analytical procedures
are also the same as in the previous section except that the
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number of Monte-Carlo simulations to obtain the thresholds of D

is 10,000 instead of 2000. The correct assignment rate will be
used to measure the accuracy of each model.

Evaluation of genotyping error rate and sample rate
We use the simulated data to evaluate the performances of both
estimators for the genotyping error rate and the sample rate.
The same four applications are used as previously described, and
are still referred to as Applications (i) to (iv). We estimate the
genotyping error rate and the sample rate for each application.
Two pairs of sampling and genotyping conditions, poor and good,
are selected, which are e¼ 0.1 and ps ¼ 0:5 for poor, or e¼ 0.02
and ps ¼ 0:8 for good. The remaining parameters are almost the
same as those in the section Simulated data, in which s¼ 0.1, py ¼
0:1 and L is taken from 6 to 24 at an interval of three. We then
perform 100 simulations for each configuration. The PHENOTYPE

method is used to perform the parentage analysis with a priori
genotyping error rate e¼ 0.01 and sample rate ps ¼ 0:9. The allele
frequencies are estimated under the PES0:25 þ py þ bþ s model.
The performances of both estimators are evaluated by the RMSE.

For the estimation of the genotyping error rate, the identified
pairs (or trios) with a confidence level of 99% are considered as
the reference pairs (or trios), with d estimated by randomly
sampling 10,000 pairs (or trios). In Application (i), ê is estimated
from the pair mismatch, whilst for the remaining applications ê
is estimated from the pair or the trio mismatches.

For the estimation of sample rate, we use the weighted aver-
age of p̂s across three confidence levels (80%, 95% and 99%) for
each application. Because âc and âu are obtained from the simu-
lation, they may be influenced by any inaccurate simulation
parameters, such as the sample rate, the selfing rate and the gen-
otyping error rate. To improve the accuracy of these simulation
parameters, we perform two rounds of analyses. The estimated
sample rate and genotyping error rate in the first round are used
as the a priori values in the second round. The results of the sec-
ond round are used to evaluate the performance.

Data availability
Supplementary material S1: The appendices and supplementary
figures.

Supplementary material S2: The simulation parameters, out-
put files, description of I/O format, figure plotting script and em-
pirical dataset.

POLYGENE is written in Cþþ and C#, whose executables
(Windows, Ubuntu and Mac OS X), source code and user manual
are available on GitHub (http://github.com/huangkang1987/poly
gene). The simulation functions are “private void SIM_

PARENT1()” to “private void SIM_PARENT3()” in “Form1.cs.”
Supplementary material is available at https://doi.org/10.

25387/g3.13272623.

Results
Simulated data
For the four applications, each correct assignment rate as a func-
tion of L is denoted by a section of the overlapped bar charts,
shown in Figure 1 for the genotypic data or in Figure 2, and
Supplementary Figures S1 and S2 for the phenotypic data.

For the genotypic data, it can be seen from Figure 1 that each
correct assignment rate increases as the number of loci L also
increases, whose values reach a steady state if L is large enough
[e.g. L P 12 for Application (i) or L P 9 for the other applications].
The correct assignment rate generally reduces as the ploidy level

increases. Moreover, as the selfing rate increases the correct
assignment rate also increases but the difference among differ-
ent ploidy levels decreases.

For the phenotypic data, it can be seen from Figure 2 that the
correct assignment rate reduces as the ploidy level increases. The
PHENOTYPE method outperforms the other methods, whose correct
assignment rate at L¼ 9 is roughly the same as those of the other
methods at L¼ 18, indicating that the PHENOTYPE method can re-
duce the number of loci needed to achieve the same accuracy by
40% to 60%. This method is also less sensitive to changes in the
ploidy level, but an additional 23% and 45% loci are still required
to reach the same correct assignment rate in tetraploids and
hexaploids, respectively.

Compared with the DOMINANT method, the performance of the
SIBSHIP method is improved in Applications (i) and (ii) at a high L
( P 15), but is inferior in the other scenarios. The performance of
the EXCLUSION methods is good in Applications (ii) to (iv) at a high L
( P 15) but is inapplicable in Application (i).

