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Abstract

Background: Neurons are dynamically coupled with each other through neurite-mediated adhesion during development.
Understanding the collective behavior of neurons in circuits is important for understanding neural development. While a
number of genetic and activity-dependent factors regulating neuronal migration have been discovered on single cell level,
systematic study of collective neuronal migration has been lacking. Various biological systems are shown to be self-
organized, and it is not known if neural circuit assembly is self-organized. Besides, many of the molecular factors take effect
through spatial patterns, and coupled biological systems exhibit emergent property in response to geometric constraints.
How geometric constraints of the patterns regulate neuronal migration and circuit assembly of neurons within the patterns
remains unexplored.

Methodology/Principal Findings: We established a two-dimensional model for studying collective neuronal migration of a
circuit, with hippocampal neurons from embryonic rats on Matrigel-coated self-assembled monolayers (SAMs). When the
neural circuit is subject to geometric constraints of a critical scale, we found that the collective behavior of neuronal
migration is spatiotemporally coordinated. Neuronal somata that are evenly distributed upon adhesion tend to aggregate
at the geometric center of the circuit, forming mono-clusters. Clustering formation is geometry-dependent, within a critical
scale from 200 mm to approximately 500 mm. Finally, somata clustering is neuron-type specific, and glutamatergic and
GABAergic neurons tend to aggregate homo-philically.

Conclusions/Significance: We demonstrate self-organization of neural circuits in response to geometric constraints through
spatiotemporally coordinated neuronal migration, possibly via mechanical coupling. We found that such collective neuronal
migration leads to somata clustering, and mono-cluster appears when the geometric constraints fall within a critical scale.
The discovery of geometry-dependent collective neuronal migration and the formation of somata clustering in vitro shed
light on neural development in vivo.
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Introduction

The brain is composed of hundreds of nuclei densely populated

with neuronal somata, while the rest is packed with interconnect-

ing neurites. The assembly of the neural circuits in vivo is achieved

through a cascade of processes involving neuronal migration to

define the somata locations of neurons[1,2,3,4].

A range of molecular[5] and activity-dependent[6] factors have

been elucidated in regulating neuronal migration, mostly at the

single cell level[7]. As neurons are dynamically connected with

each other through neurite adhesion during development, the

migratory behaviors of adjacent neurons within a circuit are

coupled, making it a dynamic system. In this regard, systematic

analysis of neuronal migration and circuit assembly has been

lacking. As a variety of coupled biological systems give rise to

emergent self-organization [8,9,10], we wondered if self-organi-

zation also exists in collective neuronal migration and circuit

assembly.

Understanding the collective behavior of neuronal migration

and its regulation through geometric constraints may be an

important step in understanding circuit assembly in the complex

settings of the brain. Geometric constraints can regulate collective

behavior of some coupled biological systems[11], we also

wondered if the same case takes place in neural circuits.

Neurons and networks in culture have been widely employed

for studying formation and function of the nervous systems

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e28156



recently[12,13,14,15,16]. We set out to study collective neuronal

migration and circuit assembly using an in vitro model system with

dissociated neuronal culture.

Results

Neuronal migration at specific developmental stage on
coated surfaces in vitro

Primary hippocampal neurons from Sprague Dawely (SD) rats

(See Materials and Methods for details on primary neuron

culture) migrate actively on Matrigel (MG) coated gold substrates

(gold substrate was used for assembling SAMs throughout the

paper, see Materials and Methods for details on SAMs).

We found that the speed of migration depends on the surface

treatment and donor animal age (Figure 1, see Materials and
Methods for details on measurement of migration). Neurons

migrate very slowly on polymeric surfaces such as poly-D-lysine

(PDL), poly-L-lysine (PLL), polyethyleneimine (PEI), as well as the

extracellular matrix protein fibronectin (FN) (Figure 1A, Table 1).

While they do migrate on laminin (LN); the speed of migration is

significantly lower than those on MG-treated surfaces (Figure S1).

For example, the speed of migration on MG-coated surfaces

(1.0660.08 mm/min, n = 24) is significantly higher than that on

PDL (0.0560.02 mm/min, n = 8, P,0.0001, One-way ANOVA

followed by Tukey’s post hoc test, Figure 1A). As the age of the

donor animal or cell culture increases, the speed of migration

decreases (Figure 1B). The speed of migration of neurons from

E16 rat pups on Matrigel is the highest and relatively stable (with

the lowest coefficient of variation, Table 1), and was used

throughout the paper.

We plated neurons onto patterned SAMs[17,18,19,20,21]

throughout the paper (refer to the Materials and Methods
for details) to apply geometric constraints on neuronal culture, in

order to control the geometry of the neuronal cir-

cuit[22,23,24,25,26]. Briefly, patterns promoting neuron adhesion

were formed through micro-contact printing (mCP) with alka-

nethiols terminated with methyl groups (-CH3) on gold substrates

evaporated on glass cover slips. The gold substrates were

immersed in poly-ethylene glycol (-EG6) terminated alkanethiols

to make the rest of the surfaces anti-fouling. The constraint could

assume arbitrary geometry by design to limit the number of

neurons present on an island. We treated the surfaces with MG.

Neuronal migration is spatially constrained within the restrictions.

In combination with time-lapse imaging, this method facilitates

spatiotemporal analysis of the collective migratory behavior of all

neuronal cells that constitute an independent neuronal circuit.

Correlated neurite fasciculation and soma migration
Migration of individual neurons is gradually coupled into

collective migration as neurons adhere to each other through

neurite fasciculation. At first, soon after adhesion (0 DIV), neurons

are unconnected and neuronal migration is disordered. Accom-

panying the development of the neurites, adjacent neurites come

into contact with each other, through migration and neurite

development, and depart again. After a period of dynamic

interactions, some of the neurites adhere to each other through

cell adhesion molecules[27], leading to neurite fasciculation.

