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Pathogens frequently exist in an immunological balancing act
with their host. Pathogens must not only replicate within a
host but also transmit effectively between hosts to perpetuate
their species. On the other hand, the host seeks to maintain
homeostasis by clearing pathogens. The inflammasome is a
multi-protein complex that can induce cell death and
processes IL-1b and additional proinflammatory substrates.
In this review we discuss the pathogen specific modulation of
inflammasome activation and the role this plays in virulence
and disease pathology.

Introduction

Host-pathogen interactions are essential for modulation of
immunity. As the host evolves the ability to defend itself from
invasion, the pathogen must adapt. Some pathogen adaptations
lead to enhancement or suppression of the host immune system,
often with severe pathological consequences or even death. Innate
immunity to infection is the first line of host defense and is
initiated by a group of diverse pattern recognition receptors (PRR)
that recognize proteins, sugars or nucleic acid structures present
only in pathogens and not the host. One such innate immune
pathway, the inflammasome, has been studied extensively in
recent years and yet our understanding of the full range of
inflammasome sensors, activators and repressors continues to
grow. As inflammasome signaling is important for both innate
and adaptive immunity, a more detailed understanding of how
the inflammasome is perturbed by pathogen-derived proteins will
facilitate the design or implementation of new therapeutic treat-
ments or vaccine adjuvants that modulate these same pathways.

The inflammasome is a large molecular complex consisting of
caspase-1, ASC (apoptosis-associated speck-like protein contain-
ing a CARD), and an upstream activator such as an NLR

(nucleotide-binding domain and leucine-rich repeat containing)
or PYHIN (pyrin and HIN domain containing) family member.
Bioinformatics studies have discovered 22 NLR genes in the
human genome and 34 NLR genes in the mouse genome.1-3 The
NLRs NLRP1, NLRP3 and NLRC4 and the PYHIN family
member AIM2 have been shown to assemble inflammasomes in
response to a range of ligands of microbial, environmental or
endogenous origin. The role of inflammasomes is to process
interleukin-1β (IL-1β) and IL-18 from their immature pro-forms
into active forms that are released from the cells. Caspase-1
activation also leads to a form of cell death known as pyroptosis,
which is important for the clearance of several intracellular
pathogens.4-6 Recently, the caspase-1 related inflammatory
protease caspase-11 was shown to play a significant role in
inflammasome signaling and is essential for caspase-1 processing
and IL-1β production by E. coli, C. rodentium and V. cholerae.7

In general, inflammasome activation and subsequent pyroptosis
or release of proinflammatory substrates is required for efficient
clearance of pathogens. In addition to its role in pathogen
clearance, inflammasome activation can also lead to inflammatory
pathology, which is detrimental to the host but may play a role in
facilitating dissemination of the pathogen. Modulation of
inflammasome activation is therefore an integral part of virulence.
In this review, we discuss the mechanisms by which the host
recognizes and activates the inflammasome in response to
invading pathogens. In addition, we discuss the pathogen encoded
activators and inhibitors of inflammasomes which regulate their
virulence.

Inflammasome Activation

A wide variety of microbial, environmental and endogenous
ligands have been shown to trigger inflammasome complex
formation. AIM2 is activated by cytosolic dsDNA derived from a
wide variety of pathogens in the cytosol of infected immune
cells.8-12 The NLRP1b inflammasome responds to B. anthracis
lethal toxin in the cytosol, and mutations in the Nlrp1b gene
were shown to alter anthrax lethal toxin-induced macrophage cell
death responses.5,13 Notably, NLRP1b inflammasome-induced
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macrophage cell death confers resistance to infection with
B. anthracis spores in vivo, demonstrating the importance of
pyroptosis for host defense.5 Although AIM2 and NLRP1b are
activated by single ligands, the molecular mechanisms leading to
activation of the NLRC4 and NLRP3 inflammasomes by specific
stimuli are less clear.

