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Exploring the spatial heterogeneity 
and temporal homogeneity 
of ambient  PM10 in nine core cities 
of China
Rui Feng1,2,3*, Rong Zhou3, Weiwei Shi2, Nanjing Shi2 & Xuekun Fang1*

We focus on the causes of fluctuations in wintertime  PM10 in nine regional core cities of China using 
two machine learning models, Random Forest (RF) and Recurrent Neural Network (RNN). RF and RNN 
both show high performance in predicting hourly  PM10 using only gaseous air pollutants  (SO2,  NO2 
and CO) as inputs, showing the predominance of the secondary inorganic aerosol and implying the 
existence of thermodynamic equilibrium between gaseous air pollutants and  PM10. Also, we find the 
following results. The correlation of gaseous air pollutants and  PM10 were more relevant than that of 
meteorological conditions and  PM10. CO was the predominant factor for  PM10 in the Beijing-Tianjin-
Hebei Plain and the Yangtze River Delta while  SO2 and  NO2 were also important features for  PM10 in 
the Pearl River Delta and Sichuan Basin. The spatial heterogeneity and temporal homogeneity of  PM10 
in China are revealed. The long-range transported  PM10 was substantiated to be insignificant, except 
in the sandstorms. The severity of  PM10 was attributable to the lopsided shift of thermodynamic 
equilibrium and the phenology of indigenous flora.

China, the world’s second largest economy, has gone through severe atmospheric deterioration for decades, 
which have slowed down the economic growth rate and implacably elicited 1.6 million premature deaths in 
 20171. Air pollution, having elevated daily hospital admissions in 218 cities of  China2, leads to the increase of 
cardiopulmonary/cardiovascular diseases, respiratory infection and  hypermethylation3. Atmospheric particulate 
matter (PM) draws the most public concerns among air pollutants, because of its toxicity and  carcinogenicity4. 
PM can be a host for bacterial and fungal  pathogens5,6. It has been found that a 1% rise of  PM2.5 enhances 2.9% 
of healthcare expenditure in  China7. Moreover, atmospheric aerosols are possible contributors to weather and 
climate  change8–11.

The atmospheric particulate matter with an aerodynamic equivalent diameter of less than 10 μm  (PM10), 
whose main emission sources are the coal-based thermal power plants, coal-based domestic heating, automobiles, 
fugitive dust from roads, construction sites, and unpaved  soil12, is studied in this work. The reason why we select 
 PM10 for investigation is it can greatly affect human’s health, bringing in numerous disease  burdens13–15. Also, 
the source of  PM10 partly originates from long-range transported  sandstorms16. Investigation on the significance 
of long-range transport and indigenous emission is of great importance. Several previous works investigated 
PM in the megacities of China via outdoor  observation17–19. Machine learning, orchestrated for developing 
algorithms automatically from large datasets, removes the need for an air pollution emission inventory which 
is a linchpin for conventional atmospheric models, thus becoming a more flexible  approach20–23. Compared to 
inventory-predicated air quality models, machine learning offers an alternative and more accurate method to 
interpret air pollutant concentration, which now is a popular topic in atmospheric research field. Feng et al.23 
proposed an avenue to forecast the air pollutants in Hangzhou using machine learning. Chen et al.24 used deep 
neural network to estimate  PM2.5 concentrations across China. Yan et al.25 developed a deep learning model to 
improve the interpretability and predictive accuracy of satellite-based  PM2.5. Han et al.26 estimated air qualities 
in Beijing during 2008–2012 by Bayesian Multi-task Long Short-Term Memory. In this work, we select Recurrent 
Neural Network (RNN) and Random Forest (RF) to conduct a nationwide survey of  PM10. The concentration 
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of  PM10 is much higher in winter than in the other seasons, so we focus on the wintertime (December, January 
and February)  PM10 in the past more than five years (December 2014 to February 2019).

The scopes of this work are as follows: (1) finding the different regional  PM10 patterns and its determinants; 
(2) exploring the contributors of severe wintertime haze in a novel perspective and demonstrating of the insignifi-
cance of long-range transport. In Section two, we introduce the study areas, the sources of data, and parameters 
of two machine learning models. In Section three, we illustrate the causes for severity of haze in wintertime and 
show the reason why the long-range transported  PM10 are insignificant except in sandstorms.