Figure 1. Surface coating and developmental stage modulates the speed of neuronal migration on gold substrate. A, The speed of
migration of neurons from E16 rat pups at 0 DIV, cultured on MG coated gold surfaces is significantly higher than those on other surfaces. (MG: n = 24,
LN: n = 20, FN: n = 20, PDL: n = 20, PLL: n = 18, PEI: n = 8. P,0.01. One way ANOVA followed by Tukey’s post hoc test, see Figure S1 for details). The
speed of migration is determined by time-lapse imaging at a rate of 10 seconds per frame and calculating the speed by dividing the displacement by
the time interval. Note that the long term displacement is zero for any surface coating other than MG and LN (refer to the Materials and Methods
section for details). B, The speed of migration of neurons at different developmental stages. The speed of migration decreases against the age of the
donor animals and the culture. (E16: n = 5, 30 data points at each time; E18: n = 8, 30 data points at each time; E19: n = 8, 30 data points at each time;
P1: n = 8, 30 data points at each time. Spearman’s rho test was used for monotonicity between speed of migration and age of culture, correlation
coefficients are E16: 0.77856, P,0.001; E18: 0.70401, P,0.001; E19: 0.70456, P,0.001; P1: 0.80623, P,0.001. Mann- Kendall’s tau test for monotonicity
between speed of migration and age of donor animal (P1 treated as E23), correlation coefficients are 0DIV: 0.40882, P,0.001; 2DIV: 0.30561, P,0.001;
6DIV: 0.22818, P,0.001; 12DIV: 0.31062, P,0.001.) Error bars denote S.E.M.
doi:10.1371/journal.pone.0028156.g001

Table 1. The speed of neuronal migration on MG coated gold
surfaces is the highest and the variance lowest.

MG LN FN PDL PLL PEI

n 24 20 20 20 18 8

mean (mm/min) 1.05973 0.60849 0.19318 0.06329 0.05485 0.10814

S.E.M. 0.07813 0.07557 0.02355 0.00662 0.00676 0.03086

C.V. 0.36117 0.55539 0.54523 0.46758 0.5233 0.80705

doi:10.1371/journal.pone.0028156.t001
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Neurite fasciculation at this stage is mechanically vulnerable and

dynamic, and its impact on neuronal migration is still not obvious.

Fasciculated neurites gradually become strengthened and affect

neuronal migration[28]. We used a cross-shaped geometric

constraint (Figure 2A) to illustrate the relationship between neurite

fasciculation and somata migration at 3 DIV. The somata are

confined to migrate within the two branches of the cross, while

neurites become fasciculated and not restricted by the geometric

constraint (note that neurites do not adhere on areas outside of the

geometry). Gradually, the formation of fasciculated neurites

(Fig. 2A, red arrows) accompanies the formation of cell assemblies

(yellow dots) on the two branches of the cross. This correlation is

more clearly seen in the superimposed silhouettes in Figure 2B.

We further quantified the number of neurons within each cluster

(161 to 1162 during the 15 hrs time window, n = 5, 20 data

points for each time point, Figure 2C) and the width of fasciculated

neurites (0.9104760.1003 mm to 4.3017360.84857 mm, n = 5, 20

data points for each time point, Figure 2D), both showing a trend

of increase with respect to time. Increasing number of neurons in

each cluster corresponds to continuous clustering while increasing

width of neurites indicates continuous fasciculation. We found that

these two processes are temporally correlated (Figure 2E).

Collective migration on two-dimensional boundless surfaces is

self-organized with somata clustering and neurite fasciculation.

Similar results have been reported [29,30]. In this paper, we focus

on how geometric boundary conditions affect the dynamics of

collective neuronal migration, and therefore the self-organizing

circuit assembly.

Spatiotemporally coordinated collective neuronal
migration on neuronal circuits with defined geometric
boundaries

We studied the effect of the boundary condition on the

dynamics of collective neuronal migration through SAMs-based

geometric constraints.

Figure 3A shows a series of observations on a square-shaped

geometric constraint over 12 days. We found that small clusters

(Figure 3A, red arrows) finally merge into each other, forming

large clusters. We found that DIV 2-3 is a critical time window in

neurite fasciculation and cluster formation. Before this time point,

collective neuronal migration is largely uncorrelated (Figure S2),

although neurons show a trend of slowing down in migration.

Since the critical time point, collective neuronal migration

undergoes drastic change and become correlated. We studied

neuronal migration at this critical stage within a circle (Figure 3B

and 3C). Figure 3B shows the migration of clusters over 24 hrs at 2

DIV. Each blue shaded area covers a cluster while red arrowheads

show the migration direction of the clusters. Several small clusters

gradually migrate into each other and finally merge into fewer

numbers of clusters. Under a specific geometric scale, the clusters

merge into a single one, as will be fully discussed in the next

section. We analyzed a network on which the cells were plated at a

very low density so that each cell was clearly discernable

(Figure 3C). We traced the migration of all neurons in the circuit.

We use an arrow to indicate the general direction and distance of

the migratory pathway of each neuron, where each arrow begins

from the original location of a neuron and pointing to the final

location. While the cells were evenly distributed throughout the

geometric constraints at the beginning, they finally become

clustered into a few spots highlighted by pink shades. Clustering

takes place consistently, regardless of their initial density. To

quantify the trend of migration of all neurons in a network, we

calculated the cumulative distance of all neurons of the network.

The cumulative distance is the summary of all distances between

each pair of neurons (refer to Materials and Methods for

description). We calculated the cumulative distance on geometries

of various shapes. As the normalized cumulative distance curves

show in Figure 3D, the cumulative distance generally decreases

over 24 hrs regardless of the shapes of the geometric constraints.

We found that the migration of a specific neuron depends on its

spatial location within the geometric constraint. Figure 3E shows

the three-dimensional (3D) plot of collective migratory trajectory.

This image is generated by serially stacking the position of all

neurons in a network at different time points into a 3D plot. The

horizontal axis corresponds to the position of a specific neuron, the

vertical axis indicates specific time points. The starting time of

image capture is set to 0 and the value on the vertical axis

increases over time. The migration of all neurons tends to be

oriented towards the center (Fig. 3E), indicating spatial coordina-

tion. Temporally, the speed of neuronal migration is synchronized

in that neurons tend to speed up and slow down during migration

at the same pace, indicating that the temporal dynamics of

collective neuronal migration is also coordinated (Figure 3F,

P,0.001, Pearson’s x2 test, compared with the temporally shuffled

random data, see Materials and Methods for description of the

statistical analysis). Taken together, we demonstrate that collective

neuronal migration within geometric constraint is spatiotemporal-

ly coordinated.

We also studied the heterogeneity of collective migration, by

performing covariance analysis of collective neuronal migration

(Figure S3).We classified the neurons into two populations

according to their covariance coefficients (k-means clustering,

Figure S3B), and found two types of distinct dynamics of neuronal

migration. Figure S3B is the planar projection of Figure 3E. One

population of neurons (blue) generally locate in the peripheral

zone, spanning across significantly longer ranges (Figure S3C,

P,0.001, Kolmogorov-Smirnov test) and assuming higher

migratory speed; while the other population of the neurons (red)

tend to be located in the center, showing a centripetal pattern of

migration.

