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Abstract: Whole genome sequencing (WGS) has arisen as a powerful tool to perform pathogen
source tracking in the food industry thanks to several developments in recent years. However, the
cost associated to this technology and the degree of expertise required to accurately process and
understand the data has limited its adoption at a wider scale. Additionally, the time needed to obtain
actionable information is often seen as an impairment for the application and use of the information
generated via WGS. Ongoing work towards standardization of wet lab including sequencing proto-
cols, following guidelines from the regulatory authorities and international standardization efforts
make the technology more and more accessible. However, data analysis and results interpretation
guidelines are still subject to initiatives coming from distinct groups and institutions. There are
multiple bioinformatics software and pipelines developed to handle such information. Nevertheless,
little consensus exists on a standard way to process the data and interpret the results. Here, we want
to present the constraints we face in an industrial setting and the steps we consider necessary to
obtain high quality data, reproducible results and a robust interpretation of the obtained information.
All of this, in a time frame allowing for data-driven actions supporting factories and their needs.

Keywords: whole genome sequencing; food industry; bioinformatics; workflow; data analysis;
metadata; food safety; data quality

1. Introduction

Advances in DNA sequencing technologies have transformed the capacity to in-
vestigate the dynamics of foodborne pathogens inhabiting diverse environments. Food
industry [1,2] and food safety agencies [3–5] have benefited from these improvements for
pathogen source tracking. Whole genome sequencing (WGS) has arisen as a tool with a
scope that goes beyond academic research proving to be an asset in ensuring food safety.
The technologies have gone through considerable improvements in recent years making
them both faster and cheaper, allowing thus for relatively wide adoption and use for
food safety and public health on a routine basis [6]. Multiple governmental entities and
regulatory authorities have established networks coordinating the efforts of nationwide
laboratories to use WGS for foodborne pathogen source tracking [3,7,8] and real-time
outbreak detection and investigation [9,10].

Nowadays, WGS is widely considered as the approach offering the highest resolution
and precision for routine real-time surveillance concerning foodborne pathogens and
has been adopted by multiple regulatory agencies worldwide [6,11–13]. This has been
accompanied by the development of several computational software and methods allowing
the analysis of these data. Nevertheless, a wider adoption of the technology, particularly
in food industry, has been lessened by several factors [14,15]. First, the computational
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infrastructure required to process (and store) the data. Moreover, little consensus exists
concerning the use of the multitude of software available to process sequencing data,
and although general guidelines are being consolidated, to date, multiple institutions use
different internally validated workflows [16,17]. Despite advancements in recent years, the
speed in which useful information can be provided to the factories has also limited the
adoption of WGS for foodborne pathogen surveillance in industry. Timewise, collecting
the samples, sending them for identification and sequencing is a major limiting factor.
Additionally, the defined workflow for genome analysis should produce interpretable
results within a time frame that does not limit their operational applicability. Finally,
the added value of WGS over traditionally used typing methods relies on an accurate
interpretation of the results. An analysis conducted using WGS is a powerful tool for
determining the relatedness of bacterial isolates in pathogen source tracking. However,
by itself, it can only indicate that isolates recently arose from the same source. Linking
the information obtained via WGS with the likely origin of the foodborne contaminant
requires contextualization of the results using information about the sample (metadata),
thus requiring appropriate expertise. Detection of a pathogen or its relatedness to others,
might not be enough to identify the root cause of the contamination. WGS has the power
to provide information exploitable by quality managers that can be used to develop data-
driven strategies for food safety management.

Over the years, guidelines for the standardization of wet lab protocols have been
issued, however, for data processing, there is still a large gap to close regarding standard-
ization to ensure the analysis is complete and correct, for ultimately making an accurate
recommendation. Deep understanding of the results is key in order to support factories in
their root cause analysis investigations. Software will always provide a result, however
without critical review and appropriate verifications, these results can be erroneous and
lead to incorrect interpretations. All in all, the integration of microbiology, genomics
and bioinformatics knowledge is essential to ensure the quality of the data, validate the
analytical results and provide a reliable interpretation of the obtained information, integrat-
ing metadata. Several bioinformatics approaches have been tested and validated [18–20]
and here, more than introducing a workflow, we present what we consider important as
key considerations for robust bioinformatics data analysis and reliable results interpreta-
tion in the context of whole genome sequencing applied to pathogen source tracking in
food industry.

