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Abstract

Computational theories propose that attention modulates the topographical landscape of spatial 

‘priority’ maps in regions of visual cortex so that the location of an important object is associated 

with higher activation levels. While single-unit recording studies have demonstrated attention-

related increases in the gain of neural responses and changes in the size of spatial receptive fields, 

the net effect of these modulations on the topography of region-level priority maps has not been 

investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial 

representations of attended and ignored stimuli using activation patterns across entire visual areas. 

These reconstructed spatial representations reveal the influence of attention on the amplitude and 

size of stimulus representations within putative priority maps across the visual hierarchy. Our 

results suggest that attention increases the amplitude of stimulus representations in these spatial 

maps, particularly in higher visual areas, but does not substantively change their size.

Prominent computational theories of selective attention posit that basic properties of visual 

stimuli are encoded in a series of interacting ‘priority’ maps that are found at each stage of 

the visual system1–6. The maps in different areas are thought to encode different stimulus 

features (e.g. orientation, color, motion) based on the selectivity of component neurons. Two 

general themes governing the organization of these maps have emerged. First, accurately 

encoding the spatial location of relevant stimuli is the fundamental goal of these priority 

maps, as spatial position is necessary to guide saccadic eye movements (and other 

exploratory and reflexive motor responses). Second, priority maps early in the visual system 

primarily reflect the physical salience of stimuli in the visual field, whereas priority maps in 

later areas increasingly index the behavioral relevance of stimuli, independent from physical 

salience4,5.

Although many studies have investigated the influence of spatial attention on single unit 

neural activity over the last several decades7–17, directly examining the impact of attention 
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on the topographic profile across an entire spatial priority map is a major challenge because 

single-units have access to a limited window of the spatial scene5. This is a key limitation, 

because the relationship between changes in the size and amplitude of individual spatial 

receptive fields (RFs; or voxel-level RFs across populations of neurons) and changes in the 

fidelity of population-level spatial encoding are not related in a straightforward manner (see 

ref 18 for a discussion of this issue with respect to population codes for orientation). For 

example, if spatial RFs are uniformly shrunk by attention while viewing a stimulus, the 

population-level spatial representation (or priority map) carried by all those neurons might 

shrink or become sharper, but the code may be more vulnerable to uncorrelated noise (as 

there is less redundant coding of any given spatial position by the population). Alternatively, 

a uniform increase in spatial RF size might blur or increase the size of a spatial 

representation encoded by a population, but such a representation might be more robust to 

neural noise due to increased redundancy.

Further complicating matters is the observation that spatial RFs have been shown to both 

increase and decrease in size with attention as a function of where the spatial RF is 

positioned relative to the attended stimulus. Spatial RFs tuned near an attended stimulus 

grow, and spatial RFs fully encompassing an attended stimulus shrink10,19–23. These RF size 

changes occur in parallel to changes in the amplitude (gain) of neural responses with 

attention7–17. Thus, the net impact of all of these changes on the fidelity of population-level 

spatial representations is unclear, and addressing this issue requires assessing how attention 

changes the profile of spatial representations encoded by the joint, region-level pattern of 

activity.

Here, we assessed the modulatory role of attention on the spatial information content of 

putative priority maps by using an encoding model to reconstruct spatial representations of 

attended and unattended visual stimuli based on multivariate BOLD fMRI activation 

patterns within visually responsive regions of occipital, parietal, and frontal cortex. These 

reconstructions can be considered to reflect region-level spatial representations and they 

allow us to quantitatively track changes in parameters which characterize the topography of 

spatial maps within each region of interest (ROI). Importantly, this technique exploits the 

full multivariate pattern of BOLD signal across an entire region to evaluate the manner in 

which spatial representations are modulated by attention, rather than comparing multivariate 

decoding accuracy or considering the univariate response of each voxel in isolation. This 

approach can be used to examine mechanisms of attentional modulation that cannot be 

easily characterized by measuring changes in either the univariate mean BOLD signal or 

decoding accuracy24–33 (Fig. 1, see also ref 34).

Our results reveal that spatial attention increased the amplitude of region-level stimulus 

representations within putative priority maps carried by areas of occipital, parietal, and 

frontal cortex. However, we found little evidence that attention changes the size of stimulus 

representations in region-level priority maps, even though we observed increases in spatial 

filter size at the single-voxel level. In addition, the reconstructed spatial representations 

based on activation patterns in later regions of occipital, parietal, and frontal cortex showed 

larger attentional modulation than those from early areas, consistent with the hypothesis that 

representations in later regions increasingly transition to more selectively represent relevant 
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stimuli4,5. These changes in the gain of spatial representations should theoretically increase 

the efficiency with which information about relevant objects in the visual field can be 

processed and subsequently used to guide perceptual decisions and motor plans18.

Results

To evaluate how task demands influence the topography of spatial representations within 

different areas of the visual system, we designed a BOLD fMRI experiment that required 

participants to perform one of three tasks using an identical stimulus display (Fig. 2a). On 

each trial, participants (n = 8) maintained fixation at the center of the screen (see Online 

Methods: Eyetracking, Supplementary Fig. 1) while a full-contrast flickering checkerboard 

was presented in one of 36 spatial locations that sampled 6 discrete eccentricities (Fig. 2b). 

Participants either reported a faint contrast change at the fixation point (the “attend fixation” 

condition), reported a faint contrast change of the flickering checkerboard stimulus (the 

“attend stimulus” condition), or performed a spatial working memory task in which they 

compared the location of a probe stimulus, T2, with the remembered location of a target 

stimulus, T1, presented within the radius of the flickering checkerboard(the “spatial working 

memory” condition, see Fig. 2c). The spatial working memory task was included as an 

alternate means of inducing focused and sustained spatial attention around the stimulus 

position35.

On average, performance in the attend fixation task was slightly, though non-significantly, 

higher than in the attend stimulus or spatial working memory tasks (Fig. 2d, main effect of 

condition: F(2,14) = 0.951, p = 0.41; attend fixation: 87.37 ± 6.46%, attend stimulus: 81.00 

± 6.67%, spatial working memory: 80.00 ± 2.09% accuracy, mean ± S.E.M.). However, we 

observed a different pattern of response errors across the 3 task demands: accuracy for the 

attend fixation condition was lowest on trials in which the flickering checkerboard stimulus 

was presented near fixation, whereas accuracy dropped off with increasing stimulus 

eccentricity for the attend stimulus and spatial working memory tasks (Fig. 2d, condition × 

eccentricity interaction: F(10,70) = 7.235, p < 0.0001).

To compare spatial representations carried within different brain regions as a function of 

task demands, we first functionally identified 7 ROIs in each hemisphere of each participant 

using independent localizer techniques (see Online Methods: Functional localizers; 

Supplementary Table 1).

Next we used an encoding model36 (see also refs. 34,37,38) to reconstruct a spatial 

representation of the stimulus that was presented on each trial using activation patterns from 

each ROI (Fig. 3). This method results in a “spatial representation” of the entire visual field 

measured on each trial that is constrained by activation across all voxels within each ROI. 

As a result, we obtain average spatial representations for each stimulus position for each 

ROI for each task condition which accurately reflect the stimulus viewed by the observer 

(Fig 4a). This method linearly maps high dimensional voxel space to a lower-dimensional 

spatial information space that corresponds to visual field coordinates (see Online Methods: 

Encoding Model for details).
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As a point of terminological clarification, we emphasize that we are reporting estimates of 

the spatial representation of a stimulus display based on the distributed activation pattern 

across all voxels within a ROI. Throughout the Results section, we will therefore refer to our 

actual measurements as “reconstructed spatial representations”. However, in the Discussion, 

we will interpret these measurements in the context of putative attentional priority maps that 

are thought to play a key role in shaping perception and decision making1–6.

Reconstructed spatial representations of visual stimuli

Reconstructed spatial representations based on activation patterns in each ROI exhibited 

several qualitative differences as a function of stimulus eccentricity, task demands, and ROI 

(which we more formally quantify below). First, we note that representations were very 

precise in V1 (Fig 4a), and became successively coarser and more diffuse in areas of 

extrastriate, parietal, and frontal cortex (Fig. 4b). Similarly, representations of more 

eccentric stimuli were more diffuse compared to more foveal stimuli (e.g., compare 

eccentric to foveal representations within each ROI). We also observed higher fidelity 

representations of the upper visual field when using only voxels from the ventral aspects of 

V2 and V3, and higher fidelity representations of the lower visual field when using only 

voxels from the dorsal aspects of these regions (Supplementary Fig. 5a). This observation, 

which is consistent with known receptive field locations in non-human primates, confirms 

that our encoding model method recovered known properties of these visual subregions and 

that these reconstructions were not merely the result of fitting idiosyncratic aspects of our 

particular data set (i.e. overfitting noise). We further demonstrated this point by using the 

model to reconstruct representations of completely novel stimuli (Supplementary Fig. 5b).

