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Salmeterol with fluticasone enhances the suppression
of IL-8 release and increases the translocation
of glucocorticoid receptor by human neutrophils stimulated
with cigarette smoke
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Abstract The combination of inhaled corticosteroids and
long-acting β2-adrenoceptor agonists is increasingly used
in chronic obstructive pulmonary disease (COPD). Recent-
ly, we have demonstrated that combination of salmeterol
and fluticasone propionate (FP) additionally suppress the
production of IL-8 by human monocyte. In this study, the
molecular mechanism behind the effectiveness of this
combination therapy is investigated in human neutrophils.
Human neutrophils were preincubated with salmeterol or
FP or the combination. The amount of interleukin-8 (IL-8),
elastase and matrix metalloproteinases (MMP)-2 and -9
releases, and reactive oxygen species (ROS) generation and
expression of MAP kinase phosphatase (MKP-1) and
glucocorticoid receptor (GR) were determined. Cigarette
smoke medium (CSM) induces an increased expression of
CXC receptors and the production of ROS that may explain
the strong production of IL-8 by neutrophils. The expres-
sion of CXC receptors, the production of ROS, and the
release of elastase and MMP-2 and -9 were not influenced

by salmeterol, FP, or the combination. Interestingly, the
combination therapy had an additive suppressive effect on
the CSM-induced production of IL-8. The latter could be
explained by an increased mRNA expression of MKP-1,
the GR and an increased translocation of the GR to the
nucleus. This leads eventually to suppression of both the
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NF-κB and MAPK pathways and, hence, to less IL-
8 production by the neutrophil. These data are in support
for the use of a combination therapy in COPD patients.
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Abbreviations
CSM cigarette smoke medium
GR glucocorticoid receptor
FP fluticasone propionate
FPS fluticasone propionate plus salmeterol
HRP horse radish peroxidase
PMN polymorpho-nuclear cells
MIP macrophage inflammatory protein
MMPs matrix metalloproteinases
MKP-1 MAPK phosphatase-1 (MPK-1)
NAC N-acetyl-cysteine

Introduction

Chronic obstructive pulmonary disease (COPD) is a major
and increasing global health problem [1]. COPD has a
complex underlying pathophysiology involving inflamma-
tory and structural cells, all of which have the capacity to
release multiple inflammatory mediators. Cigarette smoke
(CS) has been considered a major player in the pathogenesis
of COPD [2, 3]. Exposure to CS activates an inflammatory
cascade in the airways resulting in the production of a
number of potent cytokines and chemokines such as
interleukin-8 (IL-8), with accompanying damage to the lung
epithelium, increased permeability, and recruitment of
macrophages and neutrophils [4]. Several inflammatory
cells, both of the innate and adaptive immune system,
participate in the inflammatory response in COPD including
neutrophils, macrophages and CD8+ lymphocytes [5].
Matrix metalloproteases (MMPs), which are mainly secreted
by neutrophils, have the enzymatic capacity to cause
morphological changes in the lungs and contribute signifi-
cantly to the pathogenesis of COPD [6–8]. Increased
concentrations of MMP-1, -2, -9, and -12 have been found
in bronchoalveolar lavage samples of COPD patients [9].

Therapeutic agents prevent and control symptoms,
reduce exacerbations, increase exercise tolerance, and
improve health status [10, 11]. Long-acting β2-adrenergic
agonists (LABAs, such as salmeterol) combine symptom
control with improvement in lung function and provide
clinically relevant improvements in health status. Inhaled
corticosteroids (ICS) are recommended for the treatment of
patients with a more severe disease and frequent exacer-
bations, and inhalation of the combination of LABAs and

ICS is more effective in improving lung function and
symptoms and reducing exacerbations than either drug
alone [12, 13]. Moreover, recently, it has been demonstrated
that LABAs can enhance the anti-inflammatory action of
GCs. Unfortunately, the exact mode of action of the
combination of these drugs is not well documented.
Recently, we have demonstrated that combination of
salmeterol and FP additively suppressed of CS-induced
IL-8 production in human monocytes [14]. In the current
study, we investigate the effectiveness of salmeterol,
fluticasone propionate (FP), or the combination on the
release of proteases and IL-8 induced by cigarette smoke
medium (CSM) from neutrophils. The mechanism of action
at the level of the glucocorticoid receptor (GR) and gene
transcription was studied.

