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ABSTRACT A plausible explanation for statistical epistasis revealed in genome wide association analyses is
the presence of high order linkage disequilibrium (LD) between the genotyped markers tested for
interactions and unobserved functional polymorphisms. Based on findings in experimental data, it has been
suggested that high order LD might be a common explanation for statistical epistasis inferred between local
polymorphisms in the same genomic region. Here, we empirically evaluate how prevalent high order LD is
between local, as well as distal, polymorphisms in the genome. This could provide insights into whether we
should account for this when interpreting results from genome wide scans for statistical epistasis. An
extensive and strong genome wide high order LD was revealed between pairs of markers on the high
density 250k SNP-chip and individual markers revealed by whole genome sequencing in the Arabidopsis
thaliana 1001-genomes collection. The high order LD was found to be more prevalent in smaller popula-
tions, but present also in samples including several hundred individuals. An empirical example illustrates
that high order LD might be an even greater challenge in cases when the genetic architecture is more
complex than the common assumption of bi-allelic loci. The example shows how significant statistical
epistasis is detected for a pair of markers in high order LD with a complex multi allelic locus. Overall, our
study illustrates the importance of considering also other explanations than functional genetic interactions
when genome wide statistical epistasis is detected, in particular when the results are obtained in small
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The genetic architecture of most biological traits is complex and involves
multiple genes, whose effects are often influenced by interactions with
other genes and environmental factors. To study the relative contribu-
tions by genes, environmental factors and their interactions in
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segregating populations, statistical genetic approaches are commonly
used to partition the genetic variance to additive and dominance
variance of individual loci and epistatic interaction variance between
them (Lynch and Walsh 1998). In principle, the variance partitioning
is performed by associating the phenotypic variation for a trait in a
population with linear combinations of the genotypes within and/or
across loci. The genotypes are combined (parameterized) as determined
by the genetic model used in the analysis. The classic quantitative
genetics models are parameterized to capture the genetic variance in
a hierarchical manner. First, a main additive allele-substitution is de-
fined. Then, if accounted for, dominance is modeled as a single-locus
deviation from additivity and genetic interactions as multi-locus devi-
ations from single locus additivity and dominance (Nelson et al. 2013).
As a consequence of this, the genetic contributions of individual and
combinations of loci described as additive, dominance and epistatic
variances are unlikely to reflect the underlying biological mechanisms
(Carlborg et al. 2006; Phillips 2008; Huang and Mackay 2016; Sackton
and Hartl 2016; Forsberg and Carlborg 2017).

Although the ultimate aim of a genetic association study is generally
to detect functional polymorphisms, most often genotypes are only
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scored for a reduced set of polymorphisms (genetic markers). These
reduced marker sets are selected with the aim to tag as many of the
unobserved functional polymorphisms as possible. The statistical
inferences of the underlying genetic architecture made from such
reduced sets of markers can, however, be problematic in some cases.
For example, multiple unobserved functional polymorphisms can lead
to associations to individual markers that do not properly represent the
causal variants (Platt et al. 2010), and high order linkage disequilib-
rium (LD) to single functional polymorphism can lead to indirect
statistical epistatic associations to pairs of markers (Wood et al.
2014). Here, we focus on high order linkage disequilibrium defined
as when two genotyped markers tag an un-genotyped polymorphism
(see Materials and Methods section). It is still unknown how preva-
lent and strong such high order LD is in the genome, making it
difficult to estimate how many reported pairwise statistical epistatic
interactions are due to such LD. However, the study by Wood et al
(Wood et al. 2014) presented results suggesting that many of the
significant statistical epistatic interactions detected between pairs of
local markers by Hemani et al. (Hemani et al. 2014) might be due to
high-order LD to unobserved, linked sequence polymorphisms in the
same genomic region. Many past and current studies of genetic in-
teractions in, for example, Drosophila, plant, animal and human
populations (Shimomura et al. 2001; Anholt et al. 2003; Caicedo
et al. 2004; Segreé et al. 2005; Carlborg et al. 2006; Hemani et al.
2014) rely on genome-wide statistical analyses of pairwise interac-
tions between selected sets of markers as in (Hemani et al. 2014).
With the increasing interest in, and availability of, sufficiently large
datasets for epistatic association analyses it is therefore important to
also evaluate the risk of making false inferences about loci being in-
volved in functional genetic interactions from findings of statistical
epistasis, when they instead are due to high order LD.