Second, the profile of reconstructed spatial representations within many regions also varied 

with task demands, consistent with the notion that these spatial representations reflect spatial 

maps of attentional priority. Note that, especially in hV4, hMT+, the intraparietal sulcus 

(IPS), and superior precentral sulcus (sPCS), the magnitude of the spatial representations 

increased when the participant was either attending to the flickering checkerboard stimulus 

or performing the spatial working memory task compared to when they were performing a 

task at fixation.

Size of spatial representations across eccentricity & ROI

Before formally evaluating the effects of attention on the profile of spatial representations, 

we first sought to quantify changes in the size of these representations due to stimulus 

eccentricity and ROI for comparison with known properties of the primate visual system. To 

this end, we fit a smooth surface to the spatial representations associated with each of the 

three task conditions separately for each of the 36 possible stimulus locations in each ROI 

(see Online Methods: Curvefitting and Supplementary Fig. 2). These fits generated an 

estimate of the amplitude, baseline offset, and the size of the represented stimulus within 

each reconstructed spatial representation. We averaged the fit parameters obtained from 

each ROI across stimulus locations that were at equivalent eccentricities and then across 

participants (yielding 6 sets of fit parameters, one set for each of the 6 possible stimulus 

eccentricities, see color code in Fig. 2b). We then used these fit parameters to make 
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inferences about how the magnitudes and shapes of spatial representations of stimuli from 

each ROI varied across stimulus positions.

First, we quantified the accuracy of fits by computing the Euclidean distance between the 

centroid of the fit function and the actual location of the stimulus across all eccentricities 

and task conditions. The estimated centroids were generally accurate and closely tracked 

changes in stimulus location (Fig 4a). However, the distances between fit centroids and the 

actual stimulus positions in sPCS were nearly double those of the next least accurate region, 

hMT+ (sPCS: 3.01° ± 0.077°, hMT+: 1.68° ± 0.17°, mean ± S.E.M.). Error distances in all 

other areas were relatively small (V1: 0.67° ± 0.084°, V2: 0.77° ± 0.12°, V3: 0.75° ± 0.095°, 

hV4: 1.16° ± 0.13°, IPS: 1.46° ± 0.20°). Thus, the relatively low correspondence between 

the estimated and actual stimulus position based on data from the sPCS suggests that the 

resulting fit parameters should be interpreted with caution (we return to this point in the 

Discussion).

In early visual ROIs V1, V2, V3, and hV4, the size of the reconstructed spatial 

representations increased with increasing eccentricity, regardless of task condition (Fig. 5, 

main effect of eccentricity, 2-way ANOVA within each ROI, all p’s < 0.0004; unless 

otherwise specified, all statistical tests on fit parameters to spatial representations employed 

a non-parametric permutation procedure and corrected for multiple comparisons, see Online 

Methods: Statistical Methods). This increase in size with eccentricity is expected, given the 

use of a constant stimulus size and the well-documented increase in the size of spatial RFs in 

early visual areas with increasing eccentricity39. In addition, the size of the reconstructed 

stimulus representations also increased systematically from V1 to sPCS, which is also 

consistent with the known expansion of mean spatial RF sizes in parietal and frontal 

cortex40,41 (3-way ANOVA, significant main effect of ROI on fit size, p < 0.0001).

One alternative explanation is that the size of represented stimuli increases with eccentricity 

because there is more trial-to-trial variability in the center point of the represented stimulus 

within reconstructions at more peripheral stimulus locations. In turn, this increase in trial-to-

trial variability would ‘smear’ the spatial representations, leading to larger size estimates. 

However, our data speak against this possibility as increased variability in the reconstructed 

stimulus locations would also result in lower estimated amplitudes, so increases in fit size 

and decreases in fit amplitude across conditions would always be yoked and correlating the 

change in amplitude and the change in size within each eccentricity across each condition 

pair would reveal a negative correlation (e.g., if the size of the spatial representation 

measured at a given eccentricity increases with attention, then the amplitude decreases). No 

combinations of condition pair, eccentricity and ROI revealed a significant correlation 

between change in amplitude and change in size (all p’s > 0.05, corrected using FDR, see 

Online Methods: Statistical procedures). Furthermore, in a follow-up analysis we computed 

the population receptive field (pRF) for each voxel42, which revealed that voxels tuned to 

more eccentric visual field positions have a larger pRF size (Supplementary Figs. 8–9; 

Supplementary Table 2). This combination of analyses supports the conclusion that 

increases in fit size with increases in stimulus eccentricity are not purely due to increased 

variability in reconstructed spatial representations.
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Effects of attention on spatial representations

Despite being sensitive to expected changes in representation size based on anatomical 

properties of the visual system, task demands exerted a negligible influence on the size of 

reconstructed spatial representations, with no areas showing a significant effect (hV4 was 

closest at p = 0.033, but this did not survive correction for multiple comparisons, and p-

values in all other regions were > 0.147).

In contrast, the fit amplitude in hV4, hMT+, IPS, and sPCS is significantly modulated by 

task condition, with a higher amplitude in the attention and working memory conditions than 

in the fixation condition (Fig. 5, 3-way ANOVA, main effect of task condition, p = 0.0003). 

For example, in hV4, the amplitude of the best fitting surface to spatial representations of 

attended stimuli was higher during the attend stimulus and spatial working memory 

conditions compared to the attend fixation condition (2-way ANOVA, main effect of task 

condition, p < 0.0001). Similar effects were observed in hMT+ (2-way ANOVA, p = 

0.0007) and sPCS (2-way ANOVA, p = 0.0007). A similar pattern was evident in IPS as 

well, but it did not survive correction for multiple comparisons (2-way ANOVA, 

uncorrected p = 0.011). Within individual ROIs, there was a significant interaction between 

task condition and eccentricity in hMT+ (p = 0.0003) with larger increases in amplitude 

observed for more eccentric stimuli. It is important to note that this increase in the amplitude 

of spatial representations with attention corresponds to a focal gain modulation that is 

restricted to the portion of visual space in the immediate neighborhood of the attended 

stimulus. Changes in fit amplitude do not result from a global increase in the BOLD signal 

that equally influences the response across an entire ROI; such a general and widespread 

modulation would be accounted for by an increase in the baseline fit parameter (see 

Supplementary Fig. 2; below). Finally, the impact of task condition on the amplitude of 

reconstructed spatial representations was more pronounced in later visual areas hV4/hMT

+/IPS/sPCS compared to earlier areas V1/V2/V3 (3-way interaction between ROI, condition 

and eccentricity, p = 0.043).

In addition to an increase in the fit amplitude of the reconstructed spatial representations, 

IPS and sPCS also exhibited a spatially global increase in baseline response levels across the 

entire measured spatial representation in the attend stimulus and spatial working memory 

conditions compared to the attend fixation condition (Fig. 5, 2-way ANOVAs, main effect 

of condition, IPS: p = 0.0014; sPCS: p = 0.0012; see Supplementary Fig. 6). The spatially 

non-selective increases may reflect the fact that spatial RFs in these regions are often large 

enough to encompass the entire stimulus display40,41, so all stimuli might drive some 

increase in the response, irrespective of spatial position.

Controlling difficulty across task conditions

Slight differences in task difficulty in the first experiment (Fig. 2d) might have contributed 

to observed changes in the spatial representations. To address this possibility, we ran four 

participants from the original cohort in a second experimental session while carefully 

equating behavioral performance across all 3 tasks (Fig. 6a). Overall accuracy during this 

second session did not differ significantly across the 3 conditions, although a similar 

interaction is observed between task condition and stimulus eccentricity (Fig. 6a, 2-way 

Sprague and Serences Page 6

Nat Neurosci. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repeated-measures ANOVA, main effect of condition: F(2,6) = 0.043, p = 0.96, condition × 

eccentricity interaction: F(10,30) = 3.28, p = 0.005; attend fixation: 78.8 ± 2.80%, attend 

stimulus: 80.0 ± 2.60%, spatial working memory: 79.8 ± 1.76%, mean ± S.E.M.). In 

addition, we also identified IPS visual field maps 0–3 using standard procedures so that we 

could more precisely characterize the effects of attention on stimulus representations in sub-

regions of our larger IPS ROI (refs 31,32,43,44; see Online Methods: Mapping IPS 

subregions, Supplementary Fig. 7).

To ensure that behavioral performance was not unduly biasing our results, we reconstructed 

spatial representations using only correct trials (~80% of total trials, Fig 6a). All 

representations were co-registered based on stimulus eccentricity before averaging (see Fig. 