Materials and methods

Chemicals and reagents

FP and salmeterol were obtained from GlaxoSmithKline
(Greenford, UK). Fluticasone was dissolved in dimethyl-
sulfoxide and salmeterol in ethanol at a concentration of
10−3 M, for further dilution to yield final chosen concen-
trations. Lipopolysaccharide (LPS), penicillin, streptomy-
cin, 1-glutamine, sodium pyruvate, 2-mercaptoethanol, and
N-acetyl-cysteine (NAC) were purchased from Sigma
(Sigma-Aldrich, Zwijndrecht, The Netherlands). SN50, a
cell-permeable, inhibitory peptide of the nuclear transloca-
tion of nuclear factor-kappa B (NF-κB), was purchased from
Calbiochem (VWR International BV, The Netherlands). The
enzyme-linked immunosorbent assay (ELISA) kits for
human IL-8 were purchased from Biosource (BioSource,
Breda, The Netherlands). SB 203580 and curcumin were
obtained from Invivogen (InvivoGen Europe, Toulouse,
France). Rabbit polyclonal antibody against IκB-α, mouse
monoclonal antibody against GRα (P-20, which is detected
GRα), rabbit polyclonal antibody against actin, rabbit
polyclonal antibody against lamin A (H-102), and mouse
monoclonal antibody against phospho p38, rabbit antibody
against p38, rabbit monoclonal antibody c-fos and Phospho-
p44/42 MAPK (Thr202/Tyr204), mouse monoclonal
antibody Erk1/2 were obtained from Santa Cruz Biotech-
nology (Tebu-bio, Heerhugowaard, The Netherlands) and
Cell Signaling technology (BIOKÉ, The Netherlands),
respectively.

Cell culture

Isolation of polymorpho-nuclear cells (PMN) was carried
out as described before [15]. Briefly, PMN were isolated
from the buffy coat (supplied by Blood Bank, Sanquine,
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The Netherlands) prepared from healthy nonsmoker
donors.

Heparinized blood was mixed 1:1 with 0.9% sodium
chloride containing 3.0% dextran T-500 (Amersham Bio-
sciences) and then incubated for 20 min at room temper-
ature to sediment erythrocytes. The resulting leukocyte-rich
supernatant was centrifuged at 670 × g for 10 min, and cells
were resuspended in 35 ml of 0.9% sodium chloride. The
leukocyte suspension was underlayed with 10 ml of
Ficoll-PaquePLUS (1.077 g/l, Amersham Biosciences) and
centrifuged for 25 min at 350×g to separate neutrophils
from peripheral blood mononuclear cells. Peripheral
blood mononuclear cells were aspirated from the Ficoll-
PaquePLUS-saline interface, and sides of the gradient tubes
were wiped with sterile cotton swabs to remove any
residual cells. After standard hypotonic lysis of erythro-
cytes, purified PMN were suspended in Roswell Park
Memorial Institute (RPMI) 1640 medium buffered with
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), pH 7.2 and placed on ice until used. The cells
consisted of more than 95% neutrophils and were more than
99% viable, as determined by trypan blue exclusion (for
viability) and flow cytometry by using CD16+ antibody (for
purity). For simplicity, the terms neutrophil and PMN are
used interchangeably. All reagents used contained <25.0 pg/
ml endotoxin (limulus amebocyte lysate assay, Fisher).

CS media preparation

CSM was prepared as described before [16, 17]. CSM was
generated by the burning of commercially available Lucky
Strike cigarettes without filter (British–American Tobacco,
Groningen, The Netherlands), using the TE-10z smoking
machine (Teague Enterprises, Davis, CA, USA), which is
programmed to smoke cigarettes according to the Federal
Trade Commission protocol (35-ml puff volume drawn for
2 s, once per minute) [18]. Briefly, this machine was used
to direct main- and sidestream smoke from one cigarette
through a 5-ml culture medium (RPMI without phenol red).
Hereafter, absorbance was measured spectrophotometrical-
ly, and the media were standardized to a standard curve of
CSM concentration against absorbance at 320 nm. The pH
of the resultant extract was titrated to pH 7.4 and diluted
with medium. This concentration (optical density [OD]=
4.0) was serially diluted with untreated media to 0.03, 0.06,
0.1, and 0.2 OD and applied to the cells. Except for the
dose–response and viability test, CSM at a concentration of
0.06 OD was selected for use in all experiments.