It can be seen from Supplementary Figures S2 and S3 that, like
the results of genotypic data, the correct assignment rate is in-
creased under most situations if the selfing rate is increased from
0 to 0.3. The assignment rate is reduced in Applications (ii) to (iv)
under both the SIBSHIP and the EXCLUSION methods.

Empirical data
The parentage assignment results from using each of the four
methods and applying the phenotypic dataset of Huber (2016) are
shown in Figure 3. The results patterns are similar to those obtained
from the simulated data. The PHENOTYPE method still outperforms the
other three methods but to a lesser degree than when the simulated
dataset was used, but the PHENOTYPE method can still achieve
the same accuracy with only 75% of the loci needed for the other
methods. The EXCLUSION method is still inaccurate and cannot
be applied to real data in Application (I), but its performance is
relatively good for the other applications when L> 10. The DOMINANT

method performs worse than the other three methods for
Application (IV), as does the SIBSHIP method for Application (I).

Evaluation of genotyping error rate and
sample rate
The results under both poor and good conditions are shown in
Figure 4 and Supplementary Figure S4, respectively. For the esti-
mation of the genotyping error rate, it can be seen that the
results are good due to the RMSE being reduced to a low level. For
example, the RMSE at L¼ 24 is able to reach 0.02 in poor condi-
tions or 0.005 in good conditions. The RMSE for Application (i)
performs worse than for the other applications, and increases
greatly as the ploidy level also increases. This is because only the
pair mismatch can be used for this application, and the single-
locus exclusion rate for the first category is small. The RMSE for
Application (ii) preforms better than for the other applications,
because both the pair and the trio mismatches are used for this
application, and the single-locus exclusion rate for the second
category is usually higher than the other applications. The RMSE
curves of Applications (iii) and (iv) are similar.

For the estimation of the sample rate, Figure 4 and
Supplementary Figure S4 show that the results are inferior to
those for the estimation of the genotyping error rate. For exam-
ple, the RMSE at L¼ 24 is only able to reach 0.05 in poor condi-
tions or 0.02 in good conditions. Unlike the estimation of the
genotyping error rate, the results for Application (i) are not obvi-
ously inferior to those for the other applications. This is because
the assignment rate rather than the reference pairs is used to
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estimate the sample rate, causing the results influenced less by

the low single-locus exclusion rate.
The results for Application (ii) are poorer than those for esti-

mating the genotyping error rate because fewer cases (�50 cases)

are used (about half of the true mothers are not sampled). If

Applications (i) and (ii) use the same number of cases, then the

performance of Application (ii) would be better than Application

(i). Because Application (ii) also uses the mother’s data, which

can better distinguish the true and the false fathers, the differ-

ence between ac and au in Application (ii) is larger than that in

Application (i) under the same conditions (e.g. Supplementary

Figure S3).
The results for Application (iii) are usually better than those

for the other applications. This is because Application (iii) does

not need to estimate the selfing rate and has a larger sample size

(100 cases). However, the selfing rate has to be estimated for

Application (iv), and thus the results are less accurate than for

Application (iii).

Discussion
Inheritance model
Meiosis in polyploids is complex. Disomic and polysomic inheri-
tances are two extremes, and many autopolyploid taxa represent
the intermediate stages (Butruille and Boiteux 2000).
Allopolyploids (such as the segmental allopolyploids) can also
display intermediate inheritance at some loci (Stift et al. 2008). In
addition, some autopolyploid species can also form bivalent, uni-
valent and other types of valents during meiosis (Lloyd and
Bomblies 2016). The formation of different types of valents may
influence the sterility of the gametes or the seeds (Solı́s Neffa and
Fernández 2000).