Here, we empirically explore the prevalence and strength of high
order LD within and between chromosomes in publically available
high-density SNP and whole-genome re-sequencing data from the
model plant Arabidopsis thaliana. Two locus LDs are calculated be-
tween the markers selected for the 250k A. thaliana SNP chip that
have been the basis for many GWAS analyses in the past, and the
additional SNPs revealed by whole genome sequencing (1.44M) using
data from the 1001 genomes project (Atwell et al. 2010; Cao et al.
2011; Horton et al. 2012; Schmitz et al. 2013; Alonso-Blanco et al.
2016). Strong high order LD-r? was found to be common both within
and across chromosomes between pairs of markers from the SNP-
chip and the sequencing polymorphisms. The cause of the LD-r?
observed between interchromosomal markers, or distant intrachro-
mosomal markers, is unknown but could either be due random drift
or structure due to population genetics processes such as selection or
migration. On a genome-wide scale, the number of cases where the
combined genotype of the marker pair tagged the genotype of the
sequencing markers better than any single marker on the SNP chip
was too common for being neglected when interpreting the results
from an epistatic association analysis. The risk of falsely inferring
genetic interactions between markers on different chromosomes in
a two-locus interaction analysis might increase in situations when the
underlying genetic architecture is more complex, for example when a
single locus contains multiple functional alleles. This is illustrated
using an empirical example from a second public A. thaliana dataset
(Forsberg et al. 2015). Overall, this study provides new insights that
deepen our understanding about the link between high order LD and
statistical epistasis to guide researchers when interpreting results
obtained from epistatic genetic association analyses.
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MATERIALS AND METHODS

Methods

When an individual marker is in complete linkage disequilibrium (r> = 1)
with a functional polymorphism affecting a studied trait, a single-
locus association test between the marker and the trait will capture
all the phenotypic variance contributed by the functional polymor-
phism. A basic assumption in genetic association studies is that at
least one genotyped marker will be in sufficiently high LD with each
functional polymorphism to detect it in this way. In reality, however,
not all functional polymorphism will be in such perfect LD with a
genotyped marker, and then there is a risk that the joint genotype of
two (or more) markers tags the genotype of the functional polymor-
phism better than any single marker (high-order LD > single-marker
LD). This will, as discussed below, influence the significances of the
trait-marker associations detected in a genetic association analysis
and the inferences made about the genetic architecture of the trait.

Quantifying high order linkage disequilibrium: We calculate the
high order LD between pairs of predictors (here genotyped SNP
markers) and single targets (here un-genotyped SNP polymorphisms)
following (Hao et al. 2007).

Consider a pair of bi-allelic predictor SNPs (M; and M,; Figure 1).
These markers can together form four two-locus genotypes: AB, Ab, aB
and ab (Figure 1). We now want to know whether any two-locus pre-
dictor could tag the single locus target genotype better than any of the
individual predictor genotypes (i.e., evaluate whether max (second-
order LD) > max (single order LD)). To calculate the high order LD
between the two predictors (M; and M,) and the single target (Q), the
two-locus M;M, genotype is used to create a multi-allelic pseudo
marker (P) with four alleles (Figure 1). In this way, a second-order
LD (r?) can be calculated for each of the possible ways that M, and
M, together can tag the genotype at Q (Figure 1).

