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Compared to standard frame-based cameras, biologically-inspired event-based sensors

capture visual information with low latency and minimal redundancy. These event-based

sensors are also far less prone to motion blur than traditional cameras, and still operate

effectively in high dynamic range scenes. However, classical framed-based algorithms

are not typically suitable for these event-based data and new processing algorithms are

required. This paper focuses on the problem of depth estimation from a stereo pair of

event-based sensors. A fully event-based stereo depth estimation algorithm which relies

on message passing is proposed. The algorithm not only considers the properties of a

single event but also uses a Markov Random Field (MRF) to consider the constraints

between the nearby events, such as disparity uniqueness and depth continuity. The

method is tested on five different scenes and compared to other state-of-art event-based

stereo matching methods. The results show that the method detects more stereo

matches than other methods, with each match having a higher accuracy. The method

can operate in an event-driven manner where depths are reported for individual events

as they are received, or the network can be queried at any time to generate a sparse

depth frame which represents the current state of the network.

Keywords: event-based camera, stereo matching, event-driven, message passing, belief propagation, disparity

map

1. INTRODUCTION

Traditional frame-based stereo vision systems continue to steadily mature, in part thanks to
publicly available datasets, such as the Middlebury (Scharstein and Szeliski, 2002) and KITTI
(Menze and Geiger, 2015) benchmarks. Recently, new frame-based hardware stereo devices have
entered the commercial market such as the ZED, VI-sensor, and Realsense. Despite advances in
algorithms and hardware, frame-based stereo algorithms still struggle under certain conditions,
especially under rapid motion or challenging lighting conditions.

Even under ideal conditions, the latency of frame-based stereo vision sensors is typically on the
order of 50–200 ms, including the time required for both data capturing and processing. Latency
can be reduced and accuracy improved through brute force use of higher frame rate cameras and
more powerful computing hardware. However, for applications where high speed stereo sensing
is required, such as indoor flight with a small aerial vehicle, the Size, Weight, and Power (SWAP)
available for sensing and computing is severely limited.

Event-based vision sensors loosely mimic biological retinas, asynchronously generating events
in response to relative light intensity changes rather than absolute image intensity (Posch
et al., 2011). Event-based vision sensors have desirable properties for operating in uncontrolled
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environments. They provide sparse data with little redundancy
at low latency and high temporal resolution over a wide intra-
scene dynamic range. These properties are beneficial for sensing
from a mobile vehicle where computing resources are limited,
but low latency sensing is still required, and the lighting of
the surroundings cannot be controlled. However, the traditional
frame-based algorithms are not well suited to operate on event-
based data. In this paper, we present a fully event-based stereo
matching algorithm for reliable 3D depth estimation using a
method based on message passing.

The stereo matching problem for estimating depth from 2D
images plays an important role in sensing for mobile vehicles.
Frame-based stereo matching methods can be categorized into
active and passive approaches. The Kinect and Realsense are
active sensors (they emit a structured light pattern in infrared).
These active methods are remarkable for their real-time and
stable performance. However, they suffer from limited range
since IR strength falls off with distance, and they struggle in the
presence of ambient IR light, especially direct sunlight.

Passive methods directly process pairs of images, as is done by
the ZED and VI-sensor. These methods usually have relative long
detection range and high resolution depth map but require visual
features for matching and typically require a powerful CPU or
GPU to process in real-time. Event-based stereo matching works
by finding corresponding events from two different views and
estimating the disparity. Event-based stereo is a passive approach
since there is no emission. The events used to consist of only a
time, polarity (direction of change), and pixel address. They do
not directly encode absolute intensity which is typically used in
frame-based stereo matching.

Many researchers have explored event-based matching
criterions for event-based cameras such as ATIS (Posch et al.,
2011) and DVS (Lichtsteiner et al., 2008). Kogler et al. (2011)
focused on using the temporal and polarity correlation to match
different events and achieved promising initial results. However,
matching using temporal and polarity criterion alone is prone
to errors because the latency of events varies (jitter) (Rogister
et al., 2012). This problem is more obvious when multiple objects
are moving in the field of view. Rogister et al. considered not
only timing constraints, but also geometry constraints, event
ordering, and temporal activity constraint. Their method still
got relatively low reconstruction accuracy because ambiguities
cannot be uniquely solved from these temporal and geometrical
constraints alone (Camuñasmesa et al., 2014).

Benosman et al. have several papers on stereo (Camuñasmesa
et al., 2014; Lagorce et al., 2017) which explore the use of spatial,
temporal, orientation, andmotion constraints such as orientation
and Time-Surfaces for event-based stereo matching.

These methods usually have low estimation rate (ratio of
depth estimates to input events) and still produce many false
stereo matches. These event-based algorithms do not consider
the 3D constraints between adjacent events in the physical world.
However, benchmarks for frame-based algorithms show that
state-of-art global or semi-global frame-based stereo matching
methods consider both disparity uniqueness constraints and
disparity continuity constraints. These constraints can also be
applied to event-based stereo (Besse and Rother, 2014).