NLRP3 is the best-studied sensor of the NLR family and is
activated by a wide range of pathogens or endogenous/exogenous
danger or damage causing agents. The exact mechanism by which
NLRP3 is activated by such a diverse range of agents is still under
investigation but activation of NLRP3 is generally thought to
comprise a two-step process involving priming with Toll-like
receptor (TLR) or NLR ligands, which activate NFkB and
enhance the expression level of pro-IL-1β and NLRP3.14 Sub-
sequent exposure to microbial pore-forming toxins and iono-
phores such as listeriolysin O,15 streptolysin O,16 a-hemolysin,17

nigericin or maitotoxin then fully activate the NLRP3 inflamma-
some.18,19 The NLRP3 inflammasome also responds indirectly to
invading pathogens by monitoring potassium egress from the cell,
through phagosomal destabilization following phagocytosis of
large particles (especially crystalline particles) or through the
generation of mitochondrial reactive oxygen species (ROS).19,20 It
should be noted that many bacterial, viral and fungal pathogens
are capable of providing both the priming and activation signals
for the NLRP3 inflammasome.19,20

The NLRC4 inflammasome detects bacterial flagellin from
Legionella and the PrgJ family of proteins that comprise the basal
body rod component of bacterial type III secretion systems
(TTSS) of Salmonella, Pseudomonas and Shigella species.18,21-23

In addition to the secretion of IL-1β and IL-18, the Nlrc4
inflammasome also induces pyroptotic cell death in order to
clear flagellin-expressing bacteria such as L. pneumophila and
B. thailandensis.4 One ongoing question is how NLRC4 can
recognize multiple bacterial ligands. Two independent groups
recently published that NAIP (NLR family, apoptosis inhibitory
protein) family members NAIP5 and NAIP6 specifically recognize
flagellin and that NAIP2 recognizes TTSS rod components.
These NAIPs then bind NLRC4 to induce inflammasome
activation.23-26 It should be noted, however, that several earlier
studies reported that NAIP5 was dispensable27 or only partially
required28 for NLRC4 inflammasome activation. These differ-
ences may be due to partial redundancy between NAIP5 and
NAIP6 or may indicate that low levels of NAIP5 are sufficient for
NLRC4 activation, as the A/J mouse strain containing mutations
in NAIP5 is not completely deficient for NAIP5 protein.29 It was
also recently shown that NAIP5 may only be required in response
to certain pathogens or that only the C-terminal portion of
flagellin activates NAIP5, whereas the N terminus of flagellin
utilizes another pathway.25

Finally, as pathogens are continuously evolving and evading
detection, it is important to note the overlap that exists between
different inflammasomes and pathogen detection. As an example
of redundancy in the host, the NLRP3 inflammasome also
contributes to host defense during systemic S. Typhimurium
infection when flagellin expression is inhibited and NLRC4 can
no longer be activated.4,30 In the case of S. pneumoniae, AIM2 is

the predominant sensor, but NLRP3 is also capable of
inflammasome activation.31 These findings highlight the com-
plexity of the relationship between the host and the pathogen.

Inflammasome Induced Pathology

Although the role of inflammation is to clear or limit the spread of
an invading pathogen, there is frequently collateral damage
associated with the somewhat nonspecific nature of the innate
immune response. Inflammasome activation leads to the pro-
inflammatory pyroptotic form of cell death, which kills the
infected cell but leads to tissue damage and inflammation.4