2b for corresponding eccentricity points). Even though our sample size was smaller (n = 4 

vs. n = 8), the influence of attention on the topography of spatial representations was similar 

to our initial observations (Fig. 6b). In addition, mapping out retinotopic subregions of the 

IPS revealed that the functionally-defined IPS ROI presented in Figure 5 primarily 

corresponds to IPS0 and IPS1 (Supplementary Fig. 7a–b).

When examining best-fit surfaces to spatial representations from this experiment (Fig. 7, fits 

computed using coregistered representations and only correct trials for each participant, see 

Online Methods: Curvefitting), we found that attention significantly modulated the 

amplitude across all regions (3-way ANOVA, main effect of task condition, p = 0.0162). 

When considered in isolation, only hV4 shows a significant change in amplitude with 

attention after correction for multiple comparisons (2-way repeated-measures ANOVA, p = 

0.0022). However, similar trends were observed in V1, V2, and V3 (uncorrected p’s = 

0.0243, 0.042, and 0.031, respectively). No significant main effect of task condition on the 

size of representations was found (all p’s > 0.135, minimum p for hMT+), and overall 

baseline levels only significantly increased as a function of task condition in hMT+ (p = 

0.00197). Across all ROIs, there was a main effect of eccentricity on fit size (3-way 

ANOVA, p = 0.0016), but no main effect of task condition on fit size (3-way ANOVA, p = 

0.423).

Population receptive fields (pRFs) expand with attention

For these same 4 participants, we computed the population receptive field (pRF, ref 42) for 

each voxel in V1, hV4, hMT+ and IPS0 using data from the behaviorally-controlled 

replication experiment. Here, we computed pRFs by first using the initial step of our 

encoding model estimation procedure (Fig. 3a) to determine the response of each voxel to 

each position in the visual field (Supplementary Figs. 8–9, Online Methods: population 

receptive fields). We then fit each voxel’s response profile with the same surface used to 

characterize spatial representations. By comparing pRFs computed using data from each 

condition independently, we found that a majority of pRFs in hV4, hMT+ and IPS0 increase 

in size during either the attend stimulus or spatial working memory condition compared to 

the attend fixation condition. In contrast, pRF size in V1 was not significantly modulated by 

attention (Supplementary Fig. 9; see Supplementary Results for statistics).

To reconcile the results that voxel-level pRFs expanded with attention, yet region-level 

spatial representations remained a constant size, we simulated data using estimated pRF 
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parameters from hV4 (a region for which spatial representations increase in amplitude and 

pRFs increase in size; see Online Methods: Simulating data with different pRF properties) 

under different pRF modulation conditions. In the first condition, we generated data using 

pRFs with sizes centered around two mean values, resulting in a pRF scaling across all 

simulated voxels (average size across voxels increases, but some voxels decrease in size and 

others increase). Under these conditions, spatial representations increase in size 

(Supplementary Fig. 10a–b). In a second pRF modulation scenario, we used the fit pRF 

values from one participant’s hV4 ROI (Supplementary Fig. 8) to simulate data. In this case, 

spatial representations remained the same size, but increased in amplitude, consistent with 

our observations using real data (Figs. 5, 7, Supplementary Fig. 10c–d; this conclusion was 

also supported when pRF data from the other 3 observers was used to seed the simulation). 

Thus, the pattern of pRF modulations across all voxels enhances the amplitude of spatial 

representations while preserving their size.

Discussion

Spatial attention has previously been shown to alter the gain of single-unit responses 

associated with relevant visual features such as orientation7–9,12,13,16,17 and motion 

direction11,14,15, as well as to modulate the size of spatial RFs10,19–23. Here, we show that 

these local modulations jointly operate to increase the overall amplitude of the region-level 

spatial representation of an attended stimulus, without changing its represented size. 

Furthermore, these amplitude modulations were especially apparent in later areas of the 

visual system such as hV4, hMT+, and IPS, consistent with predictions made by 

computational theories of attentional priority maps4,5.

We were able to reconstruct robust spatial representations across a range of eccentricities 

and for all 3 task conditions in all measured ROIs. Importantly, even though an identical 

reconstruction procedure was used in all areas, the size of the reconstructed spatial 

representations increased from early to later visual areas (Fig. 5). Single-unit receptive field 

sizes across cortical regions are thought to increase in a similar manner39–41,45,46. In 

addition, representations of stimuli presented at higher eccentricities were larger than 

representations of stimuli presented near the fovea, which also corresponds to known 

changes in RF size with eccentricity39,42. Furthermore, simulating data under conditions in 

which we uniformly scale the mean size of voxel-level pRFs reveals that such changes are 

detectable using our analysis method (Supplementary Fig. 10a–b). Thus, this technique is 

sensitive to detect changes in the size of spatial representations of stimuli that are driven by 

known neural constraints such as relative differences in RF size across cortical ROIs and 

eccentricity, even though these factors are not built-in to the spatial encoding model. 

Together, these empirical and modeling results suggest that at the level of region-wide 

priority maps, the representation of a stimulus does not expand or contract under the 

attentional conditions tested here, and underscores the importance of incorporating response 

changes across all encoding units when evaluating attentional modulations.

The quantification method we implemented for measuring changes in spatial representations 

across tasks, eccentricities, and ROIs involved fitting a surface defined by several 

parameters: center location, amplitude, baseline offset, and size (Supplementary Fig. 2). 
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Changes in activation which carry no information about stimulus location (such as changes 

in general arousal or responsiveness to stimuli presented in all locations due to large RFs) 

will influence the baseline parameter, as such changes reflect increased/decreased signal 

across an entire region. In contrast, a change in the spatial representation that changes the 

representation of a visual stimulus would result in a change in the amplitude or in the size 

parameter (or both). Here, we demonstrated that attention primarily operates by selectively 

increasing the amplitude of stimulus representations in several putative priority maps (Figs. 

5 and 7), rather than increasing the overall BOLD signal more generally across entire 

regions.

Interestingly, spatial reconstructions based on activation patterns from sPCS were relatively 

inaccurate compared to other ROIs, and this ROI primarily exhibited increases in the fit 

baseline parameter (Fig. 5). This region, which may be a human homolog of the 

functionally-defined macaque frontal eye fields47,48 (FEF), may show degraded spatial 

selectivity in the present study due to the relatively large size of spatial receptive fields 

observed in many FEF neurons (typically ≥ 20° diameter: see ref. 41) and the small area 

subtended by our stimulus display (9.31° horizontally across). Consistent with this 

possibility, previous reports of retinotopic organization in human frontal cortex used stimuli 

presented at higher eccentricities in order to resolve spatial maps (≥10°, ref. 49 to 25°, 

ref. 45).

Attentional priority maps

The extensive literature on spatial “salience” or “priority” maps1–6 postulates the existence 

of one or several maps of visual space, each carrying information about behaviorally 

relevant objects within the visual scene. Furthermore, priority maps in early visual areas 

(e.g. in primary visual cortex) are thought to primarily encode low-level stimulus features 

(e.g., contrast), whereas priority maps in later regions are thought to increasingly weight 

behavioral relevance over low-level stimulus attributes4. While many important insights 

have stemmed from observing single-unit responses as a function of changes in attentional 

priority (see 5 for a review), these results provide information about how isolated “pixels” in 

a priority map change under different task conditions.

A previous fMRI study used multivariate decoding (classification) analyses to identify 

several frontal and parietal ROIs that exhibit similar activation patterns during covert 

attention, spatial working memory, and saccade generation tasks32. These results provide 

strong support for the notion that common priority maps support representations of 

attentional priority across multiple tasks. Here, we assessed how the holistic landscape 

across these priority maps measured using fMRI changed as attention was systematically 

varied. Our demonstration that spatial representation amplitude is enhanced with attention in 

later ROIs, but not earlier ones, supports the hypothesis that priority maps in higher areas are 

increasingly dominated by attentional factors, and suggests that these attentional 

modulations of priority maps operate via scaling the amplitude of the behaviorally-relevant 

item without changing its represented size.
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Population receptive fields

In addition to measuring spatial representations carried by the pattern of activation across 

entire visual regions, we also estimated the voxel-level pRFs42 for a subset of participants 

and ROIs by adding constraints to our encoding model estimation procedure (Supplementary 

Figs. 8–9; Online methods: population receptive fields). This alternative tool has been used 

previously to evaluate the aggregate spatial RF profile across all neural populations within 

voxels across different visual ROIs42.