The calculation of the second order LD therefore first involves
creating the four possible bi-allelic pseudomarkers (P, P,, P; & Py;
Figure 1) from the two locus M;/M, genotypes. These are assigned the
genotypes P; {AB, non-AB}, P, {Ab, non-Ab}, P; {aB, non-aB} and P,
{ab, non-ab}, respectively. The LD-r? is then computed between the
target (Q) and the four bi-allelic pseudomarkers (P;, P,, P; & P,). For
each pair of predictors, the second order LD is then defined as the LD-r?
for the pseudomarker with the highest LD-r? to the target. Pseudo-
markers with higher LD-r? to the target (Q) than 0.3 are kept for
further analyses. The LD-r? values were computed using the software
LdCompare (Hao et al. 2007).

Statistical epistasis emerging from high order linkage
disequilibrium: In a genetic association study in an inbred or haploid
population, two-locus epistasis is typically modeled as:

Y=a,B; +aB,+ajaf+ e [1]

Here, a, and a, are indicator variables for the genotypes at two gen-
otyped markers, M; and M,, taking values 1/-1 for the two alternative
homozygous genotypes AA vs. aa and BB vs. bb, respectively. a;a, is
an indicator variable for the interaction between a; and a, taking
value 1 for the two-locus genotypes AABB and aabb and -1 for AAbb
and aaBB. 3;, B, and B, are the corresponding estimates for the
marginal (additive) effects and the additive-by-additive interaction
between the loci.

The aim of a statistical epistatic analysis is to include an interaction
term in the model [1] to estimate the deviations of the two-locus
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Figure 1 lllustration of how the pseudomarkers (P4, P, P3, P4) used in
the estimation of the second order linkage disequilibrium between a
pair of linked or unlinked markers (predictors; Mq and M,) and a third
linked or unlinked functional polymorphism (target; Q) are created.
The pseudomarkers together represent the possible bi-allelic formula-
tions of the two-locus M1M; genotypes. The maximum pairwise LD-r2
between the target and the four pseudomarkers (P4) defines the sec-
ond order LD between the predictors (M4, M,) and the target (Q). The
general two-locus epistatic model (Model 1 below) will, when fitted to
the genotypes of the predictors (Mq, M) capture the variance of the
target (Q).

genotype-values (AABB, AAbb, aaBB and aabb) from the predic-
tions obtained by the marginal (additive) effects (Alvarez-Castro and
Carlborg 2007). However, a non-zero estimate of the interaction term in
model [1] does not, as noted e.g., by Wood et al. (Wood et al. 2014)
necessarily have to result from a genetic interaction. It could, for ex-
ample, instead emerge from a second-order LD between two markers
and a single functional polymorphism. Here, refer back to Figure 1.
Now assume that a trait is determined by a single functional locus (Q).
Two markers, M; and M,, are genotyped but neither of these markers
individually tags the causal genotype (blue) at Q well. However, the
causal (blue) allele at Q is, tagged perfectly by one of the two-locus M,
M, genotypes (ab; Figure 1), while the other three M;M, two-locus
genotypes (aB, Ab and AA; Figure 1) are only present together with the
no-effect (red) allele at locus Q. When fitting model [1] to the genotypes
of marker M; and M,, the estimate for the interaction term (3,,) will be
non-zero, illustrating how statistical epistasis can emerge from the
second-order LD between M; and M, and Q. This example illustrates
a scenario similar to what was empirically observed in (Wood et al.
2014), where physically linked markers in low LD with each other
tagged haplotypes that were in high order LD with a polymorphism
that was unobserved in the original study.

Classifying identified high order linkage disequilibrium triplets
depending on the distance between the loci: Here, we evaluate the
prevalence and strength of high order LD between pairs of markers
selected for genotyping on a 250k SNP chip (predictors) and a third locus
revealed by whole genome sequencing (targets) using publicly available
datasets in A. thaliana (Cao et al. 2011; Alonso-Blanco et al. 2016).
Three types of high order LD are defined based on the locations of the
predictors relative to the target. If both predictors are located within
1Mb of the target it is classified as cis-cis. If only one predictor is closer
than 1Mb it is classified as cis-trans. If none is closer than 1Mb it is
classified as trans-trans. The choice of a 1Mb threshold to define cis vs.
trans predictors is arbitrary, but we consider it useful for evaluating how
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common high order LD is between predictors near (local/cis) and far
(global/trans) from the target.