Emergence and centrality of mono-cluster is self-
organized and sensitive to geometry

When this clustering process takes place on geometric

constraints, the final location of the cluster and the trajectory of

migration depend on the shape of the geometric constraints. The

clusters generally locate in the geometric center on isotropic

restrictions. On anisotropic restrictions, the locations of the

clusters tend to be in the central region of the geometric

constraint, albeit with a relatively large range of distribution

(Figure 4D). This is entirely different from the situation where

neurons grow in unrestrained culture. On un-constrained gold

substrates (25625 mm2) that could be considered an infinitely

large two-dimensional plane with respect to the scale of a single

neuron (approximately 6 orders of magnitude larger), the networks

are dominated by randomly located clusters (Figure 4A - C). We

plotted the locations of the mono-clusters on circular, square and

rectangular restrictions (Figure 4E) and analyzed their mean

displacements with respect to their geometric centers respectively

(864 mm (circle, n = 5, 60 data points); 966 mm (square, n = 5, 60

data points) and 3269 mm (rectangle, n = 5, 80 data points). The

locations of the clusters fall around the geometric centers of the

circuit. They form a band along the longer axis of the rectangle.

In order to verify the robustness of the mono-cluster and

centrality property, we extracted the location of the clusters on an

array of circular and rectangular restrictions of the same area (see

Figure S4 for details on the experimental setup). In all geometries

we analyzed, centralized mono-clusters were consistently observed.

Geometric Control of Collective Neuronal Migration
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Figure 4F and 4G are box plots of standard deviation of X and Y

values respectively (The mean displacements for different shapes are:

large rectangles, X = 53612 mm, Y = 80634 mm; small rectangle,

X = 3168 mm, Y = 58629 mm; large circle, X = 65623 mm,

Y = 69625 mm; small circle, X = 41611 mm, Y = 3869 mm).

As shown here, the fluctuations along Y on rectangles are always

larger than that on circles (1, n = 8, 0.01,P,0.1. 11,n = 8, P,0.001.

One-way ANOVA followed by Tukey-Kramer’s post-hoc multiple

comparisons test). Larger geometric constraints also accommodate

wider range of fluctuations (SDX: *, n = 8, P,0.001. **, n = 8,

P,0.001. SDY : *, n = 8, 0.01,P,0.1. **, n = 8, P,0.001. One-way

ANOVA followed by Tukey-Kramer’s post-hoc multiple compari-

sons test). By contrast, there is much less fluctuation along the X axis

than along the Y axis on rectangular shape (large rectangles:

P,0.001, small rectangles: P,0.001, Kolmogorov-Smirnov test).

The exact location of the cluster depends on the geometry of the

restriction through mechanical interaction between constituent

subunits including cells and sub-clusters. By assuming the pair-wise

mechanical interactions between sub-clusters to be independent of

their distances, and the distribution of the sub-clusters within the

geometry to be statistically homogeneous, we theoretically

estimated the direction of the resultant force of all elements in

the circuit acting on arbitrary sub-cluster to be pointing towards

the centroid of the geometry of the circuit (refer to Materials
and Methods for details). Therefore, the coordinated migration

is centripetal. Consequently, the mono-cluster, where it emerges, is

located on the geometric center of the constraint. This is in

agreement with our experimental observations (Figure 4E,

Figure 5A and 5B). When the geometric centroid lies outside of

the constraint (Figure 5C), the cluster tend to locate as close to the

centroid as possible within the constraint.

In addition to shape, the emergence of mono-cluster its

location depends on the scale of the network. Using circular-

shaped constraints with gradually increasing diameters, we found

that mono-cluster has the largest probability to form under

600 mm (Figure 6A, Figure S6A). We performed a linear

regression to the cluster data and found a good fit between the

diameters of the geometric constraint and the number of clusters

(R = 0.9992). In addition, the occurrence of mono-cluster also

depends on the diameters of the geometric constraints. On

networks smaller than 200 mm, clusters do not always appear,

while there might be more than one cluster on larger networks

(Figure 6B). Finally, we performed relative neighborhood

density[31] analysis on networks of different size (Figure S6B).

Quantitative analysis indicates that cells are highly clustered on

small networks where neurons are clustered at the center. On

larger networks, the curve has a heavier tail, indicating a higher

proportion of neurons that are not fully clustered. On free

cultures such as those in Figure 4A (25000 mm), the curve has a

very mild slope.

In an effort to test the generality of the critical scale, we

designed a series of complex networks of identical overall area but

composed of decreasing number of units of increasing areas

(Figure S5A - C). As shown in the immunofluorescence

photomicrographs (Figure S5D and S5G), decreasing the size of

the units of the geometric constraints increases the orderliness of

the cluster number and location. The number of clusters after long

term culture remains a single one on smaller constraints but begins

to increase above a threshold range. The threshold appears

somewhere between 400 mm and 600 mm, similar to the simple

scenario as discussed above (Figure 6). On networks with subunits

above the critical scale, the basic network structure is similar to

network motifs on unconfined surfaces (Figure 4A - C).

Cell-type specific pattern of neuronal distribution within
the network

We found that the cluster is composed of a high density of

neuronal somata (Figure 7A, 7B). As functional neuronal

networks are composed of a balanced combination of excitatory

and inhibitory neurons, we set out to analyze the cellular types

on networks. Using immunocytochemistry against excitatory and

inhibitory neuron markers, a-Ca2+/Calmodulin dependent

protein kinase II (CaMK II), and c-aminobutyric acid (GABA),

respectively (Figure 7C), we found that the ratio of excitatory

versus inhibitory neurons is maintained (Figure 7G) regardless of

the number of neurons of the circuit as the area of the constraint

grows, with 70% of excitatory neurons and 30% of inhibitory

neurons, in accordance with previous reports[32,33]. There are

some fluctuations of the exact value, but as the restriction area

increases the value converges towards the value on unrestricted

culture (Figure 7H). The clusters (in the center of the geometric

constraint) are mostly composed of excitatory neurons

(Figure 7D) with inhibitory neurons in the periphery. We

frequently found inhibitory neurons far away from the cluster,

while excitatory neurons are seldom seen outside the cluster. On

a fully mono-clustered network (Figure 7E), the cluster is

composed of mostly excitatory neurons while a few inhibitory

neurons could be observed in the periphery of the geometric

constraint far away from the cluster (Figure 7F). We analyzed the

distance between arbitrary pair of cells, and sorted the distances

into two groups, one group is the distance between a pair of

excitatory neurons and the other the distance between an

inhibitory neuron and an arbitrary neuron. As the histogram

shows (Figure 7I), the excitatory neurons tend to cluster together

while inhibitory neurons stay far away from each other. This

result is also evident in Figure 7C. Interestingly, the peak of the

histogram overlaps with the range of conventional soma

diameters (data acquired from neurons in the same culture

experiment), indicating that most of the excitatory neurons are

clustered.