Solutions ranging from 0.0075 to 0.12 were used in the
present study after preliminary experiments, which indicat-
ed that these were nontoxic concentrations (viability ≥ 96%).
Toxic concentrations of CSM were detected performing
different toxicological assays (lactate dehydrogenase)

and fluorescence-activated cell sorting (FACS) analysis
(annexin-V and 7-AAD staining).

Cell activation

PMN were activated by CSM with different concentration
at various time points. As positive control cells were
activated with LPS (1 μg/ml). The production of MMP-2,
MMP-9, elastase, and IL-8 were measured after a 9-h
stimulation in supernatants of cells. Cells were pretreated
with salmeterol and FP alone or in the combination of
various concentrations for 90 min and then activated with
CSM (0.06 OD) or LPS for (a) 30 min to determine protein
expression in the cytoplasmic and the nuclear fractions and
(b) 9 h for detection of IL-8 and MMPs from cell
supernatants.

Mediators assays

ELISA tests for IL-8, MMP-2, and MMP-9 detected were
carried out according to the manufacturer’s instructions of
kits (R&D systems).

Fluorescence-activated cell sorting

Because the CXCR1 and CXCR2 are main receptors for IL-8
in many cell types [19], therefore we tested whether CSM
can modulate the surface expression of these receptors on
PMN. In this experiment, the surface expression of CXCR1
and CXCR2 was measured by FACS analysis. PMN were
pretreated and stimulated with CSM or LPS as described
before, and, then, after washing twice with FACS buffer
(fetal calf serum 1%, phosphate-buffered saline (PBS), and
0.01% sodium azide), the cells were incubated with the PE-
labeled CXCR1 and CXCR2 antibodies for 30 min, and the
expression of CXCR1 and CXCR2 was measured by FACS
calibor (BD Biosciences). Geometric mean-fluorescence
intensity (MFI) ratio was calculated by dividing the
geometric mean-fluorescence intensity of test mAb with the
MFI of a corresponding isotype-matched control antibody.

Measurement of intracellular ROS

Intracellular reactive oxygen species (ROS) levels were
measured by flow cytometry in cells cultured in serum-free
medium and loaded with the redox-sensitive dye DCFH-
DA (D399, Invitrogen) [20].

Neutrophil viability

PMN viability was assessed by flow cytometry immediately
after staining with propidium iodide or 7-A-DD/Anexin V
(BD, Pharmingen).
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RT-PCR for GRα and MKP-1

Cells were pretreated for 15 min with salmeterol or FP and
then stimulated with cigarette smoke extract (CSE) for
30 min, followed by harvesting of the cells by centrifuga-
tion. Total cellular RNA was isolated from frozen samples
using Qiagen’s RNeasy kit. Total RNA preparation, cDNA
synthesis, and polymerase chain reaction (PCR) were
conducted, as described before [21]. (RT)-PCR was
performed on 1 µg of each RNA sample using Invitrogen
One-Step RT-PCR Kit and the following gene-specific
primer pairs as described before [22, 23].

Preparation of cytoplasmic and nuclear extracts

Cells were washed twice with PBS and allowed to
equilibrate for 5 min in ice-cold cytoplasmic extraction
reagent (Pierce) containing protease inhibitors (Roche).
Cells were lyzed, and cytoplasmic and nuclear fractions
were subjected to Western blotting as described before
[21].

Western blot analysis

After activation, cells were washed once with PBS and
lyzed in lysis buffer containing 1% Triton X-100 or NP-40,
NaCI, Tris, and MiniTM protease inhibitors. The protein
concentration was determined by BCA protein assay kit
(Pierce). The lysates (25 or 50 μg) were subjected to
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
[10% (w/v) gel] as described before [21].

Quantification of NF-κB activity

NF-κB activity was analyzed by using the Trans-AM NF-
κB p65/NF-κB p50 Transcription Factor Assay Kit (Active
Motif, Rixensart, Belgium), according to the manufac-
turer’s instructions. Briefly, 2 μg of the nuclear extracts was
incubated with an oligonucleotide containing the NF-κB
consensus site bound to a 96-well plate. After extensive
washes, the NF-κB complexes bound to the oligonucleotide
were incubated with an antibody directed against the NF-
κB p65 subunit at a dilution 1:1,000. After washes, the
plates were subsequently incubated with a secondary
antibody conjugated to horseradish peroxidase (1:1,000),
and the peroxidase reaction was quantified at 450 nm with a
reference wavelength of 655 nm.

Statistical analysis

Statistical significance was assessed by one-way analysis of
variance, and differences were pinpointed by Student–
Newman–Keuls’ multiple range test.