Material

The genome wide prevalence of high order linkage disequilibrium
in publically available Arabidopsis thaliana datasets: The A. thali-
ana 1001-genomes project has released complete genome sequences for
hundreds of wild collected accessions (http://www.1001genomes.org).
Here, we used whole-genome SNP data on 728 accessions scored by
whole genome re-sequencing (Cao et al. 2011; Alonso-Blanco et al.
2016). The predictors used in our analysis was a subset of the SNPs
selected for the 250k A. thaliana SNP chip (Horton et al. 2012) (n =
200,352 in total; MAF > 0.05) and the targets a subset of the SNPs
revealed using whole-genome re-sequencing (n = 1,641,240 in total
(~11.5M before QC); MAF > 0.05) (Table 1). Although the results
from the analyses of this data will be specific to this species and dataset,
it is assumed that the relationships between targets and predictors will
be a realistic representation of what to be expected also in other pop-
ulations. This is because the selection of markers for the high-density
250k SNP chip, was done for the purpose of genetic association studies
following similar procedures as used also in other species and
populations.

The reason for only studying a subset of the possible targets and
predictors is that it was not computationally feasible to exhaustively
evaluate the high order LD between all possible pairs of predictors
selected for the 250k SNP chip and all the targets revealed by genome
sequencing. Instead, the second order LD was exhaustively calculated for
all targets and predictors i) within a randomly selected 6 Mb window on
chromosome 2 as well as ii) between three randomly selected windows
from different chromosomes (Table 1). Computations were performed
for the entire population (n = 728 individuals) and two smaller random
samples of n = 100 and n = 50 individuals. The results for the popu-
lations with n = 100 and n = 728 are reported in the main manuscript
and the results for n = 50 is reported in the Supplementary material.

The predictor pairs in the evaluated windows in the genome with
high order LD-1? > 0.6 to a target were classified as cis-cis/cis-trans/
trans-trans. To extrapolate these findings to the genome level, the
proportions of all evaluated predictor pairs that displayed these pat-
terns were calculated and then multiplied with the total number of
possible cis-cis/cis-trans/trans-trans pairs in the genome (Table S1).

Analyzing a public A. thaliana dataset for two locus statistical
epistasis: A publicly available dataset including 340 Arabidopsis thali-
ana accessions were used for a genome wide association analysis. In
short, the plants were grown in a controlled environment with 6 bi-
ological replicate plants per accession. Analyses by Inductively Coupled
Mass Spectroscopy (ICP-MS) provided estimates of leaf molybdenum
concentration as described in (Baxter et al. 2010; Forsberg et al. 2015).
The accessions were genotyped for 141,385 SNP markers with MAF >
0.15 (Atwell et al. 2010; Baxter et al. 2010; Shen et al. 2012; Forsberg
et al. 2015). A more thorough description of the dataset can be found in
(Baxter et al. 2010; Forsberg et al. 2015). In an earlier study of this
dataset (Forsberg et al. 2015), it was revealed that a large fraction of the
genetic variance for this trait was explained by a single linkage block
containing several low-frequency, large effect structural variants that
were poorly tagged by the genotyped SNPs. This linkage block was
originally identified due to its large marginal, variance heterogeneity
effect in the population (Shen et al. 2012). It is known that statistical
epistasis and genetic variance heterogeneity can emerge from similar
genetic architectures (Forsberg et al. 2015), and this population was
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Table 1 Regions and SNPs selected for evaluation of second order LD