Firouzi and Conradt (2016) came up with the dynamic
cooperative neural network to make use of the stream of the
events. The method used the idea from Marr’s cooperative
computing approach (Marr, 1982) but made it dynamic to take
into account the temporal aspects of the stereo-events. The
result shows that the estimation rate considerably outperformed
previous works. However, the algorithm is sensitive to scene
dependent parameters which cannot necessarily be estimated
beforehand, as we show later in section 2.3.

Inspired by Cook et al. (2011) who was using message passing
algorithm to jointly estimate ego-motion intensity and optical
flow, we explore message passing for stereo depth estimation.

The main idea of our algorithm is borrowed from message-
passing algorithms. Message passing algorithms are used to solve
inference, optimization, and constraint satisfaction problems.
For these problems, the inputs are noisy or ambiguous
measurements within a specific model and the output is the most
probable state of some hidden state or attributes (MacKay, 2003).

In this work, we use Belief Propagation (BP), which is
also known as sum-product or max-product message passing.
BP is a message passing algorithm for performing inference
on graphical models, such as Bayesian networks and Markov
random fields (MRF). BP calculates the marginal distribution
for each unobserved node, conditional on any observed nodes
(Koller and Friedman, 2009).

Stereo matching can be defined as a labeling problem.
The labels correspond to the disparity. Generally, the quality
of labeling is defined as a cost function. Finding labels that
minimize the cost corresponds to amaximum a posteriori (MAP)
estimation problem in an appropriately defined MRF (Sun et al.,
2003 Felzenszwalb and Huttenlocher, 2004). BP as a global cost
optimization method is used by some state-of-art frame-based
stereo methods on the Middlebury and KITTI benchmarks.
However, traditional BP algorithms can only operate on static
features to solve the correspondence problem. It does not
consider continuity between the current frame and next frame. In
this work, our input data is a stream of events instead of pairs of
images. One possible method for estimating stereo is to construct
frames by accumulating events over a period of time, and then use
the BPmethod (Felzenszwalb and Huttenlocher, 2004) to process
in a frame-based manner. However, as shown in Figure 1, the
classical BP does not work for event accumulated frames, so we
have to construct a modified MRF to manage the event-driven
input and formulate a dynamic updating mechanism to deal with
the temporal correlation of the event stream. Although events
have no persistent measurement of intensity which is the key
feature used in frame-based stereo methods, the constraints such
as local smoothness consistency and disparity uniqueness are still
valid and useful in event-based stereo matching.

The major contributions of our method are as follows:

1. Proposing a method for using message passing to solve the
event-based stereo matching problem.

2. Exploring increasing the density of depth estimates from the
event-based sensor.

3. Evaluating our method and others on recordings which
include ground truth obtained from the ZED sensor.
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FIGURE 1 | Results from the classical BP and the proposed algorithm. The upper row is the recording of two people walking generated by accumulating 10 ms of

events. The left to right are the left and right input (color means polarity), the result of frame-based BP (grayscale value means disparity) and the result of our proposed

algorithm (color means disparity). The lower row shows the recording of two boxes.

After validating our method compared with several state-of-
art event-based stereo matching methods on our datasets, the
results demonstrate our method has a higher estimation rate and
estimation accuracy. In other words, it produces more depth
estimates, and with higher depth accuracy. Additionally, our
methods have the advantage of providing a slightly more dense
depth map. An illustrative video of our algorithm1 and the data
and source code2 can be found online.

2. MATERIALS AND METHODS

In this section we first describe the hardware setup for the stereo
rig (section 2.1), before describing our algorithm (section 2.2),
and how the algorithm was tested (section 2.3).

2.1. Hardware Setup
For the event-based stereo setup, we rely on two DAVIS240C
(Brandli et al., 2014) sensors. The DAVIS family of sensors
combine asynchronous event-based temporal contrast detection
with a synchronous frame-based readout. Such a setup allows for
the capture of both intensity frames and temporal contrast events.
In this work, we rely on the events only. Temporal contrast events
are generated by pixels independently and asynchronously as and
when changes in intensity occur in the scene. Figure 2 shows how
events are generated.

Figure 3 shows the stereo rig used to capture data and evaluate
algorithm performance. It consists of the ZED frame-based stereo
sensor mounted below two event-based DAVIS240C sensors, all
of which are held together with a 3D printed plastic mounting.

Events are read out from each DAVIS240C sensor
independently over two separate USB cables, but their
timestamps are synchronized using the standard timestamp

1https://youtu.be/ngJpY1lcbdw
2https://github.com/harryxz/EMP (tag: Frontiers)

synchronization feature of the sensors (which relies on the audio
cable seen in the figure).

The designed baseline of the event-based cameras is 12 cm.
The KOWA F1.4, 4.5 mm lenses provided with the sensors were
used. Based on the parameters of the cameras and lens, the best
possible depth detection range is from 0.6 m (50 pixel disparity)
to 30 m (1 pixel disparity), assuming that disparity can only
be calculated in steps of 1 pixel (with frame-based methods
sub-pixel accuracy is known to be possible).