2. Materials and Methods
Workflow

The data analysis workflow was split into stages and, for each of them, quality control
metrics were defined to ensure high quality of the obtained data. Based on selection criteria,
several open-source software were identified for each step, tested and benchmarked.

The considered criteria for software selection were to be open-source and well docu-
mented, Linux-based, actively maintained, locally installable (i.e., not running in external
or cloud servers), compliant with internally defined IT security regulations, adapted to
be launched on large datasets and fast enough to allow the whole workflow to be run
within 24 h on a dedicated server. Importantly, these tools can be used for a large range
of pathogens. Here we present our experiences notably with Listeria monocytogenes and
Salmonella enterica.

For each stage, the best performing software (for our specific case), fulfilling the
above criteria, was streamlined into a workflow. This selection was based on accuracy and
reproducibility of the results during the benchmarking. For each stage, several metrics
from the output data were considered as quality checks. When an isolate failed one of these
quality checks, it was tagged as of low quality to be further examined. As bioinformatics
software are rapidly changing and developing, the intention of this work was not to
promote a certain software or benchmark its performance but rather highlight the criteria
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to be considered to ensure high quality data for downstream analyses. Table 1 summarizes
the stages and metrics considered.

Table 1. List of main stages, benchmarked software and parameters considered to ensure high-quality data.

Stage Evaluated
Software

Parameters Considered to
Ensure High-Quality Data Examples of QC Evaluation

Raw reads quality
control (QC) FASTQC [21]

- Per base sequence quality
- GC content
- Average genome coverage

GC content deviating from
expected indicates a possible
contamination or
sample mislabeling.

Isolate identification

SalmID [22]
Sixess [23]
KmerID [24]
Kraken [25]

- Predicted genus and species
of the isolate

- Percentage of reads
attributed to correct species

- Percentage of
unclassified reads

A relatively high number of
unclassified reads has been
associated with
plasmid/phage presence, or
with a contamination.

Read quality trim
and removal Trimmomatic [26]

- Number of discarded reads
- Read length distribution

after trimming

A large number of discarded
reads was related to poor
quality of the sequencing run.

Genome assembly SPAdes [27]
Skesa [28]

Assessed with QUAST [29]

- Number of contigs
- Genome size
- N50

High number of contigs, or
deviation of the expected
genome size is an indication
of low sequenced genome
quality [30].

Sequence typing
mlst [31]
MLST-CGE [32]
stringMLST [33]

- 7 genes MLST composition
Lack of predicted MLST
points to low
assembly quality.

Salmonella serovar prediction
Bacillus clade prediction

Sistr [34]
SeqSero2 [35]
BTyper [36]

Serovar/clade prediction [37]
Lack of predicted serovar
points to low
assembly quality.

First grouping (cg/wgMLST) chewBBACA [38] Number of uncalled loci in the
genome

A high number of loci from
the profile not found in the
genome indicates low
assembly quality,
contamination, or
misidentification of
the species.

SNP calling CFSAN SNP pipeline [16]

- Percentage of reads mapped
to the reference

- Number of SNP
missing positions

- Differences between raw
and preserved matrices.

A large number of missing
positions suggest an
inappropriate choice of
the reference.

Mobile Genetic Elements
(MGE) identification such as
phages or plasmids

Phigaro [39]
ProphET [40]
MOB-Suite [41]

- MGE type
- MGE position in the genome

Eventually, SNP analyses are
run after MGE
removal/masking to
confirm relatedness.

We also added, among others, data integrity verification with the md5sum software
when data are transferred between servers and cross-referencing isolate identification with
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metadata. Importantly, the criteria mentioned here are fit-for-purpose for Illumina data.
Long read data (Pacific Biosciences or Oxford Nanopore) will require adjustments.