Window 1 Window 2 Targets? PredictorsP Filtered targets®
Region 1 Chr2: 8-14Mb — 70,712 6,053 —
Regionpair 1 Chr1: 10-12Mb Chr3: 10-12Mb 29,133 6,245 20,239
Regionpair 2 Chr2: 10-12Mb Chr4: 10-12Mb 23,751 5,302 15,887
Regionpair 3 Chr2: 10-12Mb Chr3: 10-12Mb 23,751 5,212 15,884
Genome 1,486,942 154,298 1,229,012

“Number of polymorphic SNPs in the evaluated windows/genome in the population revealed via whole-genome re-sequencing (Alonso-Blanco et al. 2016) that were

not on the AT SNP-chip (Horton et al. 2012).

Total number of polymorphic SNPs in the two windows/genome included on the 250k AT SNP-chip (Horton et al. 2012).
“Number of target SNPs in the two windows/genome with LD-r2 < 0.6 to any individual predictor.

therefore selected for further evaluations of whether high order LD
between the genotyped SNPs and these hidden polymorphisms could
lead to statistical epistasis in a two locus association analysis. We per-
formed an exhaustive, two-dimensional genome scan for pairwise sta-
tistical epistasis between the genotyped markers and the level of
molybdenum in the leaf using the software plink (Purcell et al. 2007)
without control for population structure. Thereafter, each pair of loci
that passed the genome wide significance threshold in the initial scan
was fitted in a two-locus epistatic genetic model [1] using hglm function
in hglm package (Ronnegérd et al. 2010) to correct for the possible
effects of population structure via the genomic kinship matrix as in
(Forsberg et al. 2015). The significance threshold used to infer signif-
icant interacting pairs (P < 3.2 x 107 !°) was defined as a Bonferroni
corrected nominal 5% significance threshold. The correction was done
for an estimated number of independent association tests assumed to
equal the number of independent LD blocks in the A. thaliana genome
as described in (Lachowiec et al. 2015), hence being more liberal
than the one controlling for all possible pairs involving the 1.6M
markers (P-value = 3.9x10714),

Data availability

Genome wide re-sequencing data are available as part of the Arabidopsis
thaliana 1001 genomes project http://1001genomes.org/data-center.
html. The 250 K SNP chip data are available as part of the genotype
data for the Arabidopsis thaliana Regmap panel (Horton et al. 2012),
with the final dataset appended as a GenABEL object in File S1. The
Molybdenum levels for the 340 Arabidopsis thaliana accessions are
available in (Forsberg et al. 2015). Additional results are available as
supplemental material (Figure S1 and Table S1). Supplemental material
available at Figshare: https://doi.org/10.25387/g3.6631409.

RESULTS

This study aims to answer the following questions by analyzing two
public A. thaliana datasets: How common can we expect high order
LD to be between pairs of SNPs selected for genotyping and hidden
sequence variants in the genome? Is high order LD primarily observed
between predictors tightly linked to a target functional polymorphism
(in cis) as in (Wood et al. 2014), or is it also observed for predictors
unlinked to the target (in trans)? How dependent is the prevalence of
high order LD and cis vs. trans predictors on the population size? We
also present an empirical example where high order LD exists be-
tween a cis-trans predictor pair with significant statistical epistasis
and a locus displaying strong genetic variance heterogeneity due to
independent contributions by multiple linked polymorphisms
(Forsberg et al. 2015). This illustrates how complex inheritance pat-
terns of individual loci, something usually not explored in GWAS
data, further complicates the interpretation of detected statistical ep-
istatic signals.
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The population size affects the prevalence and location
of predictors in high order LD
The high order LD-r? values for all pairs of predictors and individual
targets in a 6Mb window on Chromosome 2 (Table 1) is shown for
populations with n = 100 and n = 728 individuals in Figure 2. These two
population sizes were evaluated to empirically explore whether the
results from epistatic analyses based on fewer, but more thoroughly
phenotyped individuals, might have to be interpreted differently than
studies where many, but less thoroughly phenotyped individuals, are
used. The strongest second order LD-r? was observed where at least one
predictor is located near the target (y-axis). When the sample size was
smaller (n = 100; Figure 2A), strong second order LD-r? was rather
common also when both predictors were located far from the target.
For example, 20% of the targets had a high order LD-r?> > 0.65 with a
predictor pair where at least one of the predictors was located more
than 1Mb away from it. Even though the prevalence of strong high
order LD-r? decreases when the sample size increases, it is still common
in the large population (n = 728; Figure 2B), with the highest prevalence
when at least one of the predictors is located close to the target.
Strong high-order LD-r* between a predictor pair and a target is
mostly observed when at least one of the predictors is in strong indi-
vidual LD-r? with the target. However, as illustrated in Figure 3, many
cases also exist where the high order LD-r? is strong while the LD-r? to
the individual predictors is weak.