The ZED sensor is used to generate an approximation of
ground truth for comparison. ZED is capable of a resolution of
672 × 376 pixels at 100 Hz. However, in practice, the maximum
frame rate used for ZED recordings is limited by the IO speed
of hard disk. The ZED sensor records the SVO file (StereoLabs
video file format) containing additional ZED data other than
the images. Data from the DAVIS240C, ZED, and Vicon are
simultaneously recorded using the Robot Operating System
(ROS)3.

In order to register events against ZED depth estimates, the
ZED sensor is calibrated against the left DAVIS sensor to get
the precise relative position. Then we use a similar approach
to Weikersdorfer et al. (2014), which uses the smallest depth
value within a one-pixel neighborhood in the most recent
frame.

2.2. Algorithm
Figure 4 shows the outline of the stereo algorithm which consists
of four main steps: Pre-processing, Event-based StereoMatching,
Event-driven Belief Propagation, and Disparity output. Each of
these steps will be described in a separate subsection below.

The input to the algorithm is a stream of events, where the ith
event can be represented as a vector ei = [ci, ti, xi, yi, pi], where
ci indicates which camera the event came from, ti is the time of

3http://www.ros.org/
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FIGURE 2 | (A) Principle of operation for DAVIS pixels. Each pixel produces an event whenever its log-illumination changes by a fixed amount. ON and OFF events are

generated by increases and decreases in intensity respectively. (B) An image generated by accumulating 20 ms of events. Cyan and red pixels indicate the locations

of ON and OFF events respectively.

FIGURE 3 | The stereo camera setup consisting of two DAVIS240C sensors

(top) mounted above a ZED sensor using a 3D printed plastic mount. The

entire setup is mounted on a tripod and calibration is used to accurately

determine the pose of all four cameras.

the event, [xi, yi] is the pixel location of the event, and pi is the
polarity, indicating whether the event was caused by an increase
or decrease in intensity. The output of the stereo algorithm is also
a stream of events, E = (ti, xi, yi, pi, di), where di is the disparity
in pixels.

The pre-processing stage performs noise filtering and stereo
rectification. The rectified events are passed to the event-based
stereo matching stage which identifies potential matches between
rectified events from the two sensors. These potential matches
are passed to the event-driven belief propagation step which
enforces disparity smoothness and uniqueness constraints to
choose between multiple potential stereo matches. Finally, the
disparity output stage estimates the disparity of each event and
generates a semi-dense disparity map with the updated MRF. By
semi-dense we mean the output is not sparse event points but
more dense structures such as edges and boundaries.

2.2.1. Pre-processing
The pre-processing stage consists of noise filtering and
rectification. First, the input event streams from each of the two

sensors are individually noise filtered. A simple nearest neighbor
filter was used, which filters out an event if no neighboring pixels
generated an event in the preceding 30 ms (Czech and Orchard,
2016). Second, rectification is performed.

Given a pair of stereo images, rectification determines
a transformation of each image, such that the resulting
transformed images appear as if they were captured by two
coplanar image sensors aligned such that each row of pixels
in the left sensor lies on the same line as the corresponding
row of pixels in the right sensor. The important advantage of
rectification is that computing stereo correspondences is reduced
to a 1-D search problem along the horizontal raster lines of
the rectified images (Fusiello et al., 2000) rather than a full
2D search. The first step in rectification is to calibrate the
sensors. Calibration is performed by using the frame-capture
capability of the DAVIS240C to simultaneously record frames
from both sensors, which can then be used with OpenCV to
calibrate. Simultaneous calibration of both sensors also provides
the parameters required for rectification.

For each event’s pixel location, the corresponding location in
the rectified image can be computed. However, this location will
typically lie somewhere between integer pixel locations. In this
case, we round off the pixel location to the nearest integer value.
This rectification maps [xi, yi] pixel locations of the original
events to modified pixel locations [x′i, y

′
i] in the rectified events.

Forcing [x′i, y
′
i] to be integer values may cause some loss in

accuracy, but it simplifies the algorithm by preventing the need
to keep track of sub-pixel locations.

Since the mapping is one-to-one, there is no need to
recompute the rectification transformation and find the nearest
pixel location for each event. Instead, we compute the
transformation once at startup and populate a lookup table to
speed up the computation. The results from rectification are
shown in Figure 5.