Changes in voxel-level pRFs can inform how a region dynamically adjusts the spatial 

sensitivity of its constituent filters in order to modulate its overall spatial priority map. First, 

we replicated the typical result that voxel-level pRFs tuned for more eccentric visual field 

positions are larger in size (Supplementary Table 2), and that pRFs for later visual regions 

tend to be larger than pRFs for earlier visual regions (Supplementary Fig. 9). Second, results 

from this complementary analysis revealed that, in regions which showed enhanced spatial 

representation amplitude with attention (hV4, hMT+, IPS0), pRF size increased 

(Supplementary Figs. 8–9), even though the corresponding region-level spatial 

representations did not increase in size (Fig. 7). This may seem like a disconnect, given that 

the particular pattern of pRF changes across all voxels within a region jointly shapes how 

the spatial priority map changes with attention. However, there is not necessarily a 

monotonic mapping between the size of the constituent filters and the size of population-

level spatial representations (see below, Information content of attentional priority maps). 

Indeed, simulations based on the observed pattern of pRF changes with attention give rise to 

region-level increases in representation amplitude in the absence of changes in 

representation size, just as we observed in our data (Supplementary Fig. 10). This finding, 

together with our primary results concerning region-level spatial representations, provides 

important evidence that attentional modulation of spatial information encoding is a process 

that strongly benefits from study at the large-scale population level.

Comparing to previous results

At the level of single unit recordings, attention has been shown to decrease the size of MT 

spatial RFs when an animal is attending to a stimulus encompassed by the recorded neuron’s 

RF19–21 and to increase the size of spatial RFs when an animal is attending nearby the 

recorded neuron’s RF20–22. In V4, spatial RFs appear to shift toward the attended region of 

space in a subset of neurons10. With respect to cortical space, these single-unit attentional 

modulations of spatial RFs suggest that unifocal attention may act to increase the cortical 

surface area responsive to a stimulus of constant size. Consistent with this prediction, our 

measured pRFs for extrastriate regions hV4, hMT+ and IPS0 increased in size with 

attention.

In contrast, one previous report suggested that spatial attention instead narrows the 

activation profile along the cortical surface of visual cortex in response to a visual 

stimulus50. However, this inference was based on patterns of inter-trial correlations between 

BOLD activation patterns associated with dividing attention between 4 stimuli (one 

presented in each quadrant). These patterns were suggested to result from a combination of 
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attention-related gain and narrowing of population-level responses50; that is, a narrower 

response along the cortical surface with attention.

We did not observe any significant attention-related changes in the size of the reconstructed 

spatial representations in either primary visual cortex or other areas in extrastriate, parietal, 

or frontal cortex. However, the tasks performed by observers and the analysis techniques 

implemented were very different between these studies. Most notably, observers in the 

present study and in previous fMRI24–33 and single-unit studies10,19–21 were typically 

required to attend to a single stimulus, whereas population-level activation narrowing was 

observed when participants simultaneously attended to the precise spatial position of 4 

Gabor stimuli, one presented in each visual quadrant50. Furthermore, our observation that 

pRFs increased in size during the attend stimulus and spatial working memory conditions is 

compatible with the pattern of spatial RF changes in single-units10,19–23, and our data and 

simulations show that these local changes can result in a region-level representation that 

changes only in amplitude, not size (Supplementary Fig. 10).

Collectively, it seems probable that the exact task demands (unifocal vs. multifocal 

attention) and stimulus properties (single stimulus vs. multiple stimuli) may play a key role 

in determining how attention influences the profile of spatial representations. Future work 

using analysis methods sensitive to region-level differences in spatial representations (e.g. 

applying encoding models like that described here to data acquired when participants 

perform different tasks), in conjunction with careful identification of neural RF properties 

across those task demand conditions (e.g., from simultaneous multi-unit electrophysiological 

recordings or in vivo two-photon Ca2+ imaging in rodents and primates), may provide 

complementary insights into when and how attention changes the shape and/or changes the 

amplitude of stimulus representations in spatial priority maps and how those changes are 

implemented in neural circuitry.

Importantly, while our observations are largely consistent with measured RF changes at the 

single-unit level10,19–23, we cannot make direct inferences that such single-unit changes are 

in fact occurring. A number of mechanisms, including a mechanism whereby only the gain 

of different populations is modulated by attention, could also account for the pattern of 

results we see both in our region-level spatial representations (Figs. 5 & 7) and our pRF 

measurements (Supplementary Figs. 8–9). We do note, however, that some neural 

mechanisms are highly unlikely given our measured spatial representations and pRFs. For 

example, we would not observe an increase in pRF size if spatial RFs of neurons within 

those voxels were to exclusively narrow with attention. As a result of these interpretational 

concerns, we restrict the inferences we draw from our results to the role of attention in 

modulating region-level spatial priority maps measured with fMRI, and make no direct 

claims about spatial information coding at a neural level.

Information content of attentional priority maps

One consequence of an observed increase in the amplitude of reconstructed priority maps is 

that the mutual information (MI) between the stimulus position and the observed BOLD 

responses should increase (see ref 18 for a more complete discussion). This increase can 

occur, in theory, because MI reflects the ratio of signal entropy (variability in neural 
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responses tied systematically to changes in the stimulus) to noise entropy (variability in 

neural responses that is not tied to changes in the stimulus). Thus a multiplicative increase in 

the gain of the neural responses associated with an attended stimulus should increase MI 

because it will increase the variability of responses that are associated with an attended 

stimulus location, which will in turn increase signal entropy. In contrast, a purely additive 

shift in all neural responses (reflected by an increase in the fit baseline parameter) will not 

increase the dynamic range of responses associated with an attended stimulus location, 

causing MI to either remain constant (under a constant additive noise model), or even to 

decrease (under a Poisson noise model, in which noise increases with the mean). Previous 

fMRI work on spatial attention has not attempted to disentangle these two potential sources 

of increases in the BOLD signal, highlighting the utility of approaches that can support more 

precise inferences about how task demands influence region-level neural codes24–33.

The information content of a neural code is not necessarily monotonically related to the size 

of the constituent neural filters18. Extremely small (pinpoint) or extremely large (flat) spatial 

filters each individually carry very little information about the spatial arrangement of stimuli 

within the visual field. Accordingly, the optimal filter size lies somewhere between these 

two extremes, and thus it is not straightforward to infer whether a change in filter size results 

in a more or less optimal neural code (in terms of information encoding capacity). By 

simultaneously estimating changes in filter size across an entire ROI subtending the entire 

stimulated visual field, we were able to demonstrate that the synergistic pattern of spatial 

filter (pRF) modulations with attention jointly constrains the region-level spatial 

representation to maintain a constant size, despite most voxels exhibiting an increase in pRF 

size (Supplementary Figs. 8–10). Together, our results demonstrate the importance of 

incorporating all available information across entire ROIs when evaluating the modulatory 

role of attention on the information content of spatial priority maps.

Online Methods

Participants

10 neurologically healthy volunteers (5 female, 25 ± 2.11 years, mean ± standard dev.) with 

normal or corrected-to-normal vision were recruited from the University of California, San 

Diego (UCSD). All participants provided written informed consent in accordance with the 

human participants Institutional Review Board at UCSD and were monetarily compensated 

for their participation. Participants participated in 2–3 scanning sessions, each lasting 2 

hours, for the original experiment. Data from 2 participants (1 female) were excluded from 

the main analysis because of excessive head movement (AJ3) or because of unusually noisy 

reconstructions during attend fixation runs (AG3, see below).

In the follow-up experiment in which behavioral performance was carefully controlled and 

IPS subregions were retinotopically mapped, 4 participants of our original cohort were 

scanned for an additional 2 sessions, each lasting 1.5–2 hrs.
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Stimulus

Stimuli were rear-projected on a screen (90 cm width) located 380 cm from the participant’s 

eyes at the foot of the scanner table. The screen was viewed using a mirror attached to the 

headcoil.

We presented an identical stimulus sequence during all imaging runs while asking observers 

to perform several different tasks. Each trial began with the presentation of a small red dot 

(T1) that was presented for 500 ms, followed by a flickering circular checkerboard stimulus 

at full contrast (2.34° diameter, 1.47 cycles/°) that was presented for 3 s, followed by a 

probe stimulus (T2) that was identical to T1. A 2 s intertrial interval (ITI) separated each 

trial (Fig. 2a). T1 was presented between 0.176° and 1.104° from the center of the 

checkerboard stimulus along a vector of a random orientation (in polar coordinates, θ1 was 

randomly chosen along the range of 0° to 360°, and r1 was uniformly sampled from the 

range 0.176° to 1.104°). This ensured that the location of T1 was not precisely predictive of 

checkerboard location. On 50% of trials T2 was presented in the same location as T1, and 

the remaining trials, T2 was presented between 0.176° and 1.104° from the center of the 

checkerboard along a vector oriented at least 90° from the vector along which T1 was 

plotted (r2 was uniformly sampled from the range 0.176° to 1.104° and θ2 was randomly 

chosen by adding between 90° and 270°, uniformly sampled, to θ1). Polar coordinates use 

the center of the checkerboard stimulus as the origin. During the working memory condition 

(see below), participants based their response on whether T1 and T2 were presented in the 

exact same spatial position.