Results

CSM induces of IL-8, elastase, and MMPs

Neutrophils were exposed to CSM for 9 h. CSM concen-
tration dependently induces the production of IL-8 (Fig. 1a).
Significant amounts of IL-8 were already produced by
0.015 OD of CSM with an optimum at a concentration of

Fig. 1 CSM induces the release
of mediators by human neutro-
phils. Neutrophils were isolated
from buffy coats and incubated
for 9 h with various concentra-
tion of CSM. The production of
IL-8 (a), elastase (b), and MMP-
2 (c) and MMP-9 (d) was
determined by ELISA kits. Data
shown are mean±SEM of three
independent experiments. The
asterisks represent significant
differences compared with cells
not exposed to CSM (*p<0.05;
**p<0.01;***p<0.001)
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0.06 OD. Interestingly, CSM also induced the release of
elastase and MMP-2 and -9 in a concentration-dependent
manner (Fig. 1b–d). To assess the viability of cells exposed
to CSM, FACS analysis with propidium iodide was
performed. CSM was cytotoxic at concentration≥0.12
OD, and almost 60% of the cells was killed by 0.24 OD
of CSM as compared to control cells. For this reason, a
concentration of CSM (0.06 OD) was chosen for all future
experiments.

Salmeterol and FP additively suppresses the release of IL-8

Pre-incubation of PMN with FP (10–11, 10–7 M) or
salmeterol (10–9, 10–5 M) dose-dependently suppress the
IL-8 production induced by CSM (Fig. 2a,b). Combination
of salmeterol (10–8, 10–7 M) and FP (10–10–10–8 M) induces
further suppression of IL-8 releases (Fig. 3b–e,g). Moreover,

as shown in Fig 3e, salmeterol (10–7 M) and FP (10–9 M)
in combination had a clear additive effect on the suppression
of IL-8 releases by more than 60% (P<0.05 compared with
salmeterol and FP alone). Neither salmeterol or FP or the
combinations were able to prevent the CSM-induced release
of elastase or MMP-2 and MMP-9 (data not shown). Higher
concentration of salmeterol and/or FP is/are most likely to
be cytotoxic.

Surface expression of CXCR1 and CXCR2

IL-8 may stimulate its own release via stimulation of
CXCR1 or CXCR2 receptors. Moreover, CSM might

Fig. 2 Salmeterol and FP suppress IL-8 release induced by CSM
neutrophils were isolated from buffy coats and pretreated for 90 min
with FP 10–11–10–7 M (a) or salmeterol 10–9–10–5 M (b) and then
stimulated for 9 h with CSM (0.06 OD) The supernatants were
harvested and subjected to ELISA methods as described on “Materials
and methods”. Data shown are mean±SEM of three independent
experiments. Asterisk indicates significant differences between medi-
um-treated cells and cells treated with CSM (***p<0.0001) and
number sign represents the significance between cells treated with
CSM alone and CSM with S or FP (#p<0.05 and ##p<0.01). S and FP
indicate salmeterol and FP, respectively

Fig. 3 Salmeterol and FP in combination have additive effects on
suppression of IL-8 release induced by CSM. Neutrophils were
isolated from buffy coats and treated with CSM (a) or pretreated for
90 min with salmeterol (10–8 and 10–7 M) and FP (10–10–10–8 M) with
selected combinations and then stimulated for 9 h with CSM (0.06
OD; b, c, d, e, f, and g). The supernatants were harvested and
subjected to ELISA methods as described on “Materials and
methods.” Data shown are mean±SEM of three independent experi-
ments. Asterisk indicates significant differences between medium-
treated cells and cells treated with CSM (***p<0.0001), Number sign
represents the significance between cells treated with CSM alone and
CSM with salmeterol or FP (#p<0.05 and ##p<0.01) and paragraph
mark represents significant differences between salmeterol, FP alone,
and in combination (¶p<0.05 and ¶¶P<0.01). S and FP indicate
salmeterol and FP, respectively
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increase the surface expression of these receptors by which
additional IL-8 could be released. Therefore, we determined
the surface receptors expression after stimulation of
neutrophils with CSM with or without salmeterol and/
or FP. CSM (0.06 OD) increases the expression of
CXCR1 and CXCR2 after a 4-h exposure (Fig. 4). Similar
results were obtained when the cells were exposed to CSM
overnight. Pretreatment of the cells with salmeterol 10–7 M)
or FP (10–9 M) or the combination for 4 h or overnight did
not affect the CSM-induced increase of the CXCR1 and
CXCR2 receptors (data not shown).