3. Metadata

Metadata, understood as the collection of information related to each sample and
its processing, is key for results interpretation. These data (factory name, internal iso-
late number, sampling time, material type, country, physical description of the sample,
sampling point, isolate taxonomy, DNA extraction kit, sequencing chemistry, sequencing
platform, operator, etc.) need to be managed and curated to ensure its quality and utility for
results interpretation. Thus, data quality checks and data management practices apply to
metadata collection and storage. This kind of information is often handled via a laboratory
information management system (LIMS). A LIMS frequently includes sample tracking,
stock management and data exchange interfaces. As for any other database, metadata
management requires resources, quality monitoring, data backup and recovery and se-
curity compliance. The more data is acquired, the more accurate the data interpretation
will be. Different stakeholders in the food industry have a key role to collect and manage
this metadata from the person who routinely takes the swabs/samples, to the laboratory
that does the initial diagnostic and then to the WGS lab. Therefore, controls are needed to
operate the flow of data and the data management should be considered as an integral and
key component of any WGS analysis workflow.

4. Results

A stepwise approach is recommended to fully control the analysis and can be described
in key components (Figure 1).

Figure 1. Key components of our pathogen source tracking whole genome sequencing (WGS) workflow: Overview and
main goal of each step.

The software included in our workflow are listed in Table 2. The rationale for the
choice of each software implemented in our workflow was a combination of: (i) the
possibility of the software to produce in their output the parameters that are used as quality
control (QC) evaluation (mentioned in Table 1); (ii) features mentioned in material and
methods, and performance such as accuracy and precision.

Several of these conditions may be less relevant in another setting (e.g., cloud com-
puting is a valid option when there is no sensitive data). Thus, the choice of tools is
context specific.

Initial data integrity verification is important since data corruption may occur during
transfer from the sequencing server to the analysis server, due to, for example, network
interruptions. Once a sequencing run is ready to be analyzed, key quality verifications are
necessary to make sure the information of each sample can be used appropriately.

The quality verification of the fastq files is done to ensure that sequencing reads
have the appropriate size and nucleotide quality for each position. At this stage, the
estimated genome average coverage and the GC content are also evaluated. Having
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an appropriate genome average coverage ensures not only accurate Single Nucleotide
Polymorphism (SNP)/allele calling, but also high-quality genome assemblies. A GC
content not concordant with the expected genus can also be a good indicator of a possible
contamination and should be examined. Including a negative control, meaning a sample
that is supposed to be DNA free, could be a good practice in the sequencing laboratory. A
high number of reads in the negative sample indicates contamination of the lab supplies
with foreign DNA and therefore a contamination of the sequenced samples. Adding a
negative control in the sequencing run would have no impact on the sequencing costs and
should not preempt other isolates sequencing coverage since this sample is supposed to be
DNA free. Similarly, a positive control should be included whenever possible since it can
help for troubleshooting a failed run. For example, a suboptimal result in terms of reads
throughput (including the positive control) points to issues with the library preparation
or the sequencing chemistry quality. This can make a difference on the ability to maintain
turnaround time of the sequencing and reduce consumables used in troubleshooting.

Table 2. List of currently implemented software in our workflow.

Stage Software

Data integrity md5sum
Raw reads quality control (QC) FastQC

Isolate identification Kraken
Read quality trim and removal Trimmomatic

Genome assembly SKESA
Sequence typing mlst

Bacillus clade prediction btyper
Salmonella serovar prediction SeqSero2
First grouping (cg/wgMLST) chewBBACA

SNP calling cfsan_snp_pipeline

Mobile Genetic Elements (MGE) identification
such as phages or plasmids

MOB-Suite
Phigaro
ProphET

After assembling the sequencing reads into a genome, a low number of contigs is one of
the indications of high quality of the assembly. The overall genome size should enter within
the expected size for the predicted genus [30]. Furthermore, for better reproducibility, a
software producing an identical assembly for the same input when ran multiple times
is advantageous [28]. As a laboratory often handles multiple sample types, it is not
exceptional that a sample mix or a contamination occurs when extracting DNA or preparing
sequencing libraries. It is thus essential to accurately assign a taxonomy to the sequenced
isolate and to have an indication of potential contamination from other samples.