For the autopolyploids with pure disomic inheritance, we can
adopt the RCS model to simulate disomic inheritance. This is be-
cause the genotypic frequencies, gamete frequencies and transi-
tional probabilities in the RCS model are the same as those for
disomic inheritance. These probabilities are of interest for par-
entage analysis. The difference between the RCS model and
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Figure 1 Correct assignment rate as a function of the number of loci L by using the genotypic data. Each row is designated an application and each
column shows the simulation results for a different rate of selfing. Every correct assignment rate is denoted by a section of overlapping bar charts. The
results of disomic to decasomic inheritances are shown by red, green, blue, yellow and azure bars, respectively. The bars with light, medium and bright
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when the other is unknown, (ii) identifying one parent when the other is known, (iii) identifying parents of known sexes jointly, and (iv) identifying
parents jointly with unknown sexes.
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disomic inheritance is that 100% multivalent formation is as-
sumed in the former, whilst 100% bivalent formation is as-
sumed in the latter. For the allopolyploids with pure disomic
inheritance, all diploid methods including those of parentage
analysis can be used if the genotypes at different isoloci are
identified.

For intermediate inheritance, e.g. 50% bivalent and 50% multi-
valent gamete formation, regardless of how complex the nature
of meiosis, identical-by-double-reduction (IBDR) alleles will be
present in the resulting fertile gametes (Huang et al. 2019). For
this reason, a generalized model was proposed, which uses bv=4c
double-reduction rates in the calculation of genotypic frequen-
cies and is able to describe meiosis patterns including that for in-
termediate inheritance (Huang et al. 2019). However, this model is
too complex because it has bv=4c more degrees of freedom than
the RCS (PRCS or CES) model. It is difficult to accurately estimate
each double-reduction rate and thus is unrealistic to apply to
many actual conditions. Even if these double-reduction rates are
estimated, this model will often be suboptimal to other models
because of the requirement for more degrees-of-freedom to ex-
plain various trends in a data set resulting in a higher BIC.

To better approximate the natural patterns, a simplified ver-

sion of the generalized model was developed, named the PES

model, which accommodates the single chromatid recombina-

tion rate rs as an additional parameter to calculate the genotypic

frequencies (Huang et al. 2019). Especially, this model is equiva-

lent to either the RCS model if rs ¼ 0, or the CES model if rs ¼ 1.

Our software provides three PES-related models, which are the

PES0:25, the PES0:5 and the PES estimate rs. The former two mod-

els do not increase their degrees-of-freedom because they use a

fixed value of rs. We suggest to evaluate candidate models by the

BIC and chose the optimal model with the lowest BIC (as in

Huang et al. 2020).

Performance of parentage analysis
For the genotypic data, the results for polyploids are generally

similar to those for diploids (Figure 1). The correct assignment

rate tends to increase if the ploidy level ranges from two to four,

whilst the assignment rate decreases with a ploidy level that

ranges from four to ten. However, this trend is weakened as the

selfing rate increases.
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Figure 2 Correct assignment rates as a function of the number of loci L by using the phenotypic data at a selfing rate of 0.1. Each row is designated an
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methods are shown by the red, green, blue and gray bars, respectively. The bars with light, medium and bright colors denote in turn the correct
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These phenomena have at least three not necessarily mutu-
ally exclusive explanations. (i) At a high polyploid level, a geno-
type has more allele copies and so contains more genetic
information (Huang et al. 2014). This can improve the perfor-
mance of parentage analysis and many other population genetics

analyses (e.g. the estimation of allele frequencies, genetic diver-
sity, F-statistics, and relatedness coefficients). (ii) At a high poly-
ploid level, the false parents are more likely to share the same
alleles with the offspring, which may reduce the correct assign-
ment rate. For example, if the ploidy level is high, reaching 1000,
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the false parents will share the same alleles with the offspring at
a hexa-allelic locus. This is similar to when biallelic loci are used
in tetraploids or hexaploids, the details of which are discussed in
the following section. (iii) Selfing is able to reduce the difference
among ploidy levels and improve the performance of our parent-
age analysis. Each of these three explanations will also be
reflected in the phenotype results and are described at the end of
this section.

For the phenotypic data, the results for polyploids are gener-
ally inferior to those for diploids for each application and for each
method (e.g. see Figure 2). The PHENOTYPE method performs best
among all four methods, saving at least 25% more loci than the
other methods (e.g. see Figures 2 and 3), whose performances are
stable for all applications.