2.2.2. Event-Driven Matching
After pre-processing, an input event from the left camera, e′i =
(0, ti, x

′
i, y

′
i, pi) will have potential matching events in right camera
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FIGURE 4 | The framework of the message passing algorithm. (A) is the Pre-processing (section 2.2.1), (B) is the Event stream Matching (section 2.2.2), (C) is

Event-driven Belief Propagation (section 2.2.3) and (D) is Disparity output (section 2.2.4)

FIGURE 5 | (A) The snapshot of the raw events. (B) The snapshot of the rectified events.

e′j = (1, tj, x
′
j, y

′
j, pj) which match the criteria:

|t′j − t′i| ≤ τt ,

|y′j − y′i| ≤ 1,

0 ≤ x′i − x′j ≤ dmax,

pi = pj,

(1)

where dmax is the maximum disparity. In other words, for
two events to be considered a possible stereo matching pair,
they must be from different sensors, must occur within τt

milliseconds of each other, must have the same polarity, must
be from the same or neighboring rows (y). The x-address of
the left sensor event must be greater than or equal to the x-
address of the right sensor event, but not by more than dmax

pixels.
For implementation, we keep track of the time of the last

spike of each polarity from each sensor. We have a memory array
of size W × H × 2 × 2, where W and H are the width and
height of the sensor in pixels, and there are two polarities and
two sensors. Each location in the memory array holds the time

of the last spike for the corresponding sensor, pixel location, and
polarity.

An example of the contents of this memory array
generated by a single person walking across the scene is
shown in Figure 4B. Gray areas indicate where no event has
occurred since the beginning of the recording, while other
colors indicate when the most recent event for each pixel
occurred.

For each incoming event, ei, of the left camera, the candidate
region for events in the right camera which match the criteria
given in Equation (1) can be extracted from the last spike map,
and the cost for these candidate matches at each disparity, d, can
be computed using:

Ct(d, yj) =
|ti−tj|

ǫt

Cg(d, yj) =
|yi−yj|

ǫg

Ctotal(d, yj) = Ct(d, yj)+ Cg(d, yj)

D(d) =

{

minyj (Ctotal(d, yj)), if minyj (Ctotal(d, yj)) < Dmax

Cmax, otherwise

(2)
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were Ct(d, yj) is a cost term which penalizes potential matches
proportionally to the event time differences, Cg(d, yj) is a cost
term which penalizes potential matches proportionally to how
far they lie from the epipolar line. D(d) is the total matching
cost for disparity d, known as the data term. It is chosen as the
minimum of the costs for any potential matches at disparity d,
where d ranges from 0 to dmax. Dmax is a saturation term used to
limit the maximum value of the data term.

2.2.3. Event-Driven Belief Propagation
For the event-driven message passing framework, we follow the
idea from Felzenszwalb and Huttenlocher (2004), which defines
stereo matching as a labeling problem. Let P be the set of pixels of
the image and L be a set of labels corresponding to the disparity.
A labeling d assigns a label dp ∈ L to each pixel p ∈ P. The quality
of labeling is given by a cost function:

E(d) =
∑

p∈P

(D(dp)+
∑

q∈N(p)

V(dp, dq)), (3)

where N(p) is the neighborhood of pixels around p. D(dp) is the
data term which represents the cost of assigning disparity dp to
pixel p, calculated from Equation (2). V(dp, dq) is the cost of
assigning labels dp and dq to two neighboring pixels (defined
later) and is referred as discontinuity cost, which enforces spatial
smoothness of the disparity. Our goal is to find proper label
for each pixel to minimize the cost, which corresponds to a
maximum a posteriori estimation problem in an appropriately
defined Markov Random Field(MAP-MRF). The max-product
BP algorithm can be used to solve the MAP-MRF problem
efficiently (Felzenszwalb and Huttenlocher, 2004).

A schematic of the MRF connectivity and messages are shown
in Figure 4C. The graph consists of a hidden node, Xx,y, for each
pixel location [x, y]. Each hidden node is connected to its four
nearest neighbors, and an observation node, Dx,y.

The state of the observation node is Dx,y = D(d) from
Equation (2), and is used to calculate the hidden state Xx,y as well
as the messages traveling from the hidden node to its neighbors.

The hidden node state presents the posterior probability
distribution over possible discrete disparities. The negative log of
the probabilities is used to make the max-product become a min-
sum, which is less sensitive to numerical artifacts and directly
corresponds to the cost function definition Equation (3).

The state of each hidden node is presented as a dmax

dimension vector. Each dimension stores the cost of a certain
disparity. The cost is determined by a combination of the
observation data, and the messages from the neighboring nodes.

Traditionally the max-product BP algorithm works by
simultaneously passingmessages around the whole graph defined
by the four-connected image grid.

Our algorithm does not simultaneously update the entire
graph. Rather, whenever a new observation is available from the
stereo matching step, only the neighborhood of the observation
will be updated.