IL-8 and ROS production

CS is a complex insult consisting of more than 4,000
different components [24] that may directly or indirectly
induce the production of ROS. ROS may activate intracel-
lular pathways that could induce the IL-8 production.
Indeed, NAC had a marked inhibitory effect on CSM-
induced IL-8 production (Fig. 5a). Therefore, ROS produc-
tion was measured after stimulation with PMA or CSM.
Although the CSM-induced ROS production was less than
observed with PMA, it was still doubled compared to the
basal production (Fig. 5b). The combination therapy
(salmeterol and FP) had no effect on CSM-stimulated
ROS production. Interestingly, NAC completely prevented
the PMA- and CSM-induced ROS.

Pharmacological modulation of molecular mechanisms

To gain insight to the mechanism behind the CSM-induced
IL-8 production, we applied pharmacological agents to
block the NF-κB, MAPK and p38 pathways (see Fig. 9).
As demonstrated in Fig. 6, the release of IL-8 by CSM was
dependent on all three pathways, i.e., curcumin (25 μM)
and SN50 (100 µg/ml) as inhibitors of NF-κB, SB 239063
(5 μM) as an inhibitor of p38 MAP kinase, and PD98059
(50 µM) as an inhibitor of Erk1/2. We tested the viability of
cells after treatment of each pharmacologic inhibitor; none
of them was cytotoxic as indicated doses.

MAP kinase and NF-κB pathways

Based on the results described above, it was investigated
whether downstream molecules such as NF-κB and MAP

Fig. 4 Modulation of CXCR1 and CXCR2 receptor expressions by
CSM. Neutrophils were isolated from buffy coats and treated with
CSM for 5 h and then stained with CXCR1 and CXCR2 conjugated
with PE Abs for 30 min before measuring receptor expression by flow
cytometry. The data were calculated by MFI for CXCR1 and CXCR2
in CD16-gated cells. The experiment shown is representative of six
independent experiments

Fig. 5 CSM induces the production of ROS. a Neutrophils were
incubated with CSM (0.06 OD) or pretreated with NAC (0.1 mM) for
30 min and then stimulated with CSM for 9 h, and the production of
IL-8 was determined in the supernatants. Asterisk indicates significant
differences between medium-treated cells and cells treated with CSM
(*p<0.05), and the number sign represents the significance between
cells treated with CSM and cells treated with NAC and CSM (#p<
0.05). b Neutrophils were incubated with CSM (0.06 OD), PMA
(1 nM) or pretreated with salmeterol (10–7), FP (10–9 M), and then
activated with CSM for 5 h, and ROS generation was assayed by
incubation of the cells with CM-H2DCFDA (10 µmol/l) oxidation-
based fluorescence and analyzed by FACS analysis. Each sample was
normalized using an appropriate unstained control, and the figure
shows a mean-fold increase to control±SEM. Asterisk indicates
significant differences between medium-treated cells and activated
cells with PMA and CSM (*p<0.05, **p<0.01), and the number sign
represents the significant differences between cells treated with PMA
or CSM and cells pretreated with NAC and stimulated with PMA or
CSM (#p<0.05)
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kinase(s) signaling (Fig. 9) could be modulated by CSM
and salmeterol and/or FP. Salmeterol and FP alone
slightly and, by combination, significantly suppresses
phosphorylation of Erk1/2 (Fig. 7a). In addition, both
compounds decreased the phosphorylation of p38 and c-
fos. Interestingly, the combination of salmeterol and FP
abrogates the phosphorylation of p38, c-fos nearly
completely (Fig. 7a).

Moreover, CSM induced the degradation of IκB-α in
cytoplasm and increases the translocation of p65 in nuclear
fraction (Fig. 7b). Salmeterol (10–7 M) or FP (10–9 M)
prevented the degradation of IκB-α and decreased the
translocation of p65. These effects were even more pro-
nounced when the combination therapy was used (Fig. 7b).
For determination of the activity of NF-κB by electrophoretic
mobility shift assay experiments, nuclear proteins were
subjected to a reaction containing biotin-conjugated oligonu-
cleotides NF-κB (p65). Salmeterol (10–7 M) and FP (10–9 M)
attenuates the activity of NF-κB, and in combination, the
suppressive effects was increased (Fig. 7c).