Methods
Investigated areas. The Beijing-Tianjin-Hebei plain (BTH) (37°–41° N, 114°–118° E), the Yangtze River 
Delta (YRD) (30°–33° N, 118°–122° E), the Pearl River Delta (PRD) (21.5°–24° N, 112°–115.5° E) and the Si-
chuan Basin (SCB) (28.5°–31.5° N, 103.5°–107° E) are the four most prosperous but polluted regions in China, 
representing the center of North, East, South and West China, respectively. BTH, where the capital city of Beijing 
and the central municipality of Tianjin nestle, had a population of 110 million and produced over 10% of China’s 
national gross domestic product (GDP) in 2017. YRD, where the megacity of Shanghai resides, denotes the eco-
nomic center of China, accounted for 19% of China’s GDP and had a population of 150 million. The PRD urban 
agglomerations surrounding Hong Kong and Macao created nearly 13% of China’s GDP with a population of 
83 million. SCB, the economic and political center of West China, contributed a population of 114 million and 
7% national GDP. These four regions comprised 33% of the Chinese population, 8% of China’s land, and 49% of 
GDP of China in 2017. However, all of these regions have suffered from severe  PM10 for decades due to the rapid 
industrialization. In order to develop better control measures, the question emerges as whether the regional 
patterns of  PM10 are the same. Because of the regional heterogeneity of natural and anthropogenic sources of 
 PM10, a reasonable assumption is the determinants of  PM10 varies among regions but remains consistent in the 
same region. Nine regionally representative core cities, which are Beijing and Tianjin in BTH, Shanghai, Nanjing 
and Hangzhou in YRD, Guangzhou and Shenzhen in PRD, and Chengdu and Chongqing in SCB, are picked to 
investigate the regional  PM10 patterns in wintertime. These nine cities, each of which has more than nine million 
citizens, are the most flourishing areas of China with their ever-growing urbanization. According to census, the 
permanent residents living in these nine cities were 154 million in 2017.

Data of wintertime air pollutants and meteorology. All the data used in this work are publicly acces-
sible online. The time period studied was sifted to be wintertime (December, January and February) from 1 
December 2014 to 28 February 2019. Hourly air pollutants, including sulfur dioxide  (SO2), nitrogen dioxide 
 (NO2), tropospheric ozone in the surface air  (O3), carbon monoxide (CO),  PM2.5 and  PM10 were extracted from 
official website of China National Environmental Monitoring Centre (http:// beiji ngair. sinaa pp. com/), where the 
air pollution data from 1563 environmental monitoring sites across China were recorded and documented. We 
chose the environmental monitoring sites in the nine investigated cities for training and testing. We use the 
data from all of the environmental monitoring sites in a city to calculate Feature Importance. Then we take the 
average of them to predict hourly  PM10 in Scenario one and two. The meteorological data were from the NASA 
Global Modeling and Assimilation Office (https:// gmao. gsfc. nasa. gov/ reana lysis/ MERRA-2) and the University 
of Wyoming (http:// www. weath er. uwyo. edu/ surfa ce/ meteo rogram/ seasia. shtml), including hourly temperature, 
relative humidity, atmospheric pressure, wind speed and wind direction.

Parameters of random forest and RNN. Recurrent Neural Network (RNN) is capable of capturing tem-
poral contextual information, suitable for simulating the accumulation and deposition of air pollutants. RNN 
can transfer information from one step to the following step. Random Forest (RF), a tree structuring model, is 
able to quantitatively rate the significance of each input in shaping the output via calculating the Feature Impor-
tance (FI). There are two types of Feature Importance, which are Variable Importance and Gini Importance. In 
this case, we chose Gini Importance.