The location of the checkerboard stimulus was pseudo-randomly chosen on each trial from a 

grid of 36 potential stimulus locations, spaced by 1.17°. The stimulus location grid was 

jittered by 0.827° diagonally either up and to the left or down and to the right on each run, 

allowing for an improved sampling of space. All figures are presented aligned to a common 

space by removing jitter (see below).

On each run, there were 36 trials (one trial for each stimulus location) and 9 null trials in 

which participants passively fixated for the duration of a normal trial (6 s). We scanned 

participants for between 4 and 6 runs of each task, always ensuring each task was repeated 

an equal number of times.

Tasks

Participants performed one of 3 tasks during each functional run (Fig. 2c). During attend 

fixation runs, participants responded when they detected a brief contrast dimming of the 

fixation point (0.33 s) which occurred on 50% of trials. During attend stimulus runs, 

participants responded when they detected a brief contrast dimming of the flickering 

checkerboard stimulus (0.33 s) which occurred on 50% of trials. During spatial working 

memory runs, participants made a button press response to indicate whether T2 was in the 

same or a different location as T1. Importantly, all three events (T1, checkerboard, T2) 

occurred during all runs, ensuring that the sensory display remained identical and that we 

were measuring changes in spatial representations as a function of task demands rather than 

changes as a result of inconsistent visual stimulation. For the follow-up behavioral control 
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experiment we dynamically adjusted difficulty (contrast dimming or T1/T2 separation 

distance) to achieve consistent accuracy of ~75% across tasks.

Eye tracking

Participants were instructed to maintain fixation during all runs. Fixation was monitored 

during scanning for 4 participants using an ASL LRO-R long-range eyetracking system 

(Applied Science Laboratories) with a sampling rate of 240 Hz. We recorded mean gaze as a 

function of stimulus location and task demands after excluding any samples in which both 

pupil & corneal reflection were not reliably detected (Supplementary Fig. 1).

Imaging

We scanned all participants on a 3T GE MR750 research-dedicated scanner at UCSD. 

Functional images were collected using a gradient EPI pulse sequence and an 8-channel 

head coil (19.2 × 19.2 cm FOV, 96 × 96 matrix size, 31 3 mm thick slices with 0 mm gap, 

TR = 2250 ms, TE = 30 ms, flip angle = 90°), yielding a voxel size of 2 ×2 × 3 mm. We 

acquired oblique slices with coverage extending from the superior portion of parietal cortex 

to ventral occipital cortex.

We also acquired a high-resolution anatomical scan (FSPGR T1-weighted sequence, TR/TE 

= 11/3.3 ms, TI = 1100 ms, 172 slices, flip angle = 18°, 1 mm3 resolution). Functional 

images were coregistered to this scan. Images were preprocessed using FSL (Oxford, UK) 

and BrainVoyager 2.3 (BrainInnovations). Preprocessing included unwarping the EPI 

images using routines provided by FSL, slice-time correction, 3D motion correction (6 

parameter affine transform), temporal high-pass filtering (to remove first, second and third 

order drift), transformation to Talairach space, and normalization of signal amplitudes by 

converting to Z-scores. We did not perform any spatial smoothing beyond smoothing 

introduced via resampling during the coregistration of functional images, motion correction, 

and transformation to Talairach space. When mapping IPS subregions, we scanned those 

participants using an identical pulse sequence, but instead used a 32 channel Nova Medical 

headcoil.

Functional localizers

All regions of interest (ROIs) used were identified using independent localizer runs acquired 

across multiple scanning sessions.

Early visual areas were defined using standard retinotopic procedures51,52. We identified the 

horizontal and vertical meridians using functional data projected onto gray/white matter 

boundary surface reconstructions for each hemisphere. Using these meridians, we defined 

areas V1, V2v, V3v, hV4, V2d, and V3d. Unless otherwise indicated, data were 

concatenated across hemispheres and across dorsal/ventral aspects of each respective visual 

area. We scanned each participant for between 2 and 4 retinotopic mapping runs (n = 3 

completed 2 runs, n = 3 completed 3 runs, n = 2 completed 4 runs).

Human middle temporal area (hMT+) was defined using a functional localizer in which a 

field of dots either moved with 100% coherence in a pseudo-randomly selected direction or 
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were randomly replotted on each frame to produce a visual ‘snow’ display53,54. Dots were 

each 0.081° in diameter and were presented in an annulus between 0.63° and 2.26° around 

fixation. During coherent dot motion, all dots moved at a constant velocity of 2.71°/s. 

Participants attended the dot display for transient changes in velocity (during coherent 

motion) or replotting frequency (snow). Participants completed between 1 and 3 runs of this 

localizer (n = 2 completed 1 run, n = 3 completed 2 runs, n = 3 completed 3 runs).

IPS and superior precentral sulcus sPCS ROIs were defined using a functional localizer 

which required maintenance of a spatial location in working memory, a task commonly used 

to isolate IPS and sPCS, which is the putative human FEF47,49. A flickering checkerboard 

subtending ½ the visual field appeared for 12 s, during which time two spatial working 

memory trials were presented. During the flickering checkerboard presentation, we 

presented a red target dot for 500 ms, followed 2 s later by a green probe dot for 500 ms. 

After the probe dot appeared, participants indicated whether the probe dot was in the same 

location or a different location as the red target dot. Here, we limited our definition of IPS to 

the posterior aspect (Supplementary Table 1). ROIs were functionally defined with a 

threshold of FDR-corrected p < 0.05 or more stringent when patches of activation abutted 

one another. Participants completed between 1 (n = 2) and 2 (n = 6) runs of this scan. We 

also used data from these IPS/sPCS localizer scans to identify voxels in all other ROIs that 

were responsive to the portion of the visual field in which stimuli were presented in the main 

tasks since the large checkerboard stimuli subtended the same visual area as the stimulus 

array used in the main task. All ROIs were masked on a participant-by-participant basis such 

that further analyses only included voxels with significant responses during this localizer 

task (FDR-corrected p < 0.05).

Mapping IPS subregions

To determine the likely relative contributions of different IPS subregions to the localized 

ROI measured for all participants, we scanned the 4 participants who make up the 

behaviorally-controlled cohort presented in Figures 6 and 7 using a polar angle mapping 

stimulus and attentionally demanding task.

We used 2 stimulus types and behavioral tasks to define borders between IPS 

subregions31,32,43,44. On all runs, we used a wedge stimulus spanning 72° polar angle and 

presented between 1.75° and 8.75° eccentricity rotating with a period of 24.75 s. On 

alternating runs, the wedge was either a 4 Hz flickering checkerboard stimulus (black/white, 

red/green, or blue/yellow) or a field of moving black dots (0.3 °, 13 dots/deg2, moving at 5 

°/s, changing direction every 8 s). During checkerboard runs, participants quickly responded 

after detecting a brief (250 ms) contrast dimming of a portion of the checkerboard. During 

moving dots runs, participants quickly responded after detecting a brief (417 ms) increase in 

dot speed. Targets appeared with 20% probability every 1.5 s. Difficulty was adjusted to 

achieve approximately 75% correct performance by changing the magnitude of the contrast 

dimming (checkerboard) or dot speed increment (moving dots) between runs. On average, 

participants performed with 84.1% accuracy on the contrast dimming task and 75.4% 

accuracy on the moving dots task. 2 participants completed 14 (8 clockwise, 6 counter 

clockwise) runs, and 1 participant completed 10 runs (AC, 5 clockwise, 5 counter 
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clockwise). 1 participant was scanned with 2 different stimulus setups: half of all runs used 

the parameters described above, and half used a wedge spanning 60° polar angle and 

rotating with a period of 36.00 s (AB, 6 runs clockwise, 6 runs counter clockwise).

Preprocessing procedures were identical to those used for the main task. To compute the 

best visual field angle for each voxel in IPS, we shifted signals from counter-clockwise runs 

earlier in time by twice the estimated HRF delay (2 × 6.75 s = 13.5 s), then removed the first 

and last full cycle of data (we removed 22 TRs for all participants except AB, for which we 

removed 32 TRs), then reversed the time series so that all runs are “clockwise”. We then 

averaged these time-inverted counter-clockwise runs with clockwise runs. We computed 

power and phase at the stimulus frequency (1/24.75 Hz or 1/36 Hz, participant AB) and 

subtracted the estimated HRF delay (6.75 s) to align signal phase in each voxel with visual 

stimulus position. Finally, we projected maps onto reconstructed cortical surfaces for each 

subject and defined IPS 0–3 by identifying upper and lower vertical meridian responses 

(Supplementary Fig. 7a). Low statistical thresholds were used (computed using normalized 

power at the stimulus frequency) to identify borders of IPS subregions. Voxels were selected 

for further analysis by thresholding their activation during the same independent localizer 

task used to functionally define IPS and sPCS.