For the four applications, the results of the PHENOTYPE method
for diploids (Figure 2, and Supplementary Figures S2 and S3) are
slightly inferior to those for the genotypic data (Figure 1). This is
because null alleles are simulated for the phenotypic data. In the
absence of null alleles, each phenotype is only determined by one
genotype for diploids. Therefore, both results under such condi-
tion are identical (data not shown).

For the DOMINANT (Rodzen et al. 2004) and SIBSHIP (Wang and
Scribner 2014) methods, the results are suboptimal to those of
the PHENOTYPE method (e.g. see Figure 3 and Supplementary Figure
S2). In both the dominant and sibship methods, the polyploid co-
dominant phenotypic data are transformed into the pseudo-
dominant data, and the diploid procedures for a parentage analy-
sis are subsequently used to perform an analysis. During trans-
formation, genetic information is lost (Wang and Scribner 2014)
and some noise is also introduced. For example, in the pseudo-
dominant approach the pseudo-dominant loci are assumed to be
unlinked. In fact, because there are at most v alleles in a pheno-
type, the presence of an allele in a phenotype will reduce the
probability of observing the other alleles in this phenotype, and
so these loci are negatively correlated rather than unlinked. In
addition, for the pseudo-dominant approach, many factors that
affect the parentage analysis are not considered, such as double-
reduction, null alleles, negative amplification, and inbreeding/
selfing.

The EXCLUSION method (Zwart et al. 2016) performs well in
Applications (ii) to (iv), and the results are better than those for
both the DOMINANT and the SIBSHIP methods but only if L is high (e.g.
see Figure 3 and Supplementary Figure S3). However, the
EXCLUSION method cannot be used for Application (i) because the
single-locus exclusion rate in the first category is too low (e.g.
0.01 for hexaploid phenotypes at a hexa-allelic locus). Therefore,
hundreds of loci are needed in order to exclude the false parents.
This feature also influences the estimation of the genotyping er-
ror rate, such that the RMSE for Application (i) is highest
(Figure 4).

From our simulation results, self-fertilization improves the ac-
curacy of a parentage analysis, and reduces the variation of accu-
racies among different ploidy levels (Figures 1 and 2, and
Supplementary Figures S2 and S3). This is because the genotypes
become more homozygous as the selfing rate increases. If the
selfing rate is one, all genotypes will become homozygotes at an
equilibrium state. In such a case, each individual can be regarded
as a haploid, and the ploidy level will not affect the accuracy of a
parentage analysis.

Genotyping error model
We follow Marshall et al. (1998) and consider the genotyping error
as the replacement of a true genotype with a random genotype

according to the genotypic frequencies. This error model assumes
that the genotyping error will not change the genotypic frequen-
cies and therefore facilitates subsequent model development.
However, actual genotyping errors can be complex, such as allelic
dropouts, false alleles, mutations, miscalling, contaminated DNA
and errors in data entry (Taberlet et al. 1996; Wang 2004).
Although our error model may be unrealistic, it is likely the only
applicable solution to our study for four reasons.

First, genotyping errors will interfere with the parentage
analysis by reducing the LOD of the true parents. Assuming the
expected LOD of an erroneously typed true parent is equal to the
expected LOD of the false parents, then the genotyping error is
equivalent to discarding eL locus. This estimation is conservative
and overestimates the influence of genotyping errors. This is be-
cause some kinds of genotyping errors (e.g. allelic dropouts, false
alleles) yield similar genotypes that share some identical alleles
with the original genotypes. If there are sufficient loci (e.g. 18
microsatellites) and the genotyping error rate is not high (e.g. ¡ <
0.05), then the correct assignment rate still can be kept at a high
level and the influence of genotyping errors are minimized for
any error model. Second, the main function of considering geno-
typing errors is to tolerate some mismatches between the alleged
parent and the offspring. Using an alternative error model may
slightly change the LOD but will not change the parentage analy-
sis results. For example, although Marshall et al. (1998) error
model is incorrect (Kalinowski et al. 2007) the results of CERVUS v2.0
will still be applicable. Third, an alternative error model may not
outperform the current error model. For any alternative model,
additional parameters are required to describe the frequencies of
different kinds of genotyping errors. These parameters can be
assigned from a priori information, additional experiments (e.g.
repeat genotyping) or additional estimators, and will increase the
model complexity (i.e. degrees-of-freedom), Akaike information
criterion (Akaike 1974) and Bayesian information criterion
(Schwarz 1978). Finally, an alternative error model cannot be ap-
plied to our study due to difficulties in computation caused by in-
creasing the number of alleles and reducing the calculation
speed during simulation. Unfortunately, our current simulation
speed is already slow even though we use several optimization
methods (see the Optimization and complexity section).