Several setups of RF and RNN were tested and fine-tuned before we selected the best settings of parameters. 
As for RF, n-estimator is the number of built trees. A higher n-estimator ensures the predictions to be stronger 
and more stable, but also makes the operator code slower. Increasing max-features generally improves the per-
formance of Random Forest, but decreases the diversity of individual tree and slows down the running speed. To 
strike the right balance, assigning maximum features to be auto to take all features into consideration and put no 
restriction on the individual tree. Max depth being none means the node extends until all leaves are pure or all 
leaf nodes contain fewer samples than min samples split, which is set as two in this work. Min sample leaf is the 
minimum sample number on leaf nodes. Max leaf nodes are the optimal nodes defined by a relative reduction 
in purity in the best-first fashion. Max leaf nodes being none means there is no restriction on the number of leaf 
nodes. As for RNN, the activation function chosen was the most popular non-linear function rectified linear 
unit (ReLU), expressed as f (x) = max (z, 0) . As the number of the hidden units becomes larger, the prediction 
accuracy of RNN slightly increases but the running speed is slowed down. In this case, we choose the number 
of the hidden units to be 300. Learning rate is typically log-spaced and change of it commonly does not make 
significant improvement. We choose learning rate to be  10–3. Lay number is set to be 2, because two-layer enables 
RNN more accurate than single-layer in predicting  PM10, as we’ve tested.

Results and discussion
Feature importance of  PM10. Feature Importance (FI), calculated by Random Forest, is able to quantify 
the significance of each input to impact the output. The higher the score that an input gets, the more significant 
that input is to the output. The hourly meteorological conditions and air pollutants in the wintertime of past 
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more than five years (December 2014 to February 2019) were input to calculate the long-term FI of  PM10, shown 
in Fig. 1. First and foremost, Fig. 1 quantitatively demonstrates that gaseous air pollutants  (SO2,  NO2,  O3 and 
CO) were more significant than the meteorological conditions in shaping  PM10, as the FI of gaseous air pollut-
ants outscored that of meteorological conditions combined.  SO2 and  NO2 were positively correlated with  PM10, 
because they were the precursors of sulfate and nitrate, the main components of  PM10

27. Tropospheric  O3 in the 
surface air and  PM10 were negatively associated, because  PM10 is a promoter that speeds up the aerosol sink of 
hydroperoxy  radicals28. The strongly positive association between CO and  PM10 was because they were emitted 
from same sources, such as coal-base domestic heating and traffic. The possible chemical bonds between CO and 
 PM10 need further investigation. As for Beijing and Tianjin of BTH, the influence of CO on  PM10 was far greater 
than that of other gaseous air pollutants and  NO2 contributed more pivotally than  SO2 for  PM10. As for Shanghai, 
Nanjing and Hangzhou of YRD,  SO2 played a more crucial role than  NO2 in reproducing  PM10. The influence of 
CO on  PM10 was also predominant in YRD but less critical than that in BTH. As for Guangzhou and Shenzhen 
of PRD,  NO2 and  SO2 had higher FI than CO, revealing a different pattern of  PM10 in stark comparison with 
BTH and YRD. As for  PM10 in SCB, CO and  NO2 were the primary FI in Chengdu and Chongqing, respectively. 
Therefore, the spatial heterogeneity of regional  PM10 in China is corroborated. We then calculate the annual FI 
for  PM10 from the aforementioned nine cites, shown in Table 1. Despite of the ebb and flow of FI in some year, 
the results are consistent for wintertime  PM10 in a city. CO is associated with the insufficient combustion in the 
coal-based house heating while  NO2 is mainly emitted by automotive vehicles, curbing coal-based house heating 
in BTH/YRD and controlling vehicles in PRD and SCB are the best ways to lower  PM10.