Each message is also a dmax dimension vector. We use the
notation mt

p→q(dq) to denote a message that node p sends to
neighboring node q at iteration t. At algorithm initialization,

all message values m0
p→q(dq) are initialized to zero. Thereafter,

messages are calculated as follows:

mt
p→q(dq) = H(τm − 1t)min

dp
[V(dp, dq)+ Dp(dp)

+
∑

s∈N(p)\qm
t−
s→p(dp)]

V(dp, dq) =
|dp−dq|

ǫd

(4)

where V(dp, dq) is the degree of difference between the
neighboring labels. In this case, the difference of the disparity
is used. N(p)\q denotes the neighbors of p other than q. mt−

s→p

means the previous message value update by the iteration at the
current time or by previous node updating. H()̇ is the Heaviside
step function, ensuring that only nodes active within the last τm

seconds are considered (1t is the time since the last update for
the node). Only active nodes are used to update the messages.
Inactive nodes do not generate messages, they only receive
messages. We the min convolution algorithm from Felzenszwalb
and Huttenlocher (2004) to reduce the complexity of message
updating to be linear rather than quadratic in the number of
labels.

Using Figure 4C as an example, when a new event is
processed, its matching cost computed using Equation (2) and
used to update the corresponding observation node Dx,y. For
the first iteration t0, the hidden node Xx,y calculates and passes
the messages to its neighbor nodes using Equation (4). Then
for the second iteration t1, each nodes in the neighborhood
calculate messages using Equation (4) for its own four-connected
neighborhood. The spatial regions within which messages are
updated in steps t0 and t1 are shown in Figure 4.

After the message iteration process has completed, the belief
vector at each node is computed as:

bp(dp) = Dp(dp)+
∑

s∈N(p)

mT−
s→p(dp) (5)

where bp(dp) is the belief for node p.

2.2.4. Disparity Output
The steps described thus far generate a belief vector for each
node. For Max-Product Belief Propagation, the goal is to find
a labeling with maximum posterior probability, or equivalently
with minimum cost. We select the label dp which minimizes
bp(dp) as the best disparity for the node. If the cost of the best
disparity, bp(dp), is greater than an outlier threshold τo then no
disparity output is generated for the node.

There are two methods for getting disparity output from
the network. For the first method, whenever there is a new
observation (caused by the arrival of a new input event), the
most likely disparity at the location of the observation can be
output. This method is event-driven because output disparities
are directly driven by input events. For the secondmethod, beliefs
and disparities can be calculated from the network state for all
locations whenever a disparity map is requested. For the sake
of visualization, this is typically done at constant time intervals
(frame intervals).
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Algorithm 1 Event-driven Message passing Stereo Matching

Initialize last spike time map, MRF and the parameters
for each incoming event, e = (c, t, x, y, p) do

Update last spike time map
Construct set of possible corresponding candidates, using

Equation (1)
for each candidate matching pair Ce, dk|0 ≤ dk ≤ dmax do

Calculate temporal and geometrical difference as data
cost term using Equation (2)

end for

Update messages locally around x,y using Equation (4)
Compute belief in x,y using Equation (5)
Select disparity which minimizes cost (if less than outlier

threshold τo).
Store the time at which each node was updated for future

use in Equation (4)
end for

The BP method can assign disparities to nodes for which no
observations are available, which results in slightly more dense
depth estimates than would be achieved by simply matching
events. However, the local nature of the message passing updates
means we only estimate disparities for pixels within a small
region around data observations.

2.2.5. Overview
The general workflow of the algorithm is depicted in
Algorithm 1.

2.3. Experiment Setup
Our testing investigates three main areas. The first set of tests
compares our algorithm against three other event-based stereo
matching algorithms. The second set of tests presents the semi-
dense output of our algorithm. The third tests show a brief
comparison of frame-based and event-based stereo in a scene
with challenging lighting conditions.

There are some state-of-art event-based stereo matching
algorithms like Rogister’s (Rogister et al., 2012), Camuñasmesa
(Camuñasmesa et al., 2014), and Firouzi’s (Firouzi and
Conradt, 2016). Rogister et al. used one moving pen and two
simultaneously moving pens as stimulus and showed the detected
disparity (Rogister et al., 2012), but the accuracy of the algorithm
is not quantitatively analyzed. Camuñasmesa et al. also used
simple objects like ring, pen, and cube to do the evaluation and
reported the estimation rate and correctly matched events. But
the correctly matched events are estimated by subtracting the
isolated and incorrectly matched events from the total number
of matched events (Camuñasmesa et al., 2014). There is no
ground truth of depth for each event to precisely analyze the
results.

Firouzi et al. used more complex stimulus such as hands
shaking in different depth. However, the ground truth is
estimated by manually measuring the distance between the
camera and object and assumed all the triggered events are

in the same disparity. Recently, some datasets for event-
based simultaneous localization and mapping (SLAM) (Kogler
et al., 2013; Serrano-Gotarredona et al., 2013) have become
available, but none of those are created for event based stereo
matching and the above previous works do not release their test
datasets.