Figure 2. Correlated neurite fasciculation and somata migration. A, Time lapse imaging showing the emergence and evolution of
fasciculated neurites (highlighted by light blue lines) accompanied by somata (highlighted by yellow balls) migration over 15 hrs at 3DIV. The
geometric constraint was specifically designed so that neuronal somata could only migrate along the area of the cross-shaped geometric constraint
(confined to the green dashes) while neurites connecting clusters are not limited by the geometric constraint. B, Color-coded superimposed
silhouettes of fasciculated neurites and somata clusters from panel A illustrates the relationship between fasciculation and clustering. A series of blue
colors represent the neurites while yellow shades represent the clusters, the depth of color grows as time elapses. Red solid lines represent the
migratory trajectory of the cluster and green dashes show the edges of the geometric constraint. C, The average number of neurons within a cluster
grows (from 161 to 1162 during the 15 hrs time window, n = 5, 20 data points for each time point) as time elapses, indicating time-evolved
recruitment of neurons. D, The width of the fasciculated neurites grows (from 0.9104760.1003 mm to 4.3017360.84857 mm, n = 5, 20 data points for
each time point) over time. E, Correlation between the number of neurons (Figure 2C) and the width of neurites (Figure 2D). The horizontal axis
represents the temporal shift between the two variables, and the highest value is achieved with no time shift, meaning these two events are
temporally correlated. Scale bar: 200 mm.
doi:10.1371/journal.pone.0028156.g002
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Discussion

We demonstrate that neural circuits within critically-scaled

geometric constraints exhibit spatiotemporally coordinated pattern

of migration (Figure 3) and mono-clustered network structure

(Figure 4 and Figure 5) on MG-coated SAM surfaces, in contrast

to disordered neuronal migration and circuit structure (Figure 5A -

5C) in the absence of geometric constraints. Besides, neural

circuits adapt to various geometric inputs in a circuit-autonomous

manner. (Figures 4, 5, 6, Figure S5). Taken together, these results

indicate that developing neural circuits are self-organized within

geometric constraints. The assembly of neural circuits is regulated

by both genetics [34,35] and neural activity [6,36]. However,

molecular cues and neural activity take effects in the form of

spatiotemporal patterns onto neural circuits. Geometric con-

straints have been found to regulate non-neuronal cell migration in

vitro[18,37]. How geometric distribution of molecular cues and

neural activity regulates circuit assembly remains an open

question[38]. Our in vitro study shows geometric control of circuit

assembly, which could be a developmental strategy readily

implementable in vivo.

We found that neuronal migration and neurite fasciculation are

correlated (Figure 2E). Fasciculated neurites linking clustered

somata tend to be straight (Figure 2, Figure 4A and 4B), indicating

that the neurites are in tension. The tension could be caused by

traction force reciprocally exerted by two clusters onto each other,

and the traction force mediated through these fasciculated neurites

would in turn affect neuronal migration. When most of the

neurons are connected through these fasciculated neurites in

tension, the circuit would be a mechanically coupled entity

(Figure 2, Figure 4A, 4B, 4C), and neuronal migration within the

circuit become globally coordinated.

We built a working model based on the experimental

observations (Figure S7). On an infinitely large network

populated with neurons connected through neurites under

tension, the network would be stable if the neurons are stationary

and neurites under balanced tension force. However, the cells

are migrating and undergoing development, leading to transient

fluctuations in tension force, thereby breaking the symmetry of

mechanical equilibrium in the neurites, and the cell exerting

stronger force would drag adjacent neurons closer, facilitating

adhesion and clustering. This pair-wise process scales up on a

network with a large amount of neurons to recruit and multiple

fasciculated neurites for each neuron, causing the formation of

hierarchically larger clusters (Figure S7B). Accompanying the

formation of hierarchically larger clusters, the migration of

neurons in a network might be coordinated into the migration of

hierarchically larger clusters, via mechanical interactions be-

tween the clusters linked by fasciculated neurites. Based on this

working model, we built a simple theoretical model (see

Materials and Methods) and predict that mono-clusters tend

to locate on the centroid of the geometric constraint (Figure

S7D), which is in agreement with experimental results (Figure 4,

5). However, our theoretical model assumes that the force

between sub-clusters is independent of the distance, which would

be violated over longer distances (Figure S7C), and above a

critical scale, where reliable propagation and coordination fails,

leaving local clusters un-centralized (Figure 4A and 4B). The

application of geometric constraint defines the range of

mechanical coupling, and therefore different patterns of

collective migration and circuit assembly (Figures 4, 5, 6, Figure

S5). Similar results of the dependence of emergent property on a

critical scale has been demonstrated in other coupled systems

such as the microbial oscillators[11] in which microfluidic

channel played a similar role as SAMs-based geometric

constraints here. While mechanical coupling has long been

hypothesized to influence circuit assembly[39], and several

groups have addressed this issue through experimental and

theoretical approaches[40,41,42,43,44,45,46,47], our work

proposes a potential role played by mechanical tension in

coordinating collective neuronal migration within geometric

constraint, thereby regulating circuit assembly.

Clustering permeates neural networks in vivo and in vitro at

synapses[48] and neurites[49]. Soma clustering exists in a variety

of central nervous systems, in which somata are grouped together

into grey matter while neurites white matter. This segregation

may be evolutionarily advantageous due to economy[50]. Our

results indicate that circuit-autonomous self-organization in

response to geometric control is sufficient for the realization of

similar structures through neuronal migration in vitro (Figure 7A

and 7B). Our discovery of self-organized formation of clusters

under specific geometric constraints possibly indicates that

clustered somata distribution is the most economical pattern of

wiring[51]. Self-organization has been found in various physi-

cal[52] and biological subjects[10]. It has been implicated in the

morphogenesis of tissues ranging from hair[9], pancreatic

islets[53], optic cup[8] to the brain[49,54,55]. As geometric

constraints have been shown to affect circuit function[56], the

interaction between geometry and wiring, as a case study of

formation and function, could be a general strategy for wiring

optimization during evolution[57]. Besides, neuronal morphology

with elongated neurites might be a structural basis for wiring

optimization[39].