Furthermore, IL-1β and IL-18 release participate in the
recruitment of macrophages and neutrophils that help to
eliminate the pathogen but also cause tissue damage. In the case
of Chlamydia trachomatis infection, an ex vivo human Fallopian
tube organ culture system showed that inflammation can lead to
tissue damage and potentially infertility through an IL-1 mediated
mechanism.32 NLRP3 inflammasome activation and IL-1β
production by C. trachomatis have also been shown to lead to
inflammation and cell death in the THP-1 human monocytes cell
line.33 In a model of corneal infection with Pseudomonas
aeruginosa, caspase-1 deficient mice had reduced cytokine and
chemokine production with reduced polymorphonuclear leuko-
cytes (PMN) infiltration and subsequently less corneal damage,
thus demonstrating the negative consequences of unchecked
inflammasome mediated inflammation.34 Recently in a mouse
model of pneumonia, the rhsT gene of P. aeruginosa was shown to
activate the inflammasome which enhanced lung pathology and
facilitated bacterial colonization, as bacteria lacking rhsT were
cleared but WT P. aeruginosa persisted, which resulted in
enhanced lethality.35 Finally, infection with Mycobacterium
marinum in mice demonstrated that the Esx-1 (type VII)
secretion system activates the NLRP3 inflammasome. However,
inflammasome activation leads to increased tissue damage but
does not resolve the infection.36

Another common pathology associated with inflammasome
activation is neuronal damage. Pneumococcal meningitis results in
inflammasome activation and IL-1β release in the cerebral spinal
fluid, which correlates with the severity of disease. In a mouse
model of pneumococcal meningitis, caspase-1 deficient mice, or
mice treated with inflammasome inhibitors, showed reduced
neuronal damage and improved clinical outcomes.37 HIV-1
associated dementia (HAD) is the result of virus dissemination
to the central nervous system where increased apoptosis of
neuronal cells and resident immune cells is thought to mediate
disease. Interestingly, the HIV surface glycoprotein gp120 alone is
capable of activating the inflammasome.38 Intra-cerebral injection
of gp120 actives caspase-1 and leads to IL-1β maturation as well
as cell death in the neocortex of rats.39 This pathology can be
reduced by treatment with inhibitors of caspase-1 or IL-1 receptor
antagonist.40-42 Ectromelia virus also activates caspase-1 in brain
tissue of infected mice and this may play a role in inflammation
and pyroptosis induced cell death.43 During dengue virus infec-
tion of mice, caspase-1 expression increases and inflammasome
activation results in pyroptotic cell death. However, treatment
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with the caspsase-1 inhibitor YVAD reduced cell death without
significantly enhancing virus replication.44 These findings suggest
that, especially in the case of encephalitis, inhibition of inflam-
masome activation may prevent nerve damage and host death.

In addition to bacteria and viruses, the intracellular parasite
Plasmodium, which includes the causative agent of malaria, also
activates the NLRP3 inflammasome through the production of a
heme metabolite called hemozoin. Intriguingly, NLRP3 inflam-
masome or IL-1β deficient mice survive longer than wildtype mice
during infection with Plasmodium chabaudi adami DS.45

Furthermore, Plasmodium berghei infection in mice results in
cerebral malaria and NLRP3 inflammasome deficient mice had
reduced cerebral inflammation and improved survival.46

Due to the negative effects of inflammasome activation by
certain pathogens, treatment of severe inflammation with
inflammasome inhibitors has promising therapeutic potential.
Indeed, treatment with the caspase-1 inhibitor glyburide was able
to delay death in a mouse model of endotoxic shock.47 As
discussed above, treatment of encephalitis with YVAD provides a
proof of principle for reduced neuronal death. However, there are
many factors that will likely affect the utility of such treatments
including the effect of inflammasome inhibition on pathogen
burden and eventual clearance, as well as the ability of inhibitors
to cross the blood brain barrier. Combination of treatments with
antimicrobial agents and inflammasome inhibitors will therefore
likely provide the greatest therapeutic potential.