Estimating the genome wide prevalence of strong high order
linkage disequilibrium: Figure 2 illustrates that high-order LD-r? ex-
ists where one or both predictors are located close to the target as well as
when one or both predictors are located further away in the evaluated
6Mb window. The genome-wide prevalence of high order LD-r? for the
three different classes of predictor pairs, cis-cis/cis-trans/trans-trans (as
defined above) were next explored in three pairs of distant 2Mb win-
dows in the genome (Table 1) to provide data to estimate their genome-
wide prevalence. Here, only cases when individual predictors in the
windows had lower individual LD-r? than 0.6 to the targets were
considered.

Overall, the fraction of predictor pairs that display higher second-
order LD (LD-12 > 0.6) is low. In the smaller population (n = 100), less
than 1 out of 10 evaluated predictor pairs and in the larger population
(n = 768) less than 1 out of 107 (Table S1). However, since the total
number of evaluated pairs was very large (around 10''), many cases
were still detected. Regardless of population size, cis-cis and cis-trans
pairs dominated (42/44% for n = 100, and 56/58% for n = 728; Figure
4A-C; Table S1). Trans-trans pairs existed, but were much less common
(~1% for n = 100, <0.01% for n = 728, respectively, Figure 4A-C; Table
S1). When extrapolating these results to a genome wide scale, this
picture, however, changes dramatically (Figure 4D). Trans-trans and
cis-trans predictor pairs are now much more common than cis-cis pairs
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due to there much higher genome-wide prevalence (35/18-fold for n =
100 and 35/0.3 for n = 728 more common; Figure 4D, Table S1). This
result illustrates that it is a considerable risk to disregard high-order LD
as a possible explanation for statistical epistatic interactions even at
larger sample-sizes.

Linking high order LD and statistical epistasis in a two locus
epistatic association analysis in A. thaliana: A publicly available
dataset including 340 Arabidopsis thaliana accessions were used for a
genome wide association analysis for leaf molybdenum concentration
This dataset was earlier used by (Forsberg et al. 2015) to dissect a locus
with a highly significant variance heterogeneity association for leaf
molybdenum concentration (Shen et al. 2012) to the contributions of
four independent associations in an extended LD block on chromo-
some 2. Several of these associations were found to structural variants
that were poorly tagged by the SNP markers (Forsberg et al. 2015). Our
pairwise genome wide scans for pairs of epistatic loci identified 396 sig-
nificant SNP pairs. For 290 pairs both markers were located in the
narrow region on chromosome 2 that was earlier dissected in detail
(Forsberg et al. 2015). All these are examples of cis-cis predictor pairs.
The remaining 106 pairs contained one predictor in the chromosome
2 region and another one elsewhere in the genome, being examples of
cis-trans predictor pairs.