In this paper we have replicated Rogister’s and Firouzi’s
algorithms. For Luis’s algorithm, orientation matching requires
the sensors to have the same orientation, and is therefore not
a very general method. Orientation estimation could instead be
done after rectification, but in our case, rectification leaves gaps
in the images (some rectified pixel locations do not map to any
pixels in the original scene). To extract orientations from rectified
data with holes, the size of the filters would need to be increased,
thereby reducing location specificity, and making them a poor
choice for stereo matching. We nevertheless combined other
constraints mentioned in Luis’s work with a novel restriction
Timesurface (Lagorce et al., 2017) as a comparison. Meanwhile,
we collect our own datasets including not only simple rigid object
such as the boxes but also flexible object like walking people
with depth ground truth. Besides, the datasets also include stereo
events, grayscale images, depth and camera motion. The datasets
can be used not only for stereo but also for scene flow, SLAM, and
other event-based applications.

2.4. Data
The datasets used in previous works (Rogister et al., 2012;
Camuñasmesa et al., 2014; Firouzi and Conradt, 2016) both
assume the cameras are static. For the comparisons with previous
algorithms, we also use recordings from a static stereo rig. We
use five recordings for comparison. The recordings are listed
below.

1. One box moving sidewise (One box).
2. Two boxes at different depths moving sidewise (Two boxes).
3. One person walking sidewise (One person).
4. Two people in different depth walking sidewise (Two people).
5. One person walking from near to far (One person different

depth).

To select parameters to use in the comparison, we started with
parameters from the previous algorithms and then fine tuned
them by hand on the one box recording (most similar to the
datesets of previous work) to achieve the best result. The same
parameters were then used for the other four recordings. The
main parameters of our algorithm are set as follows: τt = 20
ms , τm = 10 ms , dmax = 50, ǫt = 3 ms , ǫg = 3, ǫd = 1,
Dt = 5, τo = 1. τt used in Equation (1) and τm used in Equation
(4) are the temporal outlier threshold for matching and belief
propagation, which is set according to the expected object speed
(τt is usually from 10–30 ms while τm is half of the τt). dmax used
in Equation (1) decides the maximum possible disparity (lowest
possible depth). dmax = 50 means the possible depth detection
range is from 0.6m. ǫt and ǫg used in Equation (2) give the weight
of temporal and spatial cost (ǫt is usually from 1ms to 3 ms while
ǫg is from 1 to 3). τo is the outlier threshold. Higher τo increases
the estimation accuracy but decreases the estimation rate.
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FIGURE 6 | Qualitative and quantitative results from the first scene (One box). The upper row is a color-coded disparity map generated by accumulating 40 ms of

disparity estimates. The box is at depth 2 m and the ground truth disparity is 15 pixels, the lower row shows the events disparity histograms over a period of 3 s. From

the left to right, the result is extracted by (A) ST, (B) STS, (C) cooperative network, and (D) our method.

To evaluate the performance of each algorithm, the disparity
map and the disparity histogram are used. The disparity maps
are accumulated with 40 ms events with each pixel representing
an event and the color map of jet presenting the disparity. The
blue pixel color corresponds to a disparity close to 0 while the
red color corresponds to a disparity close to 50. The disparity
histograms are created to show the number of the events with
a certain disparity.

In order to quantitatively evaluate the result, we use three
measures of accuracy. The first measure is estimation rate, which
is the ratio of stereo matches detected divided by the number of
input events from the left camera.

The second measure is estimation accuracy, which is the
percentage of estimated disparities which are within 1 pixel
disparity of the ground truth (obtained from ZED and the
event-based camera and ZED were calibrated against each other)
(Kogler et al., 2011). The third measure is the depth accuracy,
measured as a percentage, defined as:

zacc(2) =

∑N
i= 1 H(2−|

z′i−zi
zi

|)

N
(6)

where z indicates depth (z-direction from the camera), z′i and zi
are the estimated and ground truth depths respectively. 2 is the
error tolerance percentage, H(·) is the Heaviside step function,
and there are N depth estimates generated for the sequence.
zacc(2) gives the percentage of estimates for which the error is
below the threshold of 2%.

In the experiments, ST is used to denote Rogister’s method
which enforces Space (epipolar) and Time constraints for stereo

matching. STS is used to denote matching based on Spatio-
Temporal Surfaces (Lagorce et al., 2017). Cop-net is used to
denote Firouzi’s cooperative network approach, and EMP is used
to denote our Event-based Message Passing approach. All the
algorithms are implemented in MATLAB2015b 64-bit, running
on an Intel I7 3.4 Ghz processor with 32GB RAM.

3. RESULTS

3.1. Estimation Rate and Accuracy
Figure 6 shows the results for the scene of One box recording
using the event-driven disparity output method discussed in
section 2.2.4. Due to the method used, only a single disparity
estimatemay be generated per input event, which is important for
fair comparison to othermethods using the estimation ratemetric
(on the other hand, disparities output in response to a query can
generate more disparity estimates than there are input events).

The top row of Figure 6 shows a snapshot of 40 ms of depth
data computed using the ST, STS, Cop-Net, and EMP methods
respectively (from left to right). Black grid lines in the disparity
map are a side effect of rectification, since some rectified pixel
locations may not map to any pixels in the original input event
stream.