Prediction of  PM10 using  SO2,  NO2 and CO as inputs. Due to the leading roles that gaseous air pol-
lutants  (SO2,  NO2 and CO) play in shaping  PM10, they are used to predict hourly  PM10 without meteorological 
circumstances. Training period is set to be December and February while testing period is January (Scenario 
one). Training and testing data are from the same city. Pearson correlation coefficient (R) and Root Mean Square 
Error (RMSE) are used as two statistic indicators to evaluate the performance of RF and RNN, and the results 
are shown in Table 2 and Fig. 2. As Table 2 indicates, both RF and RNN show good accuracy in simulating 
hourly  PM10 with only three gaseous air pollutants as inputs. In most cases, the Pearson correlation coefficient 
(R) between hourly observed and RF/RNN-simulated data is larger than 0.8. RNN is related with time series, as 
it recursively associates the dataset in the direction of sequence evolution. However, in this case, RNN’s not out-
performing Random Forest in all nine cities signals that  PM10 was not strongly linked to the time series with one 
hour interval. This finding reveals that, compared with the impact of gaseous pollutants, the concentration of 
 PM10 at a given time-point is more relevant to the gaseous air pollutants at the same time than to their previous 
levels one hour prior. Also, when using the gaseous air pollutants in timestamp (T-1) as inputs, the performances 
of RF and RNN are slightly worse for predicting  PM10 in timestamp T, compared with that using the gaseous air 
pollutants in timestamp (T) as inputs. Moreover, the Pearson correlation coefficient of  PM10 in timestamp T and 
concomitant gaseous pollutants in timestamp T is greater than that of  PM10 in timestamp T and gaseous pollut-
ants one hour prior in timestamp (T-1). This finding not only unravels that  PM10 and gaseous air pollutants were 
in thermodynamic dynamic equilibrium, but also implies the formation and deposition of  PM10 tended to occur 
in less than one hour. Furthermore, when training data and testing data are extracted from different cities, the 
prediction accuracy is reduced, implying every city had its own unique pattern of  PM10.

Thermodynamic equilibrium between gaseous air pollutants and  PM10. As Fig. 2 and Table 3 
show, both RF and RNN ubiquitously underestimate  PM10 in all nine cities in Scenario one. In contrast with 
Scenario one, Scenario two is set as the testing period is hourly  PM10 in one day in January 2019 and the training 
period is hourly  PM10 in the remaining days in January 2019. Training and testing data are from the same city. 
Inputs include  SO2,  NO2 and CO as well. The results are given in Fig. 3. As Fig. 3 shows, the underestimations do 
not take place in Scenario two. In addition, we use the gaseous pollutants in January 2018 and December 2017/
February 2018 as inputs to train RF and RNN, respectively. The results are similar: the prediction results of  PM10 
in January 2019 using the data in January 2018 for training are greater than that using the data in February 2018 
for training. The simulations of RF and RNN both underestimate the  PM10 level in all nine cities when using the 
data in December 2017 and February 2018 for training, similar to Scenario one, indicating this is a ubiquitous 
phenomenon.

Two insidious causes account for this. The major reason is the chemical processes of sulfur dioxide forming 
sulfate and nitrogen dioxide forming nitrate are exothermic. Since the temperature in January is lower than that 
in December and February, the thermodynamic equilibrium shifts lopsidedly in favor of augmenting  PM10 in 
January. Moreover, indigenous flora plays an important role for the removal of  PM10

29–32. As the leaf area index 
dwindles and the metabolism of trees slows down with the decrease of temperature, the change of phenology of 
indigenous plants is the minor reason for severity of  PM10 in wintertime.

Insignificance of long-range transport. The motivation of this work is partially stimulated by the siz-
zling debates in several previous  studies33–37. Guo et al.33 inferred that primary emissions and regional transport 
of PM in Beijing were insignificant in spawning haze. Li et al.34 demurred to Guo et al.33, insisting that long-range 
transport was the major cause of severe haze in Beijing. Zhang et al.35 contended that the back trajectory analysis 
by Li et al.34 was unsuitable for urban-scale investigations and polluted periods in Beijing were typically linked to 
stagnant conditions with weak and variable winds. Cao and  Zhang36 criticized Guo et al.33 for ignorance of non-
fossil emission sources, such as biomass burning, cooking, and biogenic emissions. Zhang et al.37 was opposed to 
Cao and  Zhang36, stating that there was little evidence showed that the biogenic source is an ascendant contribu-
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Figure 1.  Feature Importance for  PM10 in wintertime from December 2014 to February 2019.
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tor to severe urban PM pollution worldwide. According to Ni et al.38, when the horizontal transportation of air 
pollutants exceeds 300 km, it is considered as long-distance transport.

Machine learning can give an assessment to this argument. The gestations of the haze can be ascribed to 
crescendo of gaseous precursors, increase of primary emission, or long-range transport. The lifespans of  SO2 
and NOx are  short33. The gaseous air pollutants and solid  PM10 have different physical characteristics, making 
them unlikely to transport together for a long distance. Hence, our theory to judge the causes of the ups and 
downs of  PM10 level is: when using gaseous air pollutants  (SO2,  NO2 and CO) as inputs, if RF and RNN catch the 
maximum, the high episodes were induced by the increase of secondary inorganic aerosols or change of primary 
sources; otherwise, it’s elicited by long-range transport.