Genotyping error rate and sample rate
Our estimator for the genotyping error rate e is asymptotically
unbiased as the number of loci increases. The bias of ê is from
the estimation of c. Because c is estimated from any mismatches
in the reference pairs or trios that are extracted from the identi-
fied parent(s), the confidence level of the true parents with few
mismatches are successfully identified at a high probability. As a
result, the value of ĉ may be underestimated.

The estimation of the genotyping error rate does not use any
simulation (c is estimated from the reference pairs or trios, and d

is estimated from the distribution of the observed genotypes/phe-
notypes). This means that the estimator is not only robust but
also insensitive to any errors in the simulation parameters (such
as the allele frequency, negative amplification rate, selfing rate,
sample rate, or the genotyping error rate). Any errors in these
simulation parameters can only slightly affect the identified
parents, which will not significantly affect the accuracy of ê.
However, this estimator needs sufficient loci to identify the refer-
ence pairs or trios. For instance, if e¼ 0.1 and ps ¼ 0:5, at least 15
loci are required in order to estimate the genotyping error rate for
hexaploids in Application (i) (Figure 4).
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Compared with the genotyping error rate, the estimation of

the sample rate ps is less accurate and more sensitive to errors in

the simulation parameters. There are at least three not necessar-

ily mutually independent explanations for these patterns. (i) The

estimate of the genotyping error rate is the weighted average of

single-locus estimated values across all loci, where the actual

sample size is
P

l nrl. Whilst the sample rate is estimated only

once for all loci, the actual sample size is the number of cases nc

(see Supplementary Appendix G). (ii) The sample rate estimator

is biased in all categories in a parentage analysis because p̂s is

truncated into the range ½0; 1� and the operation of the square

root is used in the third category. (iii) The simulation is used to

obtain âc and âu for the estimation of the sample rate, whilst the

parameters used for simulation may be inaccurate (e.g. a prior e

and ps). Any errors in âc and âu can be passed to p̂s, but such

errors can be eliminated by increasing the number of loci. When

the number of loci are sufficient, âc will be close to one, and âu to

zero. We suggest that users perform two rounds of estimation so

as to reduce such errors as we have in the evaluation above.

Polymorphism of loci
Because polyploids have more allele copies in a genotype, the

false parents are more likely to share the same alleles with the

offspring. Therefore, data resulting from the use of biallelic

markers, e.g. single nucleotide polymorphism (SNPs), are unsuitable

for performing a polyploid parentage analysis.
We will illustrate this by using the exclusion approach for the

first category. For a given alleged parent, if its phenotype PA does

not share any allele with its offspring phenotype PO, then it can

be excluded as a true parent. If we assume that the double-

reduction model is the RCS model, and that there are no interfer-

ence factors (such as genotyping errors, self-fertilization, null

alleles or negative amplification), then the exclusion rate Excl1 at

a biallelic locus for the first category is:

Excl1 ¼ PrðPO ¼ A; PA ¼ BÞ þ PrðPO ¼ B;PA ¼ AÞ ¼ 0:52v�1;

where A and B are the two alleles at this locus. The values of

Excl1 from disomic to decasomic inheritances are in turn 0.125,

7:813� 10�3; 4:883� 10�4; 3:052� 10�5 and 1:907� 10�6. This se-

quence decreases exponentially, indicating that the false parents

become less likely to be excluded as the ploidy level increases.