The strongest pairwise epistasis was detected for a cis-trans predic-
tor pair (Figure 5A). The accessions with the AA genotype at the pre-
dictor located in trans to the chromosome 2 region (chromosome
1:5,315,502 bp) all have an intermediate molybdenum level in the leaf
(Figure 5A). The accessions with the GG allele at the trans predictor
have different levels of molybdenum in their leaves depending on
whether they carry the CC or TT genotype at the cis predictor in on
chromosome 2 (10,928,720 bp). These differences explain the signifi-
cant statistical epistasis detected when fitting the two-locus epistatic
model [1] to this data.
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This statistical interaction could be due to a true genetic interaction.
An alternative explanation is however presented in Figure 5 There, the
overlap between the two locus genotypes for the cis-trans predictor pair
(Figure 5A) and the alleles at the four loci earlier reported to be asso-
ciated with leaf molybdenum levels in this region (Forsberg et al. 2015)
are illustrated. The multi-locus genotypes of the predictor pair tags
different combinations of minor alleles at the four loci that were found
to either increase (MGWA1, mGW A2, 326ins) or decrease (53del) leaf
molybdenum levels in the accessions (Forsberg et al. 2015). The statis-
tical epistatic interaction was detected due to the difference in mo-
lybdenum levels between accessions carrying the GGCC genotype

10

0.8
.
.
e e 00
e e 00 0
e e o
ee e 00 000

* 80-100% quantile

* E0-80% quantie

* 40-60% quantie

* 20-40% quantiie
0-20%

Maximum individual predictor to target LD-r*
0.4

r T T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

High order LD-A

Figure 3 Strong second order LD-r? exists also when the individual
predictor to target LD-r? is weak. The intensity of each dot illustrates
the number of cases with a particular high order LD-r? / maximum
individual predictor to target LD-r?> combination. Dots below the line
are cases where the high order LD-r? stronger than any individual
predictor to target LD-r? (n = 728).
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(low molybdenum) and GGTT (high molybdenum). Figure 5B shows
that the accessions with the GGCC genotype have the lowest frequency
of the molybdenum increasing allele mGWA2 and the highest fre-
quency of the molybdenum decreasing allele 53del. The accessions with
the GGTT genotype instead have the highest frequencies of the molyb-
denum increasing alleles at mMGWA2, mGW A1 and 326ins. The geno-
types AACC and AATT, with intermediate molybdenum levels, both
have intermediate frequencies of the nGWA1 and mGWALI increasing
alleles and lack the 53del and 326ins alleles. A more parsimonious
interpretation of these results is thus that the statistical epistasis at
the predictor pair is due to the high order LD between them and the
genotypes at the four loci located in the region on chromosome 2.

DISCUSSION

High order linkage disequilibrium between combinations of genotyped
markers, and unobserved functional polymorphisms, can result in
significant statistical epistasis in genome wide association analyses. This
was earlier illustrated empirically for linked pairs of genotyped predictor
SNPs and ungenotyped target polymorphisms in humans by Wood et al.
(Wood et al. 2014). Here, we present a new example from A. thaliana
where significant statistical epistasis between pairs of predictors is due
to the effects at a single loci and that only one of the statistically
interacting loci was located near the target. By exploring the prevalence
of second order LD in the genome of the 1001-genomes A. thaliana
collection, we find that although the total amount of high order linkage
disequilibrium decreases with increasing population sizes, it is still
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highly prevalent both within and across chromosomes even in relatively
large populations (n = 728). It is found to be most common when one
predictor is in high LD to (and located physically near) the target, but
many cases exist where the LD to the individual predictors is very weak
but the high order LD is strong. The choice of target and predictor SNPs
in this study is arbitrary and therefore it is difficult to assess how
representative they are for the prevalence of high order LD in other
populations. However, they do suggest that strong high order LD can be
prevalent also in larger populations, indicating that statistical epistasis
observed in studies based on reduced representation genotyping (such
as SNP-chips) need to be interpreted with caution.