Pathogen-Mediated Inflammasome Activation
in Virulence

As inflammasome activation leads to inflammation, most
pathogens seek to avoid or suppress inflammasome activation.
However, some pathogens are able to replicate despite inflamma-
some activation and still others require inflammasome activation
for efficient replication or dissemination. It was demonstrated for
C. trachomatis that inflammasome activation within infected
HeLa cells is required for efficient bacterial replication.48 It should
be noted that epithelial cells, though they possess an inflamma-
some and make substantial amounts of IL-18, generally express
minimal levels of IL-1β, and therefore do not induce the same
inflammatory signaling that macrophages containing an activated
inflammasome are capable of producing.32,49,50 Alternatively,
another group recently published that chlamydial protease-like
activity factor (CPAF) inhibition results in breakdown of the
C. trachomatis vacuole in HeLa cells or mouse lung fibroblasts and
subsequent inflammasome mediate cell death with concurrent
inhibition of pathogen replication.51 It is therefore unclear what
role inflammasome activation may play in clearance or growth of
C. trachomatis, but one possibility that explains the differences
observed between these group may be the level of caspase-1
activation, as one group inhibited caspase-1 and the other induced
its activation through blockade of CPAF. Some inflammasome
activation may be beneficial, but too much may be detrimental.
Finally, another Chlamydia species, C. pneumoniae, has also been
shown to benefit from inflammasome activation and cell death.52

In this instance, inflammasome mediated cell death in T cells

during pulmonary infection in mice leads to both the persistence
of inflammation as well as impaired T cell mediated clearance of
the pathogen. In all, it appears that some level of inflammasome
activation during Chlamydia infection may be beneficial to the
pathogen, but further studies are clearly needed.

Another instance of a pathogen benefiting from inflammasome
activation is during Salmonella infection. Gastrointestinal infec-
tion with Salmonella leads to macrophage infection and the
subsequent delivery of the sipB virulence factor via the bacterial
TTSS, which activates the NLRC4 inflammasome and induces
cell death.53,54 This results in inflammation and damage to the
intestinal epithelium in a murine model and allows for coloniza-
tion of Peyer’s patches and disseminated infection.55,56

Pathogen-Mediated Inflammasome Inhibition
in Virulence

Direct inhibition of caspase-1. As obligate intracellular patho-
gens, it is not surprising that many viruses evade or inhibit the
inflammasome to preserve the life of their host cells. Several
viruses are known to encode proteins capable of interfering with
inflammasome signaling (Table 1). Not surprisingly, inflamma-
some signaling is generally disrupted at the adaptor protein ASC
or caspase-1 itself (Fig. 1).57 For example, baculovirus protein p35
is capable of binding to and directly inhibiting a wide variety of
caspases, including caspsase-1, in its natural insect hosts and
mammalian cells.58,59 Poxviruses also encode a variety of serpine
like protease inhibitors. The CrmA protein (also known as SPI-2)
of cowpox virus inhibits several caspases, including caspase-1,
through a direct but reversible inhibition of the enzymatic active
site.60,61 This subsequently inhibits cleavage of pro-IL-1β.62,63

Pulmonary infection of mice with CrmA mutants of cowpox or
SPI-2 mutants of rabbit poxvirus demonstrated that they are
attenuated in inflammation and viral replication compared with
wild type viruses.64 Intradermal infection with CrmA mutant
cowpox also resulted in rapid viral clearance but with a more
robust inflammatory response.65 Additional pox viruses also
encode CrmA homologs. Serp2 is the CrmA homolog found in
myxoma virus.66 Deletion of Serp2 results in severe attenuation of
the virus in rabbits.67 Vaccinia virus (VV) has been shown to
activate both the NLRP368 and AIM210,69 inflammasomes. VV
also encodes a SPI-2 protein (B13R) which is able to inhibit
caspase-1 activation in a cell free assay; however, VV B13R
mutants were not attenuated.70,71 Instead, fever reduction and
weight loss were dependent on VV encoded IL-1β scavenger
receptor (vIL-1βR).70 Finally, ectromelia virus SPI-2 protein also
inhibits caspase-1 activation, though what role this may play in
vivo has not been examined.72 It is apparent that poxviruses have
a variety of inhibitors for inflammasomes. The differential
requirement for SPI-2 family proteins may, therefore, be the
result of differentially encoded additional inhibitors or the result
of different natural host ranges of these viruses, as rodents are
the natural host for cowpox but not VV.73