Moreover, the number of loci required to achieve the combined

exclusion rate 0.95 is lnð0:05Þ=lnð1� Excl1Þ, whose values from

disomic to decasomic inheritances are in turn 22, 382, 6134,

98,163, and 1,570,625.
Although next-generation sequencing (NGS) is able to segre-

gate millions of SNPs, two reasons make it difficult to directly

perform a parentage analysis with data obtained by using SNPs.

First, the allele frequencies of most SNPs are not uniform, which

reduces the exclusion rate. Second, adjacent SNPs are closely

linked. This will reduce the accuracy of results because the ge-

netic markers are assumed to be unlinked in all parentage analy-

sis models.
Fortunately, haplotype assembly (Aguiar and Istrail 2013),

phased sequencing (Yang et al. 2011; Manching et al. 2017) and

haplotype inference (Neigenfind et al. 2008) can all help to main-

tain the efficiency of NGS data, and can segregate multi-allelic

loci by combining the closely linked variants so as to increase the

single-locus polymorphism. Additionally, polyploid genotype

calling can directly call back the genotypes but can currently

only be applied to the biallelic variants (Carley et al. 2017; Weiß

et al. 2018).
Multi-allelic markers can also be influenced by the same prob-

lem. We perform a simple simulation to describe the influence of

the number of amplifiable alleles on the correct assignment rate,

in which 20 loci with uniform amplifiable allele frequencies are

used to perform our parentage analysis under the PHENOTYPE

method (Figure 5). The correct assignment rate is much increased

if the number of amplifiable alleles equates broadly to the ploidy

level v, indicating that to achieve the optimal result, the number

of amplifiable alleles should be greater than or equal to v

(Figure 5). More loci are required if loci with relatively low levels

of polymorphism are used. We suggest therefore to use highly

polymorphic loci to perform parentage analysis.

Optimization and complexity
We use multi-threading, dynamic programming and genotype/

phenotype indexing to optimize computational speed in the par-

entage analysis module in POLYGENE. The dynamic programming

stores the likelihoods or LODs into a table so as to avoid repeated

calculations. The genotype/phenotype indexing only records the

hash values of genotypes/phenotypes for each individual, and

the information of genotypes/phenotypes are saved in a hash ta-

ble, that also includes the alleles, various frequencies (or prior/

posterior probabilities), possible gametes and the number of

occurrences.
All of these simulations took a total of three weeks to compute

using a powerful workstation (Xeon E5 2699V4 36 cores).

Computing efficiency will also be affected by the ploidy level v

and the number of alleles K due to four main reasons: (i) the

number of phenotypes increases as v and K increase, which

reduces the efficiency of dynamic programming because more

memory is required to store the likelihoods or LODs; (ii) the aver-

age number of genotypes determining a phenotype increases as v

and K increase, which decelerates the calculation of likelihoods

or LODs; (iii) the average number of gametes produced by a zy-

gote increases as v and K increase, which decelerates the calcula-

tion of TðGO jGFÞ and TðGO jGF;GMÞ in Equation (A6); (iv) the

number of terms in Equation (A7) increases as v and K increase,

which decelerates the calculation of Tðg jGÞ in Equation (A7).

These four factors collectively and multiplicatively increase the

complexity of the calculations. It is therefore not possible to
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Figure 5 Correct assignment rates as a function of the number of
amplifiable alleles under the PHENOTYPE method. Twenty loci with uniform
allele frequencies of amplifiable alleles are used. The threshold and the
selfing rate are set as D0:95 and 0.1, respectively. The remaining
parameters and configurations are as for the simulated dataset. Each
column shows the results for either tetrasomic or hexasomic
inheritance. Each curve denotes the result for an application, whose
definitions are as for Figure 4.
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perform an extensive simulation for highly polymorphic loci (e.g.
K> 7) or for high ploidy levels (e.g. v¼ 8 or v¼ 10).
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