The additional information that can be obtained from whole genomes such as the
serovar prediction for Salmonella, the seven genes Multi-Locus Sequence Type (MLST)
prediction for a large number of organisms, mobile genetic element detection such as
plasmids or phages, is highly valuable for a reliable data interpretation.

Before starting SNP analysis, a key step is to make sure that only closely related
genomes are included in the analysis. The variant calling for SNP analyses relies in
comparisons to a reference genome and the choice and quality of this reference impacts
the obtained information [42]. Comparing genetically distant genomes, implies having
portions of the genomes with low read mapping and potentially generating SNP hotspots
(several SNPs in close proximity). As both, low mapping and SNP dense regions, are
generally excluded from the analyses, SNPs at those positions are excluded too, leading to
artificially low differences and to a false interpretation of the results. At this point, having
the possibility to quickly compare large datasets in a short time performing a first grouping
with, for instance, core genome/whole genome MLST (cg/wgMLST), enables to focus on
groups of isolates that are related to then be further separated by SNP analyses. If during
the allele call, a locus is not found in a genome, it is zeroed and removed from the analysis.
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When this occurs for a large number of loci, similarity among the compared strains will be
artefactually increased. Hence, it is important to also have a critical eye on the allele call
quality and to further analyze the groups of related genomes with a SNP approach.

Even after implementing quality checks, a workflow may need several rounds of
analyses to be completed. In some cases, SNPs hotspots are identified and frequently these
SNPs are present on mobile genetic elements (MGE), such as phages and plasmids. As
these variants are not phylogenetically relevant [6,43], they are often filtered out in the
final analyses. An MGE identifier pipeline should be coupled with SNP analyses to verify
whether these hotspots are due to the presence of MGEs and not because of low quality of
the reference genome assembly or low mapping of reads versus the reference genome.

Finally, a crucial step for results interpretation is to contextualize the findings using
the metadata. Its utility greatly depends on the implementation of a controlled vocabulary
to ensure consistency among contributors to the database (e.g., factory, laboratory and
sequencing facility). During the process of standardization, it is key to consider the
requirements of bioinformaticians (or whomever must interpret the results of genomic
analysis), microbiologists and quality managers to define the information to be captured.
In recent years, several publications have addressed the minimum information required
to process sequencing data [44,45]. Reliability of metadata is essential for its proper use
in the interpretation of a WGS analysis. The importance for standardized, high-quality
metadata, called for implementation of practices as the development of food safety specific
ontologies [46,47] and, more recently, ontologies relevant to bioinformatics analyses in
food safety [48]. These procedures aim to make the metadata accessible, exchangeable, and
minable as well as to ease the information control and flow.

5. Discussion

Rigorous environmental monitoring in food factories aims at verifying microbiological
food safety control measures and detection of a potential pathogen contamination before
it reaches the product. WGS has proven to be of high sensitivity and is routinely used
by authorities for pathogen source tracking in outbreak events. Similarly, WGS can be
used in root cause investigation in case of factory pathogen contamination. Data produced
with WGS by itself cannot provide an answer and needs to be interpreted and contex-
tualized accordingly to the biological question asked. Additional discriminatory power
of WGS analyses requires also a higher degree of expertise to understand and interpret
the results. In order to obtain robust results, high quality data and analysis are required.
Establishing several filters and metrics evaluation for raw data, genome assemblies and
typing analyses avoid the inclusion of low-quality data that can impact the results and the
subsequent interpretation. This not only aligns with the aim to obtain reliable results from
the first attempt but also contributes to standardization and automation of such workflows.
Capitalizing on hands-on experience to establish metrics that allow for high quality data,
can also contribute to optimization of resources use (particularly time) and the obtention
of interpretable information. A strong understanding of the bacterial genomics and the
bioinformatics analysis is important to correctly interpret the results.