Antagonists to inflammasome assembly. Poxviruses have
evolved multiple inhibitors that interfere with innate and adaptive
immunity (Table 1 and Fig. 1).74 The myxoma virus M13L and
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Shope fibroma virus S013L proteins contain a pyrin domain
(PYD) and interact with ASC to suppress inflammasome
activation by blocking the ability of ASC to bid to and activate
caspase-1.75,76 M13L-PYD is required for pathogenesis of
myxoma virus and deletion results in severe attenuation in vivo
characterized by decreased viremia due to inefficient replication in
lymphocytes and leukocytes and increased inflammation at the
initial site of infection. In cell culture, myxoma virus lacking
M13L-PYD increases activation of caspase-1 and increases the
levels of IL-1β and IL-18.76 Although M13L could theoretically
inhibit any inflammasome due to direct inhibitory action on
ASC, the NLRP3 inflammasome appears to be most critical
during myxoma virus infection.77 Poxvirus PYD proteins
therefore inhibit inflammasomes at the level of the adaptor ASC
and potentially prevent all upstream PRRs from efficiently
activating inflammasomes. Orf63 of Kaposi’s sarcoma-associated
herpesvirus (KSHV) was shown to encode an antagonistic NLR
homolog which inhibits the NLRP1 inflammasome. In addition,
Orf63 could interact with other NLRs, NLRP3 and NLRC2,

potentially indicating multiple inhibitory roles for this protein in
the KSHV life-cycle. Mutation of this Orf not only leads to
increased inflammasome activation, IL-1β and IL-18 processing
but also leads to reduced virus reactivation and progeny virus
production.78

Gene expression modulation. It was recently discovered that
the NLRP3 inflammasome requires increased expression of
NLRP3 for full activation,14 thus implicating gene expression as
one potential mechanism for inflammasome inhibition. Indeed,
inflammasome activation by Legionella pneumophila infection is
suppressed due to reduced NLRC4 and ASC mRNA and
subsequent protein expression (Table 1). The downregulation
of these genes allows L. pneumophila to suppress inflammasome
activation and replicate in human macrophages.79 However, it is
unclear how L. pneumophila inhibits production of NLRC4 and
ASC mRNA.

Indirect inflammasome inhibition. Influenza A/PR/8/34
H1N1 virus (PR8) NS1protein, in addition to blocking type-I
interferon responses, is also capable of blocking inflammasome

Figure 1. Pathogen activation and repression pathways of the inflammasome. The host has evolved a complex and multilayered pathogen and damage
sensing pathway which regulates inflammasome activation. Activation sensors include NLRs, NAIPs and PYHIN (AIM2) family members, which converge
on the adaptor ASC. The pathway culminates with caspase-1 activation and inflammatory cytokine processing (IL-1b/IL-18) as well as cell death
(pyroptosis). Pathogens employ a surprising array of mechanisms to inhibit inflammasomes. It is also interesting to note that certain groups of
pathogens, particularly pox viruses, appear to have evolved more direct inhibitory pathways which are common to the entire family of pox viruses.
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activation. The N-terminus of PR/8 NS1 possesses an inflamma-
some inhibitory function and PR8 lacking the N-terminus of NS1
is attenuated in cell culture and induces higher levels of IL-1β and
pyroptosis. This caspase-1 inhibitory function appears to be
indirect, as blocking the RNA dependent protein kinase PKR in
PR/8 NS1 mutants was able to suppress renewed caspase-1
activation.80 However, the ability of NS1 to block inflammasome
activation appears to be strain specific, as NS1 from highly
pathogenic H5N1 bird flu reportedly activates caspases and
induce apoptosis.81 It is interesting to speculate that the ability of
the NS1 protein from different strains of influenza A virus to
inhibit caspase-1 may play a role in host range and zoonotic
transmission; with those viruses adapting the ability to inhibit
human caspase-1 being able to more efficiently transmit between
humans.