Encoding model

To measure changes in spatial representations under different task demands, we 

implemented an encoding model to reconstruct spatial representations of each stimulus that 

was used in the main task36 (see also refs. 34,37,38). This technique assumes that the signal 

measured in each voxel can be modeled as the weighted sum of different discrete neural 

populations, or information channels, that have different tuning properties (see ref. 36). 

Using an independent set of ‘training’ data, we estimated weights that approximate the 

degree to which each underlying neural population contributed to the observed BOLD 

response in each voxel (Fig. 3a). Next, an independent set of ‘test’ data was used to estimate 

the activation within these information channels based on the activation pattern across all 

voxels within an ROI on each test trial using the information channel weights in each voxel 

that were estimated during the training phase (Fig. 3b).

This approach requires specifying an explicit model for how neural populations encode 

information. Here, we assumed a simple model for visual encoding within each ROI that 

focused exclusively on the spatial selectivity of visually-responsive neural populations. To 

this end, we built a basis set of 36 2D spatial filters. We modeled these filters as cosine 

functions raised to a high power: f(r) = (½ cos(rπ/s) + ½)7 for r < s, 0 elsewhere 

(Supplementary Fig. 2). This allowed the filters to maintain an approximately-Gaussian 

shape while reaching 0 at a fixed distance from the center (s°), which helped constrain 

curvefitting solutions (below). The s (size constant) parameter was fixed at 5rstim, which is 

5.8153°. The 36 identical filters formed a 6×6 grid spanning visual space. Filters were 

separated by 2.094°, with centers tiled uniformly from 5.234° above, below, left and right of 

fixation (Fig. 3a). The full-width half-maximum (hereafter, FWHM) of all filters was 

2.3103° (Supplementary Figs. 2 and 3). This ratio of filter size to spacing was chosen to 

avoid high correlations between predicted channel responses (caused by too much overlap 
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between channels, which can result in a rank-deficient design matrix) and to accomplish 

smooth reconstructions (if filters are too small, reconstructed spatial representations are 

“patchy”, see Supplementary Fig. 3 for an illustration of reconstruction smoothness as a 

function of filter size:spacing ratio). All filters were assigned identical FWHMs so that 

known properties of the visual system, such as increasing receptive field size with 

eccentricity and along the visual stream39–41, could be recovered without being built-in to 

the analysis.

To avoid circularity in our analysis, we used a cross-validation approach to compute channel 

responses on every trial. First, we used all runs but three (1 run of each task condition) to 

create a ‘training’ set that had an equal number of trials in each condition. Using this 

training set, we estimated channel weights within each voxel across all task conditions (i.e., 

runs 1–5 of attend fixation, attend stimulus, and spatial working memory were used together 

to estimate channel weights, which were used to compute channel responses for run 6 of 

each task condition). The use of an equal number of trials from each condition in the training 

set ensures that channel weight estimation is not biased by any changes in BOLD response 

across task demands. Next, the weights estimated across all task demand conditions were 

used to compute channel response amplitudes for each trial individually. Trials were then 

sorted according to their task condition and spatial location.

During the training phase, we created a design matrix which contained the predicted channel 

response for all 36 channels on every trial (Fig. 3a). These predicted channel responses were 

computed by convolving each basis function with a mask subtending the area over which the 

stimulus was presented and normalizing the design matrix to 1, such that reconstruction 

amplitudes are in units of BOLD Z-scores.

To extract relevant portions of the BOLD signal on every trial for computing channel 

responses, we took an average of the signal over 2 TRs beginning 6.75 s after trial onset. 

This range was chosen by examination of BOLD HRFs and was the same across all 

participants. Qualitatively, results do not change when other reasonable HRF lags are used, 

such as using 2 TRs starting 4.5 s post-stimulus.

Using this approach, we modeled voxel BOLD responses as a weighted sum of channel 

responses comprising each voxel36,38. This can be written as a general linear model of the 

form:

1

where B1 is the BOLD response in each voxel measured during every trial (m voxels × n 

trials), W is a matrix that maps channel space to voxel space (m voxels × k channels), and 

C1 is a design matrix of predicted channel responses on each trial (k channels × n trials). The 

weight matrix Ŵ was estimated by:

2
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Then, using data from the held out test data set (B2), the weight matrix estimated above was 

used to compute channel responses on every trial (Ĉ2), which were then sorted by task 

condition and spatial position.

3

Reconstructing spatial representations

To reconstruct the region-wide representation of the visual stimulus viewed on every trial, 

we computed a weighted sum of the basis set, using each channel response as the weight for 

the corresponding basis function (Fig. 3b, bottom right). Reconstructions were computed out 

to 5.234° eccentricity across the horizontal and vertical meridians, though visual stimuli 

only subtended at maximum 4.523° eccentricity across the horizontal or vertical meridians. 

This was done to avoid edge artifacts in the reconstructions. Additionally, at this stage the 

reconstructed visual fields were shifted to account for the slight jitter introduced in the 

presented stimulus locations and align reconstructions from all trials. Runs in which stimuli 

were jittered up and to the left were reconstructed by moving the centers of the basis 

functions down and to the right, and runs in which stimuli were jittered down and to the 

right were reconstructed by moving the centers of the basis functions up and to the left. 

These shifts serve to counter the spatial jitter of stimulus presentation for visualization and 

quantification. By including spatial jitter during stimulus presentation, we are able to attain a 

more nuanced estimate of channel weights by sampling 72 stimulus locations rather than 36.

We averaged each participant’s reconstructions at all 36 spatial locations for each task 

condition across trials. For Figure 4, all n = 8 participants’ average reconstructions for each 

task condition were averaged and reconstructions from all ROIs/task conditions visualized 

on a common color scale to illustrate differences in channel response amplitude across the 

different task conditions and spatial locations. The 3×3 grid shown in Figure 4b is chosen as 

it is representative - results are similar for all quadrants.

For the follow-up control experiment, we plotted reconstructed spatial representations from 

only correct trials by coregistering all representations for trials at matching eccentricities, 

then averaging across all coregistered representations for each participant at each 

eccentricity. We coregistered representations for like eccentricities to the top left quadrant 

(see inset, bottom of Fig. 6b). Representations were rotated in 90° steps and flipped across 

the diagonal (equivalent to a matrix transpose operation on pixel values) as necessary.

Importantly, this analysis depends on two necessary conditions. First, individual voxels must 

respond to certain spatial positions more than others, although the shape of these spatial 

selectivity profiles is not constrained to follow any particular distribution (e.g. it need not 

resemble a Gaussian distribution). Second, the spatial selectivity profile for each voxel must 

be stable across time, such that spatial selectivity estimated based on data in the training set 

can generalize to the held-out test set.
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Curvefitting

To quantify the effects of attention on visual field reconstructions we fit a basis function to 

all 36 average reconstructions for each participant for each task condition for each ROI 

using fminsearch as implemented in MATLAB 2012b (which uses the Nelder-Mead simplex 

search method; Mathworks, Inc).

The error function used for fitting was the sum of squared errors between the reconstructed 

visual stimulus and the function:

(4)

where r is computed as the Euclidean distance from the center of the fit function. We 

allowed baseline (b), amplitude (a), location (x, y), and size (s) to vary as free parameters. 

The size s was restricted so as not to be too large or too small (confined to 0.5815° < s < 

26.17°), and the location was restricted around the region of visual stimulation (x, y lie 

within stimulus extent borders + 1.36° each side).

Due to the number of free parameters in this function, we performed a two-step stochastic 

curve-fitting procedure to find the approximate best fit function for each reconstructed 

stimulus. First, we averaged reconstructions for each spatial location across all 3 task 

conditions and performed 50 fits with random starting points. The fit with the smallest sum 

squared error was used as the starting point around which all other starting points were 

randomly drawn when fitting to reconstructions from each task condition individually (same 

distributions used around these new starting points). When fitting individual task condition 

reconstructions, we performed 150 fits for each condition. We used parameters from the fit 

with the smallest sum squared error as a quantitative characterization of the reconstructed 

visual stimulus. Then, we averaged fit parameters across like eccentricities within each task 

condition, ROI, and participant. For the follow-up control experiment, we performed an 

identical fitting procedure on each of the coregistered representations to directly estimate 

best fit parameters at each eccentricity.