Figure 3. Collective dynamics of neuronal migration within geometric constraints is spatiotemporally coordinated. A, Time-lapse
imaging of a circuit maintained over 12 DIV. The red arrows indicate clusters. As shown here, the clusters gradually come together and finally merge
into a mono-cluster. B, Collective neuronal migration over 24 hrs on a circular SAMs geometric constraint (depicted by green dashes) at 2 DIV.
Transparent blue shades highlight the clustered somata that are coordinated in migration, red arrows designate the orientation of the migrating
clusters. As time elapses, smaller clusters merge into larger ones and gradually approach the geometric center of the geometric constraint. C, The
behavior of migration of all 36 neurons (at a lower density) on a circle (black dashes) over 24 hrs at 2 DIV at an interval of 5 min. The blue arrow
begins from the original position of the cells at 0 hr, and ends at the final location at 24 hr. Neurons that were evenly distributed throughout the
geometric constraint at the beginning finally migrate into a few clusters (transparent pink shades) in the end. D, Cumulative distance curves of all
neurons on geometric constraints of different shapes (circular, triangular, square and hexagonal) over 24 hrs at 2 DIV at an interval of 5 min (see
Materials and Methods for details on the definition of the curve). E, Collective pattern of neuronal migration on a square-shaped constraint over
12 hrs at 4 DIV at an interval of 5 min. The X-Y axes indicate the spatial locations of all neurons at a specific time, which is represented by the vertical
axis. A trace of a particular color corresponds to one neuron. F, The migratory speed of neurons on a square-shaped constraint over 12 hrs at 4 DIV at
an interval of 5 min as in panel E is temporally coordinated (P,0.001, Pearson’s x2 test, compared with the temporally shuffled random data, see
Materials and Methods for details on data analysis). Each black block represents the speed of the specific neuron (indexed by the vertical axis of
the block) at a specific time when the speed of migration (indexed by the horizontal axis of the block) is high (above 30%). The vertical axis is the
serial number of neurons. The yellow shades highlight time points when most of neurons are migrating at a higher speed. The red curve above is the
histogram of the raster plot, showing the number of neurons migrating at a higher speed at each time. The yellow dots represent the number of
neurons migrating at high speed at each time point. Scale bars: 200 mm.
doi:10.1371/journal.pone.0028156.g003
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Figure 4. Emergence and centrality of mono-cluster on critically-scaled geometric constraints. A, Phase-contrast photomicrograph of live
neurons cultured without geometric constraints at 21 DIV. Individually plated neurons have assembled into randomly located clusters joined through
fasciculated neurites. B, Immunocytochemistry showing highly clustered neuronal networks connected by thick and tight fasciculated neurites in
panel A. Smi312 is the specific marker of axons, while MAP2 is the specific marker of dendrites. Nuclei are counterstained with Hoechst33342. C,
Fasciculated neurites in panel B under higher magnification, the neurites are composed of both axons and dendrites. D, Phase-contrast image of
circular, square and rectangular geometric constraints and the deviation of the cluster from the geometric center. Clusters tend to be located in the
center on isotropic geometric constraints but retain a degree of freedom on anisotropic geometric constraints like the rectangular geometric
constraints. E, Locations of the centers of the clusters on circular, square and rectangular geometric constraints (same as those in panel D) as depicted
by the green dashes. The mean radial displacements of the centers of the clusters from the geometric centers are 864 mm (circle) 966 mm (square)
and 3269 mm (rectangle). The centers are located approximately on the geometric center of the geometry on circular and square constraints and
along the central axis parallel to the longer edge on rectangular constraints. (Circular geometric constraint: n = 5, 60 data points; square geometric
constraint: n = 5, 60 data points; rectangular geometric constraint: n = 5, 80 data points. The figure is of the same scale as panel D.) F - G, Centrality
analysis of circular and rectangular arrays (see Figure S4 for the original image and data extraction procedure). The mean displacements for different
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We found cell-type specific clustering of excitatory and

inhibitory neurons (Figure 7C - 7I). This is possibly correlated

with different patterns of neuronal migration (Figure S3). In fact,

excitatory neurons migrate along a trajectory different from

inhibitory neurons in the brain. As excitatory-inhibitory interac-

tion and balance is critical in neural physiology and pathophys-

iology[58,59], cell-type specific clustering might be the structural

basis of neural computation within local microcircuits[60,61].

Precise engineering of the circuit map is a prerequisite for

constructing functional neural circuits for neural prosthetics,

regenerative medicine and fundamental research[62,63]. Control-

ling the relative position of the neuronal somata within the

networks is a key step in neural circuit engineering. The

elucidation of the presence of critical scale is important for

engineering two-dimensional neural circuits, and shed light on the

engineering of three-dimensional neuronal networks through

scaffold with critically-scaled geometric features[64]. The model

system established here could be used for establishing disease

models of neurological disorders[65] and for quantitative analysis

of complex systems[66,67].

Materials and Methods

Microfabrication and surface chemistry
We employed standard protocols of soft lithography for

fabricating the stamps for micro-contact printing. Briefly, masks

were designed with AutoCAD (Autodesk) and generated with

high-resolution printing, SU-8 (SU-8 2025 and 2100, MicroChem)

mold were made through standard photolithography with a mask

aligner (MJB4, Suss MicroTec), soft lithography[20,68] of

polydimethylsiloxane (PDMS, Dow Corning) was performed to

obtain the elastic stamps for mCP.

SAMs were formed according to standard protocol with

alkanethiols on gold substrates[17,18,69,70,71]. Gold substrates

were prepared by evaporating a layer of 8 nm-thick titanium

followed by 40 nm of gold with a vacuum electron-beam

evaporator (Edward Auto 500) on acid-treated glass cover slips.