In the case of Mycobacterium tuberculosis (Mtb), the zmp1
protein is a potential Zn2+ metalloprotease which represses
inflammasome activation likely through the regulation of super-
oxide, an NLRP3 coactivator. Zmp1 mutant Mtb are cleared
faster from the lungs of infected mice and more efficiently activate

macrophages leading to phagosomal maturation and bacterial
killing.82 The ExoU and ExoS proteins of P. aeruginosa inhibit the
NLRC4 inflammasome upon TTSS delivery to the cytosol and
are required for pathogenicity.83,84 ExoU was shown to indirectly
inhibit the NLRC4 inflammasome through its phospholipase A2

activity; however, it is not altogether clear how this enzymatic
activity of ExoU inhibits caspase-1 activation.83 ExoS similarly
inhibits caspase-1 activation through its ADP ribosyltransferase
activity through an undefined mechanism.84 Additional bacterial
inhibitors include the YopT, YopE and YopK proteins from
various Yersinia species, which are delivered to the cytosol via the
TTSS. YopE and YopT inhibit inflammasome activation through
an indirect mechanism that involves inhibiting oligomerization
and self cleavage of caspase-1 through the Rho-GTPase Rac-1 and
LIM kinase-1.85 This inhibitory mechanism is particularly
intriguing as it may indicate the requirement for cytoskeletal
proteins in the induced proximity required for caspase-1 self
cleavage upon inflammasome activation. In the case of YopK,
indirect inhibition or masking of the TTSS appear to be involved,
as YopK cannot block inflammasome activation in Trans and

Table 1. Pathogen virulence factors that inhibit or evade inflammasomes

Pathogen Inflammasome
activation

Pathogen
inhibitory gene

Inhibitor function References

Direct caspase-1 inhibition:

Baculovirus unknown p35 Directly binds and inhibits caspase-1 58–59

Cowpox virus unknown CrmA Competitive inhibitor of caspase-1 60–65

Rabbit pox virus unknown SPI-2 Competitive inhibitor of caspase-1 64

Myxoma virus NLRP3 Serp2 Competitive inhibitor of caspase-1 66–67

Vaccinia virus NLRP3, AIM2 B13R Competitive inhibitor of caspase-1 10, 68–71

Ectromelia virus unknown SPI-2 Competitive inhibitor of caspase-1 72

Inflammasome antagonists:

Shope Fibroma virus unknown S013L PYD blocks ASC/caspase-1 interaction 75

Myxoma virus NLRP3 M13L PYD blocks ASC/caspase-1 interaction 76–77

KSHV NLRP1 Orf63 Antagonistic NLRP1 homolog 78

Modulation of genes:

L. pneumophila NLRC4 unknown Downregulates NLRC4 and ASC 79

Indirect inhibition:

Influenza A NLRP3 NS1 Exact mechanism unknown, PKR 80–81

M. tuberculosis NLRP3 Zmp1 Zn2+ metalloprotease, blocks superoxide production 82

P. aeruginosa NLRP3, NLRC4 ExoU
ExoS

Phospholipase A2 activity, unknown mechanism
ADP ribosyltransferase activity, unknown mechanism

83
84

Y. enterocolitica NLRP3, NLRC4 YopE
YopT

Inhibits caspase-1 oligomerization through Rac-1
Inhibits caspase-1 oligomerization through RhoA

85
85

Y. pseudotuberculosis NLRP3, NLRC4 YopK Interacts with TTSS, exact mechanism unknown 86

Antigenic stealth:

S. aureus NLRP3 PGN
O-Acetyltransferase A

Masks ligands, prevents PGN cleavage 87

F. novicida AIM2 MviN (etc.) Membrane/cell wall integrity 88–89

S. pneumoniae NLRP3, AIM2 Pneumolysin Exact mechanism unknown 90

L. pneumophila NLRC4 SdhA Maintains replication vacuole 91

Fungi NLRP3, NLRC4 Spores sequester PAMPs 95, 97–99
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YopK directly interacts with the TTSS which is recognized
by NLRC4.86