Excluded participant

For one participant (AG3), reconstructions from the attend fixation runs were unusually 

noisy and could not be well approximated by the basis function used for fitting. However, 

both attend stimulus and spatial working memory runs exhibited successful reconstructions 

(Supplementary Fig. 4). Recall that the estimated channel weights used to compute these 

stimulus reconstructions were identical across the 3 task conditions, so only changes in 

information coding across task demands could account for this radical shift in reconstruction 

fidelity. Because this participant’s reconstructions could not be accurately quantified for the 

attend fixation condition, their reconstructions and fit parameters for all conditions have 

been left out of data presented in the Results. However, as noted above, data from this 

participant are consistent with our main conclusion that attentional demands influence the 

amplitude of spatial representations.
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Evaluating the relationship between amplitude and size

It may be the case that our observation of increasing spatial representation size with 

increasing stimulus eccentricity is purely a result of intertrial variability in the reconstructed 

stimulus position. That is, the same representation could be jittered across trials, and the 

resulting average representation across trials would appear “smeared” – and would be fit 

with a larger size and smaller amplitude. If this were true, changes in these parameters 

would always be negatively correlated with one another – an increase in size across 

conditions would always co-occur with a decrease in amplitude.

To evaluate this possibility, for each eccentricity and each ROI and each condition pair 

(attend stimulus & attend fixation, spatial working memory & attend stimulus, and spatial 

working memory & attend fixation) we correlated the change in size with the change in 

amplitude (each correlation contained 8 observations, corresponding to n = 8 participants). 

To evaluate the statistical significance of these correlations, we repeated this procedure 

10,000 times, each time shuffling the condition labels separately for size and amplitude, 

recomputing the difference, and then recomputing the correlation between changes in size 

and changes in amplitude. This resulted in a null distribution of chance correlation values 

against which we determined the probability of obtaining the true correlation value by 

chance. After correction for the false discovery rate, no correlations were significant (FDR, 

all p > 0.05; and note that FDR is more liberal than Bonferroni correction).

Representations from ventral and dorsal aspects of V2 & V3

For Supplementary Figure 5a, we generated reconstructions using an identical procedure to 

that used for Figure. 4, except we only used voxels assigned to the dorsal or ventral aspects 

of V2 & V3 instead of combining voxels across dorsal and ventral aspects as was done in 

the main analysis.

Stimulus reconstructions - novel stimuli

For Supplementary Figure 5b, we estimated channel weights using all runs of all task 

conditions from the main task as a ‘training set’. We used these weights to estimate channel 

responses from BOLD data taken from an entirely novel data set, which consisted of 

responses to a hemi-annulus shaped radial checkerboard (Supplementary Fig 5b, top row).

This new experiment featured 4 stimulus conditions: left-in, left-out, right-in, right-out. 

Inner hemi-annuli subtended 0.633° to 2.262° eccentricity. Outer hemiannuli subtended 

2.262° to 4.523° eccentricity. Stimuli were flickered at 6 Hz for 12 s on each trial while 

participants performed a spatial working memory task on small probe stimuli presented at 

different points within the current stimulus.

BOLD signal used for reconstruction was taken as the average of 4 TRs beginning 4.5 s after 

stimulus onset. This data was used as the ‘test set’. Otherwise, the reconstruction process 

was identical to that for the main experiment, as were all other scan parameters & 

preprocessing steps.
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Population receptive field estimation

To determine whether the spatial sensitivity of each voxel across all trials and all runs 

changed across conditions we implemented a novel version of a population receptive field 

analysis (pRF; refs 42,55). For this analysis, we estimate the unimodal, isotropic pRF which 

best accounts for BOLD responses to each stimulus position within every single voxel. This 

analysis is complementary to the primary analyses described above.

For 4 participants (those presented in Figs. 6 & 7 and Supplementary Fig. 7) and 4 ROIs for 

each participant (V1, hV4, hMT+, and IPS0, chosen as this set includes both ROIs with 

[hV4, hMT+ and IPS0] and without [V1] attentional modulation), we used data across all 

runs within each task condition and ridge regression56 to identify pRFs for each voxel under 

each task condition. We computed these pRFs using a similar method to that used to 

compute channel weights in the encoding model analysis (Fig. 3a, Online Methods: the 

univariate step 1 of the encoding model, see equation 1). We generated predicted responses 

with the same information channels used for the encoding model analysis (Fig. 3a), and 

reconstructed pRFs for each task condition for a given voxel were defined as the 

corresponding spatial filters weighted by the computed weight for each channel 

(Supplementary Fig. 8a).

In the main analysis in which we computed spatial reconstructions based on activation 

patterns across an entire ROI (Figs. 4 & 6c), any spatial information encoded by a voxel’s 

response could be exploited; this is true even if the voxel’s response to different locations 

was not unimodal (it need not follow any set distribution, so long as it responds 

consistently). However, univariate pRFs computed on a voxel-by-voxel basis cannot be 

well-characterized by an isotropic function if they are not unimodal57. Thus, to ensure that 

most pRFs were sufficiently unimodal to fit an isotropic function, we used ridge 

regression56,57 when computing spatial filter weights for the pRF analysis. The regression 

equation for computing channel weights then becomes:

(5)

where I is an identity matrix (k × k). To identify an optimal ridge parameter (λ) we 

computed the Bayes information criterion (BIC; ref 58) value across a range of λ values (0 to 

500) for each voxel using data concatenated across all 3 task conditions. This allowed for an 

unbiased selection of λ with respect to task condition. The λ with the minimum mean BIC 

value across all voxels within a ROI was selected, and this λ was used to compute channel 

weights for each of the 3 task conditions separately. An increasing λ value results in greater 

sparseness of the best-fit channel weights for each voxel, and a λ value of 0 corresponds to 

ordinary least squares regression.

After computing pRFs for each task condition, we fit each pRF with the same function used 

to fit spatial representations (Online Methods: Curvefitting) using a similar optimization 

procedure. We restricted fit size (FWHM) to be at greatest 8.08°, which corresponds to 

nearly the full diagonal distance across the stimulated visual field. This boundary was 

typically only encountered for hMT+ and IPS0, and served to discourage the optimization 

procedure from fitting large, flat surfaces. Then, we computed an R2 value for each fit, and 
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used only voxels for which the minimum R2 across conditions was greater than or equal to 

the median of minimum R2 across conditions from all voxels in that participant’s ROI 

(Supplementary Fig. 8a–b).

Because we only have a single parameter estimate for each condition for each voxel, we 

evaluated whether fit size is more likely to increase or decrease between each pair of task 

conditions (attend stimulus vs. attend fixation, spatial working memory vs. attend stimulus 

and spatial working memory vs. attend fixation) for each region for each participant by 

determining the percentage of voxels which lie above the unity line in a plot of one 

condition against another (see Supplementary Fig. 8d).

Simulating data with different pRF properties

In order to assess whether our region-level multivariate spatial representation analysis would 

be sensitive to changes in voxel-level univariate population receptive fields, we generated 

simulated data using two different pRF modulation models.

For the first model (Supplementary Fig. 10a–b), we randomly generated 500 pRF functions 

so as to uniformly sample the visual field for each of 2 conditions (Condition A, smaller 

pRFs, and Condition B, larger pRFs). Across the 2 conditions, each simulated voxel’s pRF 

maintained its preferred position while its amplitude and baseline were each randomly and 

independently sampled across conditions from the same normal distribution (amplitude: μ = 

0.8513, σ = 0.25; baseline: μ = −0.1952, σ = 0.25; these values were taken from the average 

fit pRF parameters across all participants for hV4, attend fixation and attend stimulus 

conditions, Supplementary Fig. 9a). pRF size (FWHM) was sampled from a normal 

distribution with σ = 0.5 and a mean of μ = 4.405° for Condition A (mean of pRF size for 

hV4, attend fixation) and μ = 4.89° for Condition B (mean of pRF size for hV4, attend 

stimulus; an increase of 11%). In our simulation, this resulted in 79% of simulated voxels 

showing larger pRF sizes in Condition B compared to Condition A. For the second model 

(Supplementary Fig. 10b), we used the upper median split of fit pRFs for the single 

participant shown in Supplementary Figure 8c, ROI hV4, to generate simulated BOLD data. 

This allowed us to simulate region-level BOLD data for each attention condition tested in 

our experiment, and enabled us to determine whether the changes in univariate voxel-level 

pRF size we observe (Supplementary Fig. 9) are consistent with the multivariate region-

level spatial representations we present in the main text (Figs. 5, 7).