Alkanethiols terminated with methyl group -CH3 (HS

(CH2)15CH3, Sigma) were used for creating patterns to promote

cell adhesion through mCP. Patterned gold substrates were

immersed in poly-ethylene glycol (EG) -EG6 terminated thiols

shapes are: large rectangles, X = 53612 mm, Y = 80634 mm; small rectangle, X = 3168 mm, Y = 58629 mm; large circle, X = 65623 mm, Y = 69625 mm;
small circle, X = 41611 mm, Y = 3869 mm. The figures show the box chart of standard deviation of X (upper) and Y (lower) positions among different
geometric constraints (SDX and SDY represents standard deviation in x and y directions, respectively. SDX: *, n = 8, P,0.001. **, n = 8, P,0.001. 1, n = 8,
P,0.001. 11,n = 8, P,0.001. SDY : *, n = 8, 0.01,P,0.1. **, n = 8, P,0.001. 1, n = 8, 0.01,P,0.1. 11,n = 8, P,0.001. One-way ANOVA followed by
Tukey-Kramer’s post-hoc multiple comparisons test). Scale bars: A, 300 mm; B, 100 mm; C, 50 mm; D: 200 mm.
doi:10.1371/journal.pone.0028156.g004

Figure 5. Geometric regulation of clustering location. A - C, Immunocytochemistry with Smi312 and MAP2 showing cluster location within
polarized geometric constraints (A: isosceles triangle, B: equilateral triangle, C: concentric ring). D - F, Locations of the centers of the clusters (red dots)
within isosceles triangles, equilateral triangles and concentric rings (corresponding to those in panel A - C, with the same scale) as depicted by the
green dashes. The mean radial displacements of the centers of the clusters from the geometric centers are 1266 mm (isosceles triangle) and
1167 mm (equilateral triangle). The clusters on the concentric rings are located around the inner radius. The clusters are located around the
geometric center (yellow shades) of the shapes (isosceles triangle: n = 5, 90 data points; equilateral triangle: n = 6, 90 data points; concentric ring:
n = 8, 120 data points). Scale bars: 200 mm.
doi:10.1371/journal.pone.0028156.g005
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(HS(CH2)11(OCH2OCH2)3OH(C11EG3), Sigma) for 2 hrs at room

temperature to make the rest of the surfaces anti-fouling.

Micro-patterned surfaces were coated with poly-D-lysine

(molecular weight 70,000,150,000, 50 mg/mL in sterile water,

Sigma), poly-L-lysine (molecular weight 70,000,150,000, 50 mg/

mL in sterile water, Sigma), laminin (50 mg/mL in Dulbecco’s

phosphate buffer saline, D-PBS, R&D Systems), fibronectin

(50 mg/mL in D-PBS, BD Biosciences), Matrigel (1:100 v/v in

serum free DMEM, BD Biosciences), incubated at 37uC for 2 hrs,

followed by rinsing with sterile water (for polymers) or D-PBS (for

proteins) and incubated with DMEM/F12 medium (GIBCO)

supplemented with 10% of horse serum (GIBCO) at 37uC before

plating neurons. All reagents are purchased from Sigma unless

otherwise specified.

Primary culture of rat hippocampal neurons
Methods used for culturing hippocampal neurons follows

traditional approaches with adaptions[72,73]. Neonatal (P0, P1)

and embryonic (E16, E18, E19) Sprague-Dawley rats are

anesthetized, and hippocampi were isolated and chopped into

pieces, treated in 0.25% Trypsin (GIBCO) supplemented with

DNase I (Sigma) for 30 min at 37uC, and triturated. Dissociated

neurons were seeded onto the surfaces in DEME/F12 medium

supplemented by 10% horse serum. After cell adhesion, the

surfaces were rinsed gently with DEME/F12 medium twice, and

replaced with Neurobasal medium supplemented with 2% B27

and 1% GlutaMax-1 (all from GIBCO) without antibiotics. The

medium was replaced by half every four days. All animal

experiments were approved by Institutional Animal Care and

Use Committee of National Center for Nanoscience and

Technology (2009–0214–01).

Each parallel experiment was carried out with new micro-

fabrication and surface chemistry as well as new primary culture.

This corresponds to a single count in terms of the number of

experiments (designated by n in statistics).

Immunocytochemistry
Cell were rinsed with D-PBS (37uC), fixed in 4% paraformal-

dehyde for 30 min, permeabilized with 0.3% Triton X-100 for

15 min at ambient temperature. After blocking with 10% goat

serum in D-PBS for 1 hr, primary antibodies against Smi-312

(Covance), MAP2 (Millipore), Tuj1 (Sigma), GFAP (Sigma),

GABA (Sigma), CaMKII (Invitrogen) were applied, and incubated

overnight at 4uC, followed by rinse in D-PBS and visualization

with Alexa Fluor 488, 555 or 633 conjugated secondary antibodies

(Invitrogen). Cell nuclei were counterstained with Hoechst 33342

(Invitrogen).

Imaging
Time-lapse imaging was performed on an AF6000 live cell

imaging workstation (Leica Microsystems) based on the inverted

fluorescence microscope DMI 6000B (Leica Microsystems). For

migratory speed analysis as in Figure 1, we used an acquisition

interval of 10 seconds between adjacent frames. This particular

time interval was determined by analyzing the smallest discernable

displacement through the wide-field optical microscope. We found

20 seconds to be the lower bound for migratory speed variation,

and 10 seconds was used according to Shannon’s sampling

theorem.

Fluorescence photomicrographs were taken on a LSM 710 laser

scanning confocal microscope (Carl Zeiss).

Enhancement and processing of photomicrographs was done

with Photoshop (Adobe).

Data analysis and statistics
ImageJ (NIH) and Image Pro Plus (Media Cybernetics) were

used for semi-automatic quantitative measurements on image

data.

Data analysis was performed in Matlab (The MathWorks).

Statistical analysis was performed by R (The R Foundation for

Statistical Computing). For groups of two conditions, statistical tests

were performed using two-tailed Student’s t test, Mann-Whitney U

test or Kolmogorov-Smirnov test. For groups of three or more

conditions, one-way ANOVA or Kruskal-Wallis’ ANOVA were

used, followed by Tukey-Kramer’s or Bonferroni’s post hoc multiple

comparisons tests. Polynomial regression was used for curve fitting.

Descriptive statistics were presented as mean6S.E.M. unless

otherwise noted. All error bars designate S.E.M. Monotonicity

was tested via Spearman’s rho test or Mann- Kendall’s tau test. K-

means clustering was employed for clustering analysis.

Enhancement and processing of vector graphs was done with

Illustrator (Adobe).