The bottom row of Figure 6 shows the distribution of
disparities computed using each method. The correct disparities
lie in the range from 14 to 16. We see that the STS method
of Lagorce et al. (2017) has more estimates in the correct
disparity range than the ST method. Similarly, the Cooperative
Network (Cop-net) approach has more estimates at the correct
disparities than both the ST and STS methods. Our EMPmethod
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TABLE 1 | Quantitative results of computation time, the estimation rate, and the

estimation accuracy.

Dataset Method Time Estimation Estimation

(ms/event) rate (%) accuracy (%)

One box ST 0.023 40.74 68.16

STS 0.58 49.16 73.33

Cop-Net 0.75 71.78 75.29

EMP 1.20 82.16 77.15

One person ST 0.1 45.43 52.33

STS 3.6 47.87 56.53

Cop-Net 1.1 50.77 74.10

EMP 1.7 94.55 92.00

Two boxes ST 0.017 34.98 54.25

STS 0.90 34.34 62.61

Cop-Net 0.65 61.13 75.29

EMP 1.2 73.64 82.21

Two people ST 0.14 43.06 42.59

STS 6.9 40.89 47.28

Cop-Net 1.1 49.73 67.08

EMP 2 92.71 70.64

One person different depth ST 0.035 37.86 41.33

STS 0.69 35.42 46.08

Cop-Net 0.45 53.84 40.78

EMP 1.01 58.36 61.14

achieves the most disparity estimates within the correct disparity
range.

The histograms give a good indication of the distribution of
disparities estimated, but do not necessarily indicate that the
correct disparity was measured for each event. For example,
swapping the disparities associated with two events would result
in the exact same histogram, even though both disparities are
now incorrect. A more accurate measure is to evaluate the
accuracy of each disparity event individually using the metrics
described in section 2.4.

Table 1 shows the estimation rate and estimation accuracy for
each method. The Cop-Net and EMP methods clearly provide
far more estimates than the ST and STS methods for the one
box recording. Of the disparity estimates generated, a higher
percentage of the estimates are correct with the EMP method.

Similar comparisons hold true for the other recordings.
Figure 6 shows a simple test case with one box at a constant
depth, Figure 8 extends Figure 6 to show that the algorithm
can simultaneously detect the depth of multiple objects.
Figure 7 extends Figure 8 to shows performance on non-rigid
objects and Figure 10 shows the performance when occlusion
is present. Figure 10 shows how the algorithm performs
when the depth of an object is changing in the scene (for
Figures 6–9) each object has roughly constant depth during the
recording).

Figure 11 shows the percentage of depth estimates, zacc(2)
(vertical axis), which lie within an acceptable error tolerance, 2
(horizontal axis), as described in Equation (6), for each of the five
recordings used.

3.2. Map Obtained from a Query
Figure 12 shows the output of the network when queried
(see section 2.2.4) vs. accumulating the event-driven output.
The result returned from the query is slightly denser than
simply accumulating disparity events. This is because
disparity estimates can affect neighboring pixels. These
neighboring pixels may then report a disparity based
purely on disparity information received from neighoring
pixels.

This is especially apparent from the fact that the black grid
lines are not present in the queried depth map. Even pixels
at locations which receive no events (black grid lines) report
depth estimates when queried. Beliefs Equation (5) need only be
calculated when an output is desired since the state of the network
is uniquely described by the messages.

3.3. Comparison with Frame-Based
Methods
Figure 13 shows a comparison between the passive frame-
based ZED sensor and the event-based stereo algorithm (EMP)
under challenging lighting conditions. The sensors remain
static in a high dynamic range scene. The raw images
captured by the ZED are shown in the top row. Depth
maps generated by the ZED are shown in the middle row.
The depth maps are almost fully dense, but do include
some missing portions. The depth readings from the ZED
are not necessarily constant, even for static regions in the
scene. In the second column from the left, the depth
measurements are suddenly larger (further) than for the other
frames. The outlines of objects (in this case the person) are
heavily blurred and the depth discontinuities are not clearly
visible.

The event-based sensors can easily handle high dynamic range
scenes, as seen in the rightmost image where the depth of the
dark arm in from of the dark body is still correctly detected.
The output of the event-based algorithm is very sparse, definitely
much sparser than the ZED output. The outlines of the person are
clearly detected though, suggesting that the event-based depth
may play a complementary role to frame based stereo depth
detection.

4. DISCUSSION

For all of the recordings shown in this paper, the EMP
algorithm produces more disparity estimates than the ST, STS,
or Cop-net algorithms. Furthermore, when normalizing by the
number of disparity estimates generated, EMP still produces on
average higher accuracy estimates than the other algorithms.
In cases where the ST and STS methods are not able to find
a good enough stereo match to generate a disparity output,
the Cop-net and EMP approaches can incorporate disparity
information from nearby pixels to increase confidence (decrease

Frontiers in Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xie et al. Event-Based Stereo Depth Estimation

FIGURE 7 | Qualitative and quantitative results of the second scene (One person). The upper row is a color-coded disparity map generated by accumulating 40 ms of

disparity estimates. The depth of the person is 3 m and the ground truth disparity is 15. From the left to right, the result is extracted (A) ST, (B) STS, (C) cooperative

network, and (D) our method.