The most prevalent type of high order LD on a genome wide basis is
that of cis-trans predictor pairs, but also cis-cis pairs are common re-
gardless of population size. The prevalence of trans-trans pairs is high
in smaller populations but decreases rapidly as the population size
increases. A possible biological explanation for the observation that
cis-cis and cis-trans high order LD pairs is relatively prevalent also at
larger population sizes would be that the number of, and variation in,
the trans located predictors is sufficiently large on a genome-wide basis
to complement any imperfection in the tagging of the functional poly-
morphism by the cis located predictor. Whereas trans-trans high order
LD will always result in falsely associated loci, cis-trans and cis-cis high
order LD presents an opportunity to identify true functional loci for the
trait. The problem in a real data analysis is that statistical epistasis
between a pair of predictors can emerge from true interactions or high
order LD within and across chromosomes. However, as the sample
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sizes increase the risk of detecting pairs of predictors where none is
located close to the true functional polymorphism decreases. Before
concluding that the detected association is due to two interacting loci,
further analyses of the associated pair are however recommended.

Whole-genome sequencing provides unprecedented opportunities
to genotype most segregating single nucleotide polymorphisms in the
genome. Despite this, it is unlikely that these will be able to tag all
functional polymorphisms, such as larger structural variants or multi-
allelic functional loci due to tandem repeats. Hence, even though the
scenario of reduced representation genotyping with SNP-chips or
similar will soon be a technology of the past, association analyses will
still be challenged by the need to tag hidden polymorphisms with
imperfect markers as illustrated in our analyses of the complex locus
affecting molybdenum levels in the A. thaliana leaf. In fact, it is not
unlikely that the problem with high order LD between SNP predictors
and hidden, complex functional loci will remain a major challenge in
the future as the increased number of markers generated by sequencing
also increases the chance of finding combinations of cis-cis or cis-trans
predictors that tag these functional polymorphisms better than any
single marker. To evaluate the extent of this problem one will, however,
need a more comprehensive dataset than the one studied here including
a more complete scoring of all types of non-SNP polymorphisms in the
genome with potential effect on traits of interest.

The prevalence of high order LD is likely to be more of a concern in
populations of inbred or haploid individuals. These include, for example,
inbred lines derived from bi- and multi-parental crosses of plants and
animals, as well as populations of wild collected inbred plants (Churchill
et al. 2004; Valdar et al. 2006; Kover et al. 2009; Cao et al. 2011; Mackay
et al. 2012). As heterozygotes are not present in these populations, the
number of multi locus genotype classes is smaller than in outbred
populations, making them attractive for studies of genetic interactions.
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As a common approach to detect interactions in such populations is to
identify pairs of loci displaying significant statistical epistasis, such
results need to be interpreted with caution, as the analyzed populations
are generally small. If one, or more, of the functional polymorphisms in
the genome are unknown and poorly tagged by the genotyped markers,
there is a risk that statistical interactions arise from high-order LD
between the genotyped markers and the hidden functional polymor-
phisms. Hence, even though these populations increase the power to
map loci displaying statistical epistasis, there is also a risk of falsely
concluding that the underlying genetic architecture involves genetic
interactions.

Conclusions

Statistical epistasis detected in genome wide association analyses can
result from high order LD between genotyped markers and unobserved
functional polymorphisms. This study revealed extensive and strong
genome wide high order LD between pairs of markers on a high density
250k SNP-chip and individual markers revealed by whole genome
sequencing in the A. thaliana 1001-genomes collection. The high prev-
alence of strong high order LD in this dataset suggests that epistatic
variance detected between pairs of markers in association analyses,
especially in small inbred populations genotyped for reduced represen-
tation sets of markers, need to be interpreted with caution. An empirical
example is presented where a pair of markers with significant statistical
epistasis in a genome wide association analysis is in high order LD with
a complex multi allelic locus with large effects on the analyzed trait. As
complex functional loci such as this are unlikely to be captured by
individual bi-allelic SNP markers, even if millions of them are scored
by whole genome sequencing, it is important to evaluate also other
explanations of statistical epistasis than underlying genetic interactions
in particular when small populations of inbred individuals are studied.
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