Expression of MKP-1 and translocation of GRα

It has been reported that MKP-1 suppresses the MAP
kinase pathway (Fig. 9). Therefore, the role of MKP-1 was
investigated by Western blot analysis. MKP-1 expression
was slightly increased by either CSM, salmeterol, FP, or the
combination of the drugs (Fig. 8a). Co-administration of
CSM with either salmeterol or FP did not increase the
expression of MKP-1. However, administration of CSM
with the combination of the drugs did further increased
MKP-1 expression. Moreover, it has been reported that
glucocorticoids induce MKP-1 to suppress the MAP kinase
pathways [25, 26] (Fig. 9). An increase in the translocation

of GRα and the subsequent stimulation of this receptor
could explain the increased MKP-1 expression and the
decrease of IL-8 production.

CSM did not affect mRNA expression of GRα.
Salmeterol or FP slightly increases the mRNA expression
with or without CSM. Interestingly, the combination of
both drugs with CSM further increased GR mRNA
production (Fig. 8b). These data were further confirmed
by the translocation of the GRα. High amounts of GRα
were present in the cytoplasm of the neutrophils under basal

Fig. 6 Pharmacaological inhibition of NF-κB and MAPK pathways.
Neutrophils were pretreated with PD98059 (50 μM), SB 239063 (5
μM), curcumin (25 μM) and SN50 (100 μg/ml) for 30 min and then
activated for 9 h with CSM (0.06 OD). Culture supernatants were then
tested for IL-8 production by ELISA. Data are the mean±SEM of four
independent experiments with triplicate dishes. Asterisk indicates
significant differences between medium-treated cells and cells treated
with CSM (***p<0.0001), and the number sign represents the
significance differences between cells treated with CSM and cells
pretreated with inhibitors and CSM (#p<0.05 and ##p<0.01)

Fig. 7 Intervention of the MAP-kinase and NF-κB pathways.
Neutrophils were activated with CSM and drugs as described in
material and methods “Materials and methods.” Western blot analysis
for MAPK pathway; Erk1/2, phospho p38 from whole cell extracts
(50 μg) and c-fos (25 μg) from nuclear extracts (a) and NF-κB
pathway; IκB-α from whole cell extracts and p65 from nuclear
extracts (b) were carried out with related antibodies. Representative
results of three independent experiments are shown. β-actin and
Lamin A served as loading controls from cytoplasm and nuclear
fractions, respectively. c Neutrophils were preincubated with S
(10–7 M) or FP (10–9 M) or in combination for 90 min and then
activated with CSM (0.06 OD) for 30 min and then the nuclear
proteins were analyzed in triplicate for the DNA binding activity of
NF-κB using the kit. NF-κB activation is evaluated with reading
optical density at 450 nm. Values (mean±SEM) are representative data
from one of five independent sets of experiments. Asterisk indicates
significant differences between medium-treated cells and cells treated
with CSM (*p<0.05), and the number sign represents the significance
differences between cells treated with CSM and S or FP (#p<0.05,
##p<0.01). S and FP indicate for salmeterol and FP, respectively
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conditions, which was not affected by CSM stimulation
(Fig. 8c). Salmeterol and FP increased the transport of GRα
to the nucleus. This effect was strongly enhanced when the
combination of the drugs were used (Fig. 8c).

Discussion

Neutrophils and neutrophil elastase, metalloproteases, and
oxidants have all been shown to play a role in the

pathogenesis of emphysema [27]. Current concepts suggest
that the pathogenesis of emphysema is an imbalance
between proteases and anti-proteases in the lung [28]. IL-
8 is chemotactic for neutrophils and can activate these cells.
Elevated levels of IL-8 have been found in the bronchoal-
veolar lavage fluid of smokers and COPD patients that
correlated positively with neutrophil counts in the lung
[29].

A combination therapy using long acting β2-agonists
and glucocorticoids have been shown to be beneficial for
COPD patients in several studies [10, 30]. However, no
study provided a clear explanation for the additional effect
when the combination therapy was used. The goal of this
project was to investigate possible mechanisms. As an
experimental system, the human neutrophils were exposed
to CSM in vitro. CSM induces the release of significant
amounts of IL-8, an effect which is not due to LPS
contamination [16]. Interestingly, CSM also induced the
release of elastase, MMP-2, and MMP-9. Earlier studies
have evaluated the effects of CSM on the production of IL-
8 by pro-inflammatory cells [16, 31–34]. For example,
A549 epithelial cell releases comparable amount of IL-8 as
neutrophils; however, the epithelial cells were stimulated
for 72 h with CSM and the neutrophils for 9 h.