The average of the monthly average discrepancy between simulation and observation in Scenario two is less 
than 15% of the observation. Hence, RF and RNN catch the undulations of  PM10 using only gaseous air pollut-
ants as inputs, indicating the insignificance of long-range transport. In urban areas of China, fugitive dust from 
roads, construction sites, and unpaved soil sources normally account for 30%-50% of  PM10, which is referred 
as primary  PM10

39. CO is a presumable indicator for primary  PM10. The sporadic sandstorm may induce the 
long-range transport of  PM10 from the far-flung deserts in the northwestern  China40. RF and RNN catch all the 
fluctuations of  PM10 using gaseous air pollutants as inputs, indicating the long-range transport induced by spas-
modic sandstorm did not occur in January 2019. Thus, we second and shore up the viewpoints of Guo et al.33.

Conclusion
Air pollution has become a hot button in China in recent years. In this work, we take a deeper insight into 
 PM10. To wrap up, we deduce the following conclusions. We find that  PM10 was more statistically correlated to 
the gaseous air pollutants  (SO2,  NO2 and CO) than meteorological conditions. The spatial heterogeneity and 
temporal homogeneity of  PM10 in China are quantitatively chronicled, signifying each city had its own unique 

Figure 1.  (continued)
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Table 1.  FI of wintertime  PM10 in nine regional core cities in Scenario one.

SO2 (%) NO2 (%) O3 (%) CO (%)

Beijing, BTH

2014–2015 8.7 6.9 6.3 78.1

2015–2016 13.2 12.8 4.6 69.4

2016–2017 5.2 4.9 4.2 85.8

2017–2018 10.0 9.8 12.6 67.7

2018–2019 6.0 12.7 14.2 67.1

Tianjin, BTH

2014–2015 5.7 13.4 6.3 74.6

2015–2016 9.0 9.8 4.8 76.4

2016–2017 5.8 8.1 5.2 81.0

2017–2018 12.1 11.3 10.3 66.3

2018–2019 7.0 11.4 11.8 69.8

Shanghai, YRD

2014–2015 13.4 5.0 5.8 75.8

2015–2016 50.0 7.6 12.0 30.4

2016–2017 13.4 9.1 11.8 65.7

2017–2018 36.5 5.9 8.1 49.5

2018–2019 25.3 12.3 12.7 49.5

Nanjing, YRD

2014–2015 27.2 6.4 6.6 59.8

2015–2016 18.4 13.7 13.4 54.5

2016–2017 24.1 10.4 9.5 56.0

2017–2018 13.9 8.6 8.8 68.7

2018–2019 18.6 10.8 9.3 61.3

Hangzhou, YRD

2014–2015 44.8 8.4 12.6 34.3

2015–2016 27.3 12.6 9.4 50.7

2016–2017 19.3 32.9 12.3 35.5

2017–2018 20.5 7.7 9.0 62.8

2018–2019 44.5 13.1 15.7 26.7

Guangzhou, PRD

2014–2015 45.6 21.5 7.7 25.2

2015–2016 30.1 45.9 10.3 13.7

2016–2017 51.5 27.2 8.2 13.1

2017–2018 59.3 10.2 8.5 22.0

2018–2019 7.1 64.0 14.6 14.3

Shenzhen, PRD

2014–2015 39.6 28.9 17.3 14.2

2015–2016 35.9 22.5 17.1 24.5

2016–2017 40.9 17.6 12.9 28.6

2017–2018 49.0 18.1 14.2 18.7

2018–2019 37.6 27.8 15.1 19.5

Chengdu, SCB

2014–2015 14.7 50.70 8.1 26.5

2015–2016 49.6 10.6 7.6 32.2

2016–2017 20.3 10.6 10.1 59.0

2017–2018 8.6 26.4 14.0 51.0

2018–2019 28.8 41.4 14.6 15.2

Chongqing, SCB

2014–2015 53.5 18.2 6.5 21.8

2015–2016 20.0 43.5 13.6 22.9

2016–2017 49.3 10.9 7.6 32.2

2017–2018 47.1 24.6 10.5 17.8

2018–2019 20.0 52.3 9.3 18.4
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Table 2.  Performance of machine learning in predicting hourly  PM10.