Figure 6. The emergence and centrality of mono-cluster is dependent on the size of geometric constraints. A, The relationship between
diameter of the geometric constraint and the number of clusters, red curve is the power law fit (exponent = 2, R = 0.9987, blue error bars denote
S.E.M. n = 5, 15–20 data points for each size of geometric constraint.). See Figure S6 for the original data points. B, The percentage (probability) of the
appearance of mono-clusters (red) varies with the diameter of the geometric constraint. The highest probability occurs when the diameter of the
circular geometric constraint is either 250 or 300 mm. Note that for small geometric constraints there is sometimes no clusters (green) at all, while for
large geometric constraints there are multiple clusters (blue). The same set of data as Figure 6A is used.
doi:10.1371/journal.pone.0028156.g006
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Figure 7. Location and relative number of excitatory and inhibitory neurons within a network. A, A clustered network on a triangle with
vertical and horizontal sections. Neuronal dendrites are labeled with MAP2 while axons with Smi312, cell nuclei counterstained with Hoechst 33342.
B, Higher magnification of the highlighted cluster in a. Somata are assembled into a ball. C, Immunocytochemistry shows that excitatory neurons
tend to cluster more than inhibitory neurons do. Excitatory neurons are labeled with CaMKII while inhibitory neurons are labeled with GABA (refer to
the text for details). D, Higher magnification of a cluster. Inhibitory neurons labeled by GABA locate in the periphery of the cluster that is primarily
composed of excitatory neurons. E, The location of all cell nuclei within a network. F, The location of excitatory and inhibitory neurons on the same
network as E, while most of the neuron somata are clustered in the center of the network, a few somata of inhibitory neurons only are scattered in
the periphery of the network. G, The percentage of excitatory neurons in the overall population on geometric constraints of different sizes. Note that
there is substantial fluctuation of the total number of neurons among geometric constraints. As the area grows, the ratio gradually approaches
unrestrained cultures with large number of cells. (n = 5, 10–15 data points for each size of geometric constraint.) H, Scatterogram showing the
distribution of the ratio on geometric constraints of various areas. As the area increases, less fluctuation is present in the percentage. The same set of
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Measurement of migration
The measurement of migration is based on position analysis on

image series acquired during time-lapse imaging. Specifically, the

geometric center of the cell is manually determined (the size of the

neuronal soma is relatively small and therefore manual analysis

will not introduce much error), and the displacement between

adjacent frames was calculated. The speed of migration is defined

by the displacement divided by the time interval for image

acquisition. The exact time interval depends on the analysis. For

the comparison analysis on the speed of migration as in Figure 1,

high sampling rate of 10 seconds per frame was employed. For

long term monitoring in the rest of the paper, a sampling rate of

5 min per frame was used to reduce the size of the data. Similar

methods were used for analyzing acceleration and angle in Figure

S2.

Calculation of normalized cumulative distance
Suppose a network composed of N neurons is studied within

time duration [0, T]. The time variant cumulative distance Dc(t) is

calculated as the sum of all distances between each pair of

neurons:

XN

i~1

XN

j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xi(t){xj(t)�2z½yi(t){yj(t)�2

q
ð1:1Þ

while i, j,N, and 0,t,T, where ½xi(t),yi(t)� is the location of

neuron i at time t.

The normalized cumulative distance follows:

Dc(t)~DNorm
c (t)~

Dc(t){Dmin
c

Dmax
c {Dmin

c

ð1:2Þ

in which,

Dmax
c ~ max½Dc(t)� ð1:3Þ

Dmin
c ~ min½Dc(t)� ð1:4Þ

Theoretical prediction of cluster location

In a circuit with geometric shape R populated with N sub-

clusters, for arbitrary sub-cluster i within R, if we designate the

tension force mediated through neurite fasciculation between sub-

cluster i and j as f
I

ij , where we assume f
I

ij to be independent of the

distance between i and j, such that:

f
I

ij~f r
I

ij ð1:5Þ

in which, f is the magnitude of f
I

ij and r
I

ij is the unitary vector

with the direction from i pointing to j.

Then for the resultant force of all sub-clusters within R acting on

sub-cluster i:

F
I

i~
XN

j~1

f
I

ij ð1:6Þ

we have,

F
I

i~f
XN

j~1

r
I

ij ð1:7Þ

We assume that the N sub-clusters are evenly distributed

throughout R, which is likely to be true statistically. Then the termPN
j~1

r
I

ij is a vector pointing from i to the centroid of the geometric

constraint.

Therefore, the direction of the resultant force of all elements in

the circuit acting on sub-cluster i points toward the centroid of the

geometry of the circuit.

Relative neighborhood density
Relative neighborhood density quantifies the cluster distribu-

tion.

For a surface with N clusters, the distribution function of cluster

n(r) is a variable that depends on the location of the plane, for

arbitrary cluster i, we define its specific neighborhood density as:

Vi(r)~

Przd
r n(r)Przd
r A(r)

ð1:8Þ

in which A(r) is the area of an annuli with a distance of r from

cluster i, with width d,

we then have the relative neighborhood density by averaging

over all N clusters on the plane:

V(r)~

PN
i~1

Vi(r)

N
ð1:9Þ

In this paper, the width of the annuli d, which defines the

resolution of the analysis, is set to 1.

For an infinitely large two-dimensional plane, suppose the

distribution of the neurons is homogenous. Consequently, the

distribution function of the neurons n(r) is a constant independent

of r. Suppose the density of clusters is d, then we have:

n(r)~dA(r) ð1:10Þ

The specific neighbor density is:

Vi(r)~

Przd
r n(r)Przd
r A(r)

~

Przd
r dA(r)Przd
r A(r)

~d ð1:11Þ

the relative neighborhood density is:

V(r)~

PN
i~1

Vi(r)

N
~

PN
i~1

d

N
~d ð1:12Þ

which is a constant independent of r.

data as panel G is used. I, Histogram showing that inhibitory neurons tend to stay away from the clusters, indicating a heterogeneous nature in
neuronal migration and cluster formation. The green shade represents the range where the diameters of neurons generally fall within. (n = 5, 42
excitatory neurons, 21 inhibitory neurons.) Scale bars: A, 200 mm; B, 25 mm; C, 200 mm; D, 50 mm.
doi:10.1371/journal.pone.0028156.g007
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Temporal synchronization analysis
For Figure 3F, the speed of each neuron is normalized across

time. A binarization algorithm is then applied with a threshold of

30% of the highest speed of the neuron. The peak of the temporal

bands above threshold is extracted as the time point for

synchronization analysis (black block). The time intervals between

the time points are then shuffled across cells as the random level.