FIGURE 8 | Qualitative and quantitative results of the third scene (Two boxes). The upper row is a color-coded disparity map of a 40 ms-long stream of events for two

moving boxes (one is at 1.5 m and another at 3 m). From the left to right, the result is extracted by (A) ST, (B) STS, (C) cooperative network, and (D) our method.

cost) associated with a disparity output. This results in more
output disparities for Cop-Net and ST, as seen in Table 1 and
Figures 6–11.

Not only do the Cop-net and EMP algorithms produce
more depth estimates (which could also be achieved by simply
increasing the allowable cost threshold τo), but the estimates

produced are more accurate. However, there is a trade-off
encountered with the EMP algorithm, since the estimation
rate and estimation accuracy comes at the cost of greater
computation time compared to the other methods (Table 1).
We note here that all tests were run on a CPU, but the Cop-
Net and EMP algorithms may allow acceleration on GPUs.
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FIGURE 9 | Qualitative and quantitative results of the fourth scene (Two people). The upper row is a color-coded disparity frame map of a 20 ms-long stream of

events for two walking people (one at 1.5 m and another at 3 m), the lower ones are events disparity histogram within time of 5 s. From the left to right, the result is

extracted by (A) ST, (B) STS, (C) cooperative network, and (D) our method.

FIGURE 10 | Results of the fifth scene (One person different depth). The events disparity histogram within time of 5s. From the left to right, the result is extracted by

(A) Ground Truth, (B) ST, (C) STS, (D) cooperative network, and (E) our method.

In Table 1, the STS algorithm has the longest computation
time in recordings of One Person and Two People. One
reason is that the Timesurface is estimated in a spatio-temporal
region. The more events in the spatio-temporal region, the
more time-consuming it is. The One Person and Two People
recordings are muchmore complex than the boxes ones. Another
reason is the cost Time is the total cost time divided by
the number of detected stereo matches. Our EMP has higher
estimation rate which means a large number of detected stereo
matches.

For the first four tests shown, objects do not change in
depth during the sequence (although different objects may have
different depths). To show that the EMP accuracy is not due to
the algorithm being biased toward generating outputs at depths
which match the objects’, a sequence of a person walking away
from the sensor was included. The estimation rate and estimation
accuracy for this sequence is the lowest of all sequences for
all stereo methods presented. Our method has memory of the

state (depth) for each pixel. In the case where an object is
changing in depth during the recording, the state remembered
by the network becomes outdated and incorrect. To properly
model the world, we would need to measure the 3D velocity
of the camera and objects in the scene, and update the depth
map accordingly, but this is beyond the scope of this current
work.

The ST and STS methods have no memory of the depths
present in the scene (the most recent timestamp for each pixel is
remembered, but not the depth). Therefore thesemethods cannot
enforce 3-dimensional constraints which may be present in the
scene, such as depth (or disparity) smoothness. The Cop-net and
EMP algorithms enforce disparity uniqueness and smoothness,
which results in better accuracy for all the static sensor sequences
shown.

The EMP method also allows for the current estimate
of disparity to be read out at any time by querying the
network. The output gives a slightly denser result since it allows
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FIGURE 11 | The relationship between depth accuracy zacc(2) and error tolerance (2) calculated using Equation (6). (A) One box, (B) Two boxes, (C) One person,

(D) Two people, and (E) One person different depth.

pixels with no input events to generate disparity estimates
based on the disparities of the nearby pixels. Extensions
of this approach may allow for more dense estimation of
depth, but this investigation is beyond the scope of this
paper.

Event-based depth estimation from stereo still has a way
to go if it is to compare favorably to frame-based stereo in
terms of spatial resolution and depth resolution because the
event-based vision sensors are low resolution compared to
their frame-based counterparts. However, event-based stereo can

play a complementary role to frame-based stereo, particularly
in handling high dynamic range scenes, and estimating the
disparity at depth discontinuities where sensors such as the ZED
struggle.

We have proposed an event-based stereo depth estimation
algorithm which relies on message passing and compared it to
previous algorithms on five different recordings. Compared to
previous methods, our EMP algorithm produces more estimates,
and more accurate estimate, at the cost of a higher computation
time per event.

Frontiers in Neuroscience | www.frontiersin.org 12 October 2017 | Volume 11 | Article 535

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xie et al. Event-Based Stereo Depth Estimation

FIGURE 12 | Event-driven (left) vs. queried output (right) for four of the recordings used. A disparity output can be generated at any time by querying the network, and

the resulting output is slightly more dense than the event-driven output.

FIGURE 13 | Event-based algorithm vs Frame-based algorithm. The top row show RGB images captured by the ZED cameras. The middle row shows the depth map

calculated with the ZED. The bottom row shows the depth map estimated with our EMP algorithm.
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