Time

Random 
Forest RNN

R RMSE R RMSE

Beijing, BTH

2015.1 0.85 56.3 0.86 58.6

2016.1 0.91 60.2 0.92 41.0

2017.1 0.86 77.4 0.88 82.9

2018.1 0.74 34.5 0.75 34.8

2019.1 0.85 35.9 0.85 35.8

Tianjin, BTH

2015.1 0.87 57.9 0.92 51.2

2016.1 0.89 50.5 0.89 50.3

2017.1 0.88 51.9 0.88 51.9

2018.1 0.78 26.4 0.82 23.5

2019.1 0.79 36.8 0.81 42.9

Shanghai, YRD

2015.1 0.86 42.7 0.91 44.2

2016.1 0.83 30.3 0.88 27.4

2017.1 0.79 25.6 0.79 22.6

2018.1 0.86 27.8 0.88 28.7

2019.1 0.85 34.0 0.87 31.9

Nanjing, YRD

2015.1 0.81 59.9 0.84 69.9

2016.1 0.69 48.4 0.84 70.2

2017.1 0.81 32.6 0.97 29.1

2018.1 0.80 53.2 0.81 55.6

2019.1 0.83 44.5 0.83 50.1

Hangzhou, YRD

2015.1 0.89 39.2 0.90 39.7

2016.1 0.84 34.8 0.87 30.9

2017.1 0.80 34.2 0.84 32.4

2018.1 0.82 30.0 0.87 28.3

2019.1 0.61 45.9 0.61 49.7

Guangzhou, PRD

2015.1 0.86 23.5 0.930 16.2

2016.1 0.86 17.5 0.882 16.4

2017.1 0.88 27.9 0.895 29.9

2018.1 0.90 33.5 0.921 32.9

2019.1 0.89 27.9 0.87 38.4

Shenzhen, PRD

2015.1 0.80 23.7 0.79 28.3

2016.1 0.73 16.4 0.75 16.0

2017.1 0.79 12.2 0.80 13.8

2018.1 0.89 17.7 0.90 18.3

2019.1 0.81 25.3 0.81 27.7

Chengdu, SCB

2015.1 0.84 78.1 0.86 77.4

2016.1 0.84 31.5 0.79 36.7

2017.1 0.70 96.7 0.69 107.7

2018.1 0.78 37.6 0.86 31.3

2019.1 0.57 34.9 0.68 36.8

Chongqing, SCB

2015.1 0.82 69.7 0.81 75.1

2016.1 0.60 37.2 0.63 34.8

2017.1 0.79 41.2 0.85 38.6

2018.1 0.80 35.3 0.89 26.6

2019.1 0.64 49.2 0.69 48.6
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Figure 2.  Observed and simulated  PM10 in January 2019: Scenario one.
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Figure 2.  (continued)

Table 3.  Monthly average observed and predicted  PM10 in January of 2019: Scenario one.

Observation (μg/m3) RF-simulated (μg/m3) RNN-simulated (μg/m3)

Beijing, BTH 77.2 61.6 45.7

Tianjin, BTH 102.0 88.8 76.2

Shanghai, YRD 59.1 47.4 36.1

Nanjing, YRD 116.6 73.6 66.6

Hangzhou, YRD 89.2 62.5 56.3

Guangzhou, PRD 66.1 43.3 34.0

Shenzhen, PRD 61.6 40.1 37.9

Chengdu, SCB 107.0 87.2 78.4

Chongqing, SCB 102.6 64.3 64.0

Average 86.8 63.2 55.0
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Figure 3.  Observed and simulated  PM10 in January 2019: Scenario two.
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 PM10 pattern. RNN and RF are able to accurately predict hourly  PM10 using only  SO2,  NO2 and CO as inputs. 
The long-range transported  PM10 was insignificant for haze. The severity of  PM10 was impacted by the lopsided 
shift of thermodynamic equilibrium and the phenology of local flora.
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