Thus, in the present study, we used neutrophils for
investigation, as they have primary cellular mediators of an
acute inflammation and capable of producing proteases
including MMPs that degrades the protein components in
the extracellular matrix and cause damage to the lung.
Recently, it has been demonstrated that increased amounts
of MMPs and especially MMP-9 are found in bronchoal-
veolar lavage fluid from COPD patients and mice that were
exposed to CS [6, 35]. Both salmeterol and FP were able to
suppress the CSM-induced IL-8 release, but not the release
of elastase and MMP-2 and MMP-9. This may explain the
fact that these agents are effective in COPD but do not stop
the progression of this disease. As we [14] and others [36,
37] have shown, salmeterol and FP suppress the production
of IL-8 in pro-inflammatory cells. There is some contro-
versy in literature. Fluticasone but not salmeterol is
effective in reducing CSM-induced IL-8 production by
human airway smooth muscle cells [37]. Therefore, it
seems that the effects of salmeterol and FP on the
regulation of IL-8 are cell specific. The concentrations of
the drugs that we used correspond with that used for
clinical purpose [38].

We found that, when the neutrophils were incubated with
both salmeterol and FP, an additive effect was observed in
the suppression of IL-8 production.

To find a possible explanation for this observation, we
first investigated the role of CXCR1 and CXCR2 receptors.
Neutrophils are stimulated, activated, and recruited through
upregulation and binding of a number of CXC chemokines

Fig. 8 mRNA expression of MKP-1, GRα and translocation of GRα.
Neutrophils were pretreated with salmeterol and FP or in combination
for 15 min and then activated for 30 min for mRNA level of MKP-1
and GRα. Total RNA was isolated and subjected to RT-PCR using
specific primers for MKP-1 (a) or for GRα (b). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) served as loading housekeeping
control gene. Lower graphs a and b depicted for quantitative
expression of MKP-1 and GRα mRNA, as a ratio to GAPDH mRNA.
Representative results of three independent experiments are shown. c
Neutrophils were pretreated with salmeterol or FP or in combination
for 90 min and then activated with CSM (0.06 OD) for 30 min to
determine GRα cytoplasmic and nuclear expression at protein levels.
β-Actin and Lamin A served as loading controls from cytoplasm and
nuclear fractions, respectively. Representative results of three inde-
pendent experiments are shown. S and FP indicated for salmeterol and
FP, respectively
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to their complementary receptors, notably CXCR1 and
CXCR2 [39–41]. Indeed, CSM increased the surface
expression of CXCR1 and CXCR2 receptors. This might
be due to a direct effect of CSM, but may also be due to
mediators released by the neutrophil itself, such as IL-8.
However, salmeterol, FP, or the combination was unable to
modify the CSM-induced increase of CXCR1 and CXCR2
receptor expressions. The enhancement of CXCR1 and
CXCR2 receptors may be the mechanism for the increase in
IL-8 production seen after CSM stimulation; it does not
clarify the additive effect in suppressing IL-8 production
observed after the combination therapy. In an attempt to
find another explanation, the role of ROS was investigated.
In response to a variety of stimuli, neutrophils release large
amount of ROS generated by NADPH oxidase. We found
two lines of evidence to suggest that ROS might be
involved in the CSM-induced IL-8 production in neutro-
phils. Firstly, the ROS scavenger NAC almost completely
inhibited the IL-8 production. Secondly, neutrophils pro-
duce significant amounts of ROS upon CSM stimulation.
However, the combination therapy did not affect the ROS

production. Therefore, an explanation for the additive effect
of the combination therapy was sought downstream from
CXCR and the production of ROS (Fig. 9).

ROS are able to activate the NF-κB/MAPK pathways
and, hence, cause the production of IL-8. Pharmacological
agents that influenced these pathways, curcumin, SN50,
SB239063, and PD98059, were able to inhibit CSM-
induced IL-8 production that suggests the involvement of
NF-κB, p38 MAP kinase and Erk1/2, respectively. The
involvement of these proteins was further confirmed with
molecular biology studies. A key finding was that the
combination of salmeterol and FP abrogates the phosphor-
ylation of Erk1/2, p38, c-fos (Fig. 7). Moreover, CSM
induced the degradation of IκB-α in cytoplasm and
increases the translocation of p65 in nuclear fraction. Both
salmeterol and FP prevented the degradation of IκB-α and
decreased the translocation of p65. These effects were even
more pronounced when the combination therapy was used.
It can be concluded that both the NF-κB- and MAPK
pathways are involved. The mechanism by which these
agents can have an additive effect and affect both pathways