5.1. Turnaround Time

A long analysis turnaround-time (TAT) greatly limits the usability of the information
generated via WGS. Implementing quality checks at several stages of the analyses not
only increases the value of the analysis but also optimizes time use by having a “first time
right” analysis. Every additional examination due to a posteriori corrections for low quality
data increases TAT. Integrating quality checks in our workflow has allowed to reduce the
bioinformatics analysis TAT by more than 80% (reaching in average ~1 day) and to provide
timely results to factories.
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5.2. cg/wgMLST versus SNP

It is widely recognized that cg/wgMLST and SNP analyses are highly concordant [49–53]
for pathogen source tracking. However, contrary to cg/wgMLST, SNP typing allows for
identification of mutations in the non-coding regions of the genome. This allows for the use
of almost all the genetic information from a genome thus providing the theoretically highest
level of precision available. This additional information may explain the cases in which the
cg/wgMLST and SNP approaches were not concordant [50,54]. We have observed many
cases in which cgMLST did not provide a clear-cut answer where SNP was able to fully
resolve relatedness.

Combining additional information of the sample (metadata) cgMLST and SNP anal-
yses allows formulation of data-driven actions for controlling the actual source of the
contaminant and strategies to avoid the contaminant to ever reach the final product.

5.3. Standardization and Accreditation

International efforts are being carried out to harmonize protocols not only in the lab but
also in the bioinformatics analysis. In an ISO working group, lab specialists, microbiologists,
bioinformaticians and metadata experts are actively working on the international ISO 23418
standard (whole genome sequencing for typing and genomic characterization of foodborne
bacteria) offering general guidelines (https://www.iso.org/standard/75509.html (accessed
on 16 December 2020)).

Laboratory proficiency tests have been developed in Europe and in USA to monitor
the WGS lab work, and are now running on a regular basis [55]. Proficiency tests for
bioinformatics analysis for pathogen source tracking are less frequent, and more compli-
cated to design due to lack of generalized guidelines. However, in recent years some have
been developed and used [56,57]. This lack of consensus for data analysis highlights the
importance of metrics evaluation and workflow validation [18–20] to ensure its quality.

Additionally, efforts towards standardization of the several steps in WGS bioinfor-
matics analyses will greatly contribute to the results reproducibility and portability of the
workflows. Open-source command-line software running in a high-performance comput-
ing infrastructure is often seen as the best way to perform these analyses. Standardization
and data quality assurance, by optimizing resources use, could also enable the use of
packaged workflows (e.g., Docker https://github.com/docker/docker-ce (accessed on 18
December 2020)) for smaller infrastructures or where cloud-computing is a possibility if IT
security allows.

5.4. Internal Genome Database and Metadata Management

Having an established computing infrastructure allows also for maintaining an in-
ternal database of sequenced isolates. Although this requires data management, it offers
multiple benefits. Firstly, it permits cross-referencing genomes from current and previous
case studies to identify potential links between and within factories, raw materials or any
information stored in the metadata. An example of this could be the case of a contaminant
found in two, otherwise unrelated, facilities where the link is a shared raw material. These
kinds of scenarios are by themselves a good justification for the use of an internal metadata
database linked with WGS analysis. Furthermore, the sequencing data may be used for
genome mining, definition of in-house allelic profiles (cg/wgMLST), antibiotic resistance
surveys, mutation rates studies, among others.

Finally, having full genome information allows for other kinds of research that could
ultimately benefit the food industry, for example, studying the effects of cleaning agents on
microbial resistance to biocides [58–61]. Additionally, complete genome sequences can be
used to predict antimicrobial resistance genes or virulence genes presence [62,63].