Antigenic stealth. During infection, some pathogens use stealth
to avoid inflammasome activation (Table 1). One example of
stealth is the S. aureus enzyme PGN O-acetyltransferase A, which
acetylates peptidoglycan in the bacterial cell wall and prevents
lysosomal degradation of the cell wall and subsequent sensing
of the bacteria by NLRs.87 Francisella novicida deficient in
membrane-associate proteins like MviN (a lipid II flippase) or
proteins required for cell wall synthesis are also known to more
efficiently activate the inflammasome; however, this appears to be
due to increased bacterial lysis, due to insufficient cell wall
synthesis or instability of the cell wall/membrane, and not from
any direct inhibitory mechanism.88,89 Another example is that of
S. pneumoniae pulmonary infection, where bacteria lacking
pneumolysin, or possessing non-hemolytic pneumolysin, are
not detected by the NLRP3 inflammasome and become more
invasive.90 L. pneumophila also employs an antigen masking
strategy through its SdhA protein which is important for
maintaining the L. pneumophila replication vacuole and prevent-
ing cytosolic recognition of antigens by the inflammasome.91 In
all, a diverse range of inflammasome repression mechanisms are
utilized by an equally diverse group of pathogens to evade
immune detection and allow for pathogen dissemination.

Inflammasome Modulation during Fungal Infection

Many examples of inflammasome activation or inhibition from
bacterial or viral pathogens have been shown to regulate virulence.
However, much less is known regarding the ability of fungal
pathogens to inhibit or enhance inflammasome activation.
Multiple fungal pathogens have been shown to activate the
NLRP3 inflammasome through the activation of cell surface
Dectin receptors and the tyrosine kinase Syk including
Saccharomyces cerevisiae,92 Candida albicans93,94 and Aspergillus
fumigatus.95 In addition, the NLRC4 inflammasome in epithelial
cells was recently reported to be required for the efficient clearance
of C. albicans during mucosal infections.96 In all of these
infections, inflammasome activation is critical for fungal clearance.
It does not appear from the current literature, however, that fungi
actively suppress inflammasome activation to perpetuate or
enhance their infectivity in the same manner as viruses or
bacteria. The one mechanism that is apparent is stealth. Most

fungal spores mask their PAMPs, such as zymosan or mannan,
thus avoiding inflammasome activation (Table 1).95,97 Once the
spores or yeast mature into hyphae, the signals for inflammasome
activation are exposed and the fungi are rapidly cleared through an
inflammasome dependent Th17 mediated immune response.98,99

Therefore, fungal infections are generally only pathogenic in
immunocompromised hosts such as transplant recipients or
chemotherapy patients. However, there are some polymorphisms
in the NLRP3 gene that have been linked to recurrent
vulvovaginal candidiasis which result in reduced IL-1β secre-
tion.100 Thus, genetic polymorphisms in the host that result in
reduced inflammasome activation or IL-1β signaling may
predispose patients to fungal infections.

Conclusion

In all, it is apparent that inflammasome modulation is a critical
component of pathogen virulence. The host has developed a
multitude of inflammasome activators and regulatory mechanisms
to control inflammasome activation and, in general, inflamma-
some activation facilitates pathogen clearance and is beneficial
to the host. However, pathogens modulate inflammasomes
differently according to their specific niche to promote immune
evasion or enhance inflammation, which allows for optimal
dissemination. In some instances, inflammasome activation
appears to be detrimental to the host and inflammasome
inhibition in these situations may be therapeutically useful.

As seen with influenza, overt inflammation can occur following
transmission from birds to humans with one possible cause being
the inability of the virus to effectively inhibit inflammasome
activation in humans.81 Further research into the field of emerging
infectious diseases will likely be of interest to determine if
differences in virulence between the natural host and humans is
the result of inflammasome modulation. Continued research in
the area of therapeutics which target the inflammasome, or its
downstream substrates, will also improve our understanding of the
importance of inflammasome modulation in infectious disease.
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