Fig. 9 Schematic diagram of IL-8 production by neutrophils. CSE by
inducing ROS inside the cells activates MAPK and NF-κB pathways
to induce IL-8 expression and release. Release of IL-8 can activate
CXCR1 and CXCR2 receptors. Upon interaction of FP and salmeterol
with the GRα, this receptor is transported into the nucleus where it
binds to discreet nucleotide sequences to alter the expression of
specific genes. a A rapid effect of the receptor has also been reported
in the negative regulation of the action of transcription factors such as
AP-1 or NF-κB. A completely different mechanism by which GR

might exert its anti-inflammatory effects is the inhibition of the
signaling pathways that regulate inflammatory processes, in particular
the Erk-1 and Erk-2 pathways. b Glucocorticoids first increase the
expression of MKP-1 gene at the promoter level. This phosphatase is
known to inactivate MAP kinases. MKP-1 induction alone is,
however, not sufficient to inhibit Erk-1/2. After treatment, glucocorti-
coids exert a second action by attenuating proteasomal degradation of
MKP-1
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remains unclear. Therefore, we set experiments to elucidate
the molecular events in details. Glucocorticoids are well
known for their anti-inflammatory, immune-suppressive,
and anti-allergic actions [30, 42–44]. The human glucocor-
ticoid receptor (hGR) gene encodes two protein isoforms:
(a) the cytoplasmic alpha form (GRα), which binds
hormones, translocates to the nucleus, and regulates gene
transcription and (b) the nuclear localized beta isoform
(GRβ), which does not bind to known ligands and
attenuates GRα action [7, 45–47].

The complicity of GR receptors to the agonist is not well
described. hGRβ can inhibit the actions of hGRα [46, 48].
Increased expression of the dominant-negative hGRβ in
inflammatory cells may be a potential mechanism for
ablating the anti-inflammatory effects of glucocorticoids
and inducing glucocorticoid resistance [7, 49].

Moreover, GRα negatively regulates the action of
transcription factors such as AP-1/c-fos or NF-κB [50–54]
(Fig. 9, pathway a). As these transcription factors control
the expression of numerous pro-inflammatory genes, the
inhibition of their activity by GR has become a paradigm
for the anti-inflammatory action of glucocorticoids. A
completely different mechanism by which GR might exert
its inflammatory processes, in particular, the extracellular-
regulated kinases (Erk)-1 and -2 pathways. Glucocorticoids
have been shown previously to induce the expression of
MKP-1, a dual specificity phosphatase that potently
inactivates all MAPKs [26] (Fig. 9, pathway b). Surpris-
ingly, the combination therapy additively increased MKP-1
expression in the presence of CSM. A possible explanation
for the increased expression of MKP-1 and the decreased
phosphorylation of the proteins in the NF-κB-pathway
could be an increased expression and translocation of the
GRα (Fig. 9). Salmeterol and FP increased the transloca-
tion of the GRα to the nucleus in the presence of CSM. A
clear increased translocation of the GRα was found when
the agents were combined in the presence of CSM.

The above-mentioned explanation is an over simplifica-
tion and is only used as working hypothesis. Indeed, most
of signal transduction pathways have complex networks,
and in this study, we investigate a link between transloca-
tion of NF-κB and GR in suppression of IL-8 releases. We
cannot exclude other events, as post-transcriptional mod-
ifications of GRs and cross-talk between GR signaling with
other signaling pathways have been found to play a pivotal
role in cell- and gene-specific transcriptional regulation.
Moreover, impact of our data should be verified by in vivo
models by using knock out animal in GRs.

In conclusion, the CSM-induced increased expression of
CXCR and the production of ROS might explain the
enhanced IL-8 production by human neutrophils in vitro.
The increased expression of CXCR, the production of ROS,
and the release of elastase and MMP-2 and MMP-9 were

not influenced by salmeterol, FP, or the combination.
However, the combination therapy had an additive sup-
pressive effect on the CSM-induced production of IL-8.
The latter could be explained by an increased expression by
the combination therapy of MKP-1 and the GR receptor
and the increased translocation of the GR receptor to the
nucleus. This leads eventually to the suppression of both
the NF-κB and MAPK pathways (Fig. 9).
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