The P values of synchrony level (defined as a probability that the

same or higher level of coactivation could occur by chance in 1000

interval-shuffled surrogates[74]) are then compared between the

original data and the shuffled random series, and subject to

statistical test (Pearson’s x2 test). The raster plot is collapsed into

the yellow dots, which is then smoothened with a Gaussian kernel

to generate the histogram (red curve).

Supporting Information

Figure S1 Multiple Comparisons test on the speed of
neuronal migration on gold substrates with various
surface coatings. Red error bars denote significant difference

(P,0.05), while blue error bars denote non-significant difference.

The speed of neuronal migration on MG coating is significantly

higher than any other coatings (One-way ANOVA followed by

Tukey’s post hoc test).

(TIF)

Figure S2 Neuronal migration in confined space at 0
DIV. A, The migration trajectories of 135 neurons located on a

square-shaped network traced with time-lapse imaging for

12 hours with an interval of 5 minutes between each frame. Each

colored line corresponds to an individual neuron. Green dashes

depict the geometry of the geometric constraint. B, Phase-contrast

image of the first and the last frame, red arrows point to emerging

clusters. C - H, Motion analysis of the neurons shown in panel A

over 12 hr in terms of velocity, acceleration and angle. C, E, G are

superimposed velocity, acceleration and angle of all 135 neurons

in the network over time. Huge variations in migration capability

between neurons in terms of velocity (C), acceleration (E) and

angle (G) can be seen. D, F, H are density plots showing the mean

(red box) and S.E.M. (line), with a superimposed blue curve

showing the behavior of a randomly chosen sample neuron. A

gradual decrease of velocity as time elapses can be seen in panel D

(Spearman’s correlation coefficient is 0.5332, P,0.0001). Sharp

bursts in speed take place randomly. While the mean values of

acceleration are largely constant, the S.E.M. demonstrate a

gradual narrowing over time (panel F, Spearman’s correlation

coefficient is 0.4582, P,0.0001). The envelope of angle ebb and

flow (panel G), but the S.E.M. gradually decreases (panel H,

Spearman’s correlation coefficient is 0.3213, P,0.0001). Mean-

while, the behavior of a single neuron is characterized by random

fluctuations. Scale bar: 200 mm.

(TIF)

Figure S3 Heterogeneity of collective migration. A,

Color-coded normalized covariance matrix for the velocities of

all cells in Figure 3E. The numbers are the serial numbers of the

cells. The color of each dot in the matrix represents the covariance

coefficient between the two cells designated by the horizontal and

vertical index of the matrix respectively. The color bar relates

different colors to the covariance coefficients (between 0 and 1). B,

The projection of the three-dimensional figure in Figure 3E onto

the horizontal plane. We categorized the cells according to their

covariance coefficients (panel A) through k-means clustering, cells

with larger covariance coefficients are labeled blue while the rest

are labeled red. The two populations of neurons exhibit two modes

of migration. Neurons with red-colored trajectories are coordinat-

ed by the centripetal movement, while neurons with blue-colored

trajectories show edge-philic movement. C, Box chart showing the

cumulative distance that the red and blue group of neurons travel

(* P,0.001, Kolmogorov-Smirnov test, Central: n = 56, Periph-

eral: n = 13). Scale bar: 200 mm.

(TIF)

Figure S4 Data extraction strategy for Figure 4F and
4G. The X and Y position of each centralized cluster (shown as a

green spot in the array) in the rectangular and circular array of

geometric constraints are calculated and converted into matrices.

The covariance matrices are then calculated according to the

position matrices.

(TIF)

Figure S5 Critical scale determines network structure.
Clustering affects neuronal connectivity, immunocytochemistry

photomicrographs of geometric constraints shown in A - C. D - F

are part of the network composed of four units. G - I

immunocytochemistry of a part of the network and an individual

unit. Tuj1 (green) is the neuronal marker. J, Emergence of mono-

cluster is size dependent. The number of clusters on a geometric

constraint increases as the sizes of the square-shaped geometric

constraints expands as a geometric progression (n = 5, 10 - 15 data

points for each size of geometric constraint). Scale bar: D - F,

250 mm; G - I, 100 mm.

(TIF)

Figure S6 A, Original data points for Figure 6A. Note that each

red dot could be many overlapping data points, such as those of 50

to 250 mm where mono-clusters are consistently observed. B,

Normalized relative neighborhood density of geometric constraints

of various sizes. The horizontal axis is shifted rightward to show

the sharp peaks at zero. See Materials and Methods for details.

(n = 3, 2000 to 5000 data points for each size of geometric

constraint.)

(TIF)

Figure S7 Working model for geometric control over
coordinated collective migration via mechanical cou-
pling. A, Fasciculation and tension generation between two

adjacent neurons. Contact of adjacent neurites (light blue)

facilitates adhesion (deep blue velcro) mediated neurite fascicula-

tion, while the somata (yellow balls) are still subject to active

migration. The neurites are then subject to tension force (red

arrow), possibly caused by the development of neurite fascicula-

tion. Finally, the fasciculated neurites under tension drag the

somata closer. B, Formation of larger clusters on a random

network composed of small clusters (dark blue circles) fully

connected through fasciculated neurites (light blue lines). The

break of symmetry on a neurite will result in directed forces along

a neurite, leading to somata migration. C, Size dependent

difference in network structure. On very small circuits (dashed

circle with smallest diameter), there is no cluster. On circuit above

critical scale (dashed circle with largest diameter) there would be

multi-clusters. Spatiotemporally coordinated migration and mono-

cluster appears when the geometry of the circuit falls in between

(dashed circle with medium-sized diameter). The blue balls are

stabilized clusters under equilibrium in the absence of geometric

constraints. The size of the geometric constraint (green dashes)

with respect to the critical scale (red circle) determines the

potential number of clusters the circuit would host. D, Geometry

regulates cluster location. Filled blue circles represent sub-clusters.

Blue lines represent fasciculated neurites between the clusters. Red

arrows represent traction forces exerted onto the clusters. Filled
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yellow circles (and yellow ring in the case of concentric ring)

represent final locations of clusters. Green dashed lines are the

boundaries of the geometric constraints. The centers of the clusters

are located on the geometric centers. When the centripetal

movement is blocked by a concentric ring, the cluster forms

around the ring.

(TIF)
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