5.5. Analysis Reproducibility and Repeatability

As mentioned before, the fast advancements on sequencing technologies are often
accompanied by developments of the bioinformatics software to handle these data. It is

https://www.iso.org/standard/75509.html
https://github.com/docker/docker-ce
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important then to consider that multiple versions exist for the several software available and
the impact it may have on the obtained results. For example, different versions of mapping
and alignment processing software can produce different results when performing SNP
calling, this depends among others on the dataset used (https://snp-pipeline.readthedocs.
io/en/latest/reproducible.html (accessed on 10 December 2020)). From one software
version to another, algorithm, parameters used and associated databases might change
and then impact the result generated. For example, different allele databases can lead to
different results when performing cgMLST analysis [64,65]. Additionally, handler misuse
by lack of understanding of those possible changes might also lead to result differences.
It is thus important to document and report the versions used to allow other users to
reproduce the results and to be aware of the impact that a different version can have on
their analyses. Likewise, if the software in the workflow uses a database, it is important to
keep these databases updated when possible and to keep a log of the changes/updates.

5.6. Needed Expertise and Knowledge

The question that arises prior implementing WGS for pathogen contamination root
cause investigation in food factories is: Which kind of expertise is required to use WGS and
its results? As the end-to-end workflow encompasses sample taking, sample diagnostics,
pathogen isolation, DNA extraction from the isolate, sequencing, bioinformatics analy-
sis and results interpretation, the required know-how should cover these domains. The
sequencing laboratory part (DNA extraction, library preparation and sequencing) is fre-
quently outsourced, this does not imply blindly trusting the received data, on the contrary,
there should be an additional check to ensure its quality as the specific lab practices are
less well known. If ultimately a workflow gets integrated into a pipeline that can be run on
a cloud-based server, scripting and programming would not be a must, but understanding
the bioinformatics behind (sequence alignment, variant calling, k-mer based typing, etc.)
remains an important part to ensure high quality results and to, eventually, perform trou-
bleshooting when needed. As mentioned several times, data is not stand-alone, expertise
in microbiology and food safety is necessary to link variant call data and metadata for a
comprehensive and reliable interpretation in the factory context. With certain deployments
in terms of wet-lab and bioinformatics workflow, it may not be relevant to have a person
dedicated to each one of the steps (sequencing, data processing and results interpretation)
but overall knowledge of each stage is indeed needed.

In many cases, cloud-based web interfaces (e.g., GalaxyTrakr available at https:
//www.galaxytrakr.org (accessed on 9 December 2020)) or windows-based commercial
software have been developed and deployed. This represents a significative advantage as it
enables data analysis without command-line or Linux-based infrastructure, permitting thus
a wider adoption, when computing infrastructure or programming expertise is not readily
available. It is, however, important to consider that such systems are not “fool-proof”. A
critical eye is still needed so the tool does not turn into a black box where the input and
output are known but the procedure is not controlled. Often, all stages of the analysis use
specific software, each one with multiple parameters and the deployed interfaces offer a
higher or lesser control over those parameters that needs to be considered. Neglecting
control over these parameters can interfere when comparing runs, even when using the
same software and versions. Adding all those quality verifications at each stage should
increase the level of confidence in the obtained results.

6. Conclusions

The intention is not to consider the described workflow as the new “gold standard”
in WGS analyses for pathogen source tracking, but rather present our experiences as food
industry and open the discussion about practices to be implemented when using this kind
of data. We believe that sharing this stepwise approach with the community is a stage
towards standardization of the analysis for robust bioinformatics data analysis and reliable
results interpretation. Such a workflow can be implemented in commercial software

https://snp-pipeline.readthedocs.io/en/latest/reproducible.html
https://snp-pipeline.readthedocs.io/en/latest/reproducible.html
https://www.galaxytrakr.org
https://www.galaxytrakr.org
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solutions or in open-source pipelines and would simplify the data analysis for users.
Optimization of the workflow allows also for reducing “time-to-result” and indirectly costs.
Once agreed upon guidelines will be further defined, more food companies may want to
start using WGS in their surveillance programs. Ultimately, this work aims at promoting
and facilitating the use of this, highly beneficial technology, to become a routine analysis
among the food safety tools already available.
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