After generating voxel-level pRFs using each of the two models described above, we added 

noise to the simulated weights (Gaussian noise added independently to each channel weight, 

σ = 0.1) and presented model voxels with 6 runs of all 36 spatial positions for each 

condition. We simulated each voxel’s BOLD response as the predicted channel response 

(response of corresponding spatial filter, Fig. 3a) to each stimulus weighted by the 

corresponding channel weights. We added Gaussian noise to the resulting BOLD data for 

each simulated voxel independently (σ = 0.1). Then, all analyses of multivariate spatial 

representations proceeded identically to those described above. We computed spatial 

representations using estimated channel weights computed across all conditions within a 

model (i.e. Condition A & Condition B, Supplementary Fig. 10a–b; or attend fixation, attend 

stimulus, and spatial working memory; Supplementary Fig. 10c–d), then fit average spatial 
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representations with a smooth surface (see Online Methods: Curvefitting) to determine the 

amplitude and size of each spatial representation. We then averaged these parameters across 

all 36 positions.

Statistical procedures

All behavioral analyses on accuracy data were performed using a 2-way repeated-measures 

ANOVA with task condition and stimulus eccentricity modeled as fixed effects (3 levels and 

6 levels, respectively, Fig. 2d, Fig. 6a).

To assess whether fit parameters to reconstructed spatial representations reliably changed as 

a function of task demands, we performed a multi-stage permutation testing procedure. This 

non-parametric procedure was adopted because the spatial filters (basis functions) used to 

estimate the spatial selectivity of each voxel during the ‘training’ phase (Fig. 3a) overlapped, 

they were not independent (violating a key assumption of standard statistical tests).

For each parameter (rows in Figs. 5 and 7), we first found ROI/parameter combinations 

which showed an omnibus main effect in a repeated-measures ANOVA (1 factor, 18 levels), 

corrected using a false discovery rate (FDR) algorithm59 across all ROIs. Then, we 

computed F-scores for a 2-way repeated measures design with eccentricity and condition as 

factors (6 levels and 3 levels, respectively) for ROIs with significant omnibus main effects.

For all tests, because we had a relatively small n (n = 8 for Fig. 5, n = 4 for Fig. 7 & 

Supplementary Fig. 7) and the range of parameters was in some cases restricted to be 

positive (size), we computed an F distribution for the null hypothesis that there is no main 

effect of omnibus factor (omnibus test) or that there is no main effect of condition, 

eccentricity, or their interaction (for a follow-up 2-way test) by shuffling trial labels within 

each participant 100,000 times. For each data permutation, we computed a new F score for 

the omnibus test, and for ROI/parameter combinations with a significant omnibus effect, a 

main effect of condition, eccentricity, and their interaction. P-values were estimated as the 

probability that the F score computed based on the shuffled data was equal to or greater than 

the F scores computed using the actual data. These additional tests were corrected for 

multiple comparisons using Bonferroni’s method within each parameter. We also 

occasionally highlight trends in the data by reporting p-values which do not reach 

significance under correction for multiple comparisons at this sample size as “marginal 

effects”, and such p-values are always reported as “uncorrected” in the text. For display, 

marginally significant tests are reported on Fig. 5 and Fig. 7 at uncorrected p < 0.025.

In addition, we performed a 3-factor repeated-measures ANOVA with ROI, task condition, 

and eccentricity modeled as fixed effects to determine whether fit parameters changed 

across ROIs (n = 8, Fig. 5; n = 4, Fig. 7). We implemented the same permutation procedure 

described above to compute p-values (10,000 iterations).

To determine whether pRF size increases at higher eccentricities, we computed a linear fit to 

a plot of each voxel’s pRF size vs. its pRF eccentricity for each ROI for each condition for 

each participant (Supplementary Fig. 8c). To determine whether the slope of the fit line was 

reliably positive for a given ROI/participant/condition, we computed confidence intervals 
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around the best fit slopes using bootstrapping (resampled all voxels with replacement 10,000 

times) and the related p value was defined as the as the probability that the slope was ≤ 0. 

We used a Bonferroni-corrected significance threshold for 48 planned comparisons (4 ROIs 

× 4 participants × 3 conditions) of α = 0.001 (see Supplementary Results, Supplementary 

Table 2 for reported statistics).

To evaluate the statistical significance of the pRF size increase (Supplementary Fig. 9), we 

first performed a 2-way repeated-measures ANOVA with ROI and condition modeled as 

fixed effects and participant modeled as a random effect in which we shuffled ROI and 

condition labels for each participant and recomputed the percentage of voxels which 

increased in size across each condition pair. We repeated this shuffling procedure 10,000 

times and compared F-scores computed using the real labels to the distribution generated 

using the shuffled labels, as above. Then, we compared whether each condition pairing 

resulted in a significant change in pRF size for each ROI by computing a T score testing 

against the null hypothesis that 50% of voxels show an increase in pRF size. As above, we 

generated a null T distribution by shuffling condition labels within each participant 10,000 

times. For this analysis we used a Bonferroni-corrected significance threshold for 12 (4 

ROIs × 3 conditions) planned comparisons of α = 0.0042.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The effects of spatial attention on region-level priority maps
Spatial attention might act via one of several mechanisms to change the spatial 

representation of a stimulus within a putative priority map.(a) The hypothetical spatial 

representation carried across an entire region in response to an unattended circular stimulus. 

(b) Under one hypothetical scenario, attention might enhance the spatial representation of 

the same stimulus by amplifying the gain of the spatial representation (i.e. multiplying the 

representation by a constant greater than 1). (c) Alternatively, attention might act via a 

combination of multiple mechanisms such as increasing the gain, decreasing the size, and 

increasing the baseline activity of the entire region (i.e. adding a constant to the response 

across all areas of the priority map). (d) Cross-sections of panels a–c. Note that this is not 

meant as an exhaustive description of different attentional modulations. (e) These different 

types of attentional modulation can give rise to identical responses when the mean BOLD 

response is measured across the entire expanse of a priority map. Note that simple Cartesian 

representations, such as those shown in a–c, may be visualized in early visual areas where 

retinotopy is well-defined at the spatial resolution of the BOLD response. However, later 

areas might still encode precise spatial representations of a stimulus even when clear 

retinotopic organization is not evident, so using alternative methods for reconstructing 

stimulus representations, such as the approach described in Figure 3, is necessary to evaluate 

the fidelity of information encoded in putative attentional priority maps.
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Figure 2. Task design & behavioral results
(a) Each trial consisted of a 500 ms target stimulus (T1), a 3000 ms flickering checkerboard 

(6 Hz, full contrast, 2.34° diameter), and a 500 ms probe stimulus (T2). T1 & T2 were at the 

same location on 50% of trials, and slightly offset on the remaining 50% of trials. During the 

stimulus presentation period, the stimulus dimmed briefly on 50% of trials and the fixation 

point dimmed on 50% of trials (each independently randomly chosen). Participants 

maintained fixation throughout the experiment, and eye position measured during scanning 

did not vary as a function of either task demands or stimulus position (see Supplementary 

Fig. 1). (b) On each trial, a single checkerboard stimulus appeared at one of 36 overlapping 

spatial locations with a slight spatial offset between runs (see Online Methods). Each spatial 

location was sampled once per run. This 6 × 6 grid of stimulus locations probes 6 unique 

eccentricities, as indicated by the color code of the dots (not present in actual stimulus 

display). (c) On alternating blocks of trials, participants either detected a dimming of the 

fixation point (attend fixation), detected a dimming of the checkerboard stimulus (attend 

stimulus), or they indicated if the spatial position of T1 and T2 matched (spatial working 

memory). Importantly, all tasks used a physically identical stimulus display – only the task 

demands varied. Each participant completed between 4 and 6 scanning runs of each of the 3 

tasks. (d) For the attend fixation task, performance was better when the stimulus was 

presented at peripheral locations. In contrast, performance declined with increasing stimulus 

eccentricity in the attend stimulus and spatial working memory conditions. All error bars 

reflect ±1 S.E.M.
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Figure 3. Encoding model used to reconstruct spatial representations of visual stimuli
Spatial representations of stimuli in each of the 36 possible positions were estimated 

separately for each ROI. (a) Training the encoding model: a set of linear spatial filters forms 

the basis set, or “information channels”, that we use to estimate the spatial selectivity of the 

BOLD responses in each voxel (see Online Methods: Encoding model, Supplementary Figs. 

2 & 3). The shape of these filters determines how each information channel should respond 

on each trial given the position of the stimulus that was presented (thus forming a set of 

regressors, or predicted channel responses). Then, we constructed a design matrix by 

concatenating the regressors generated for each trial. This design matrix, in combination 

with the measured BOLD signal amplitude on each trial, was then used to estimate a weight 

for each channel in each voxel using a standard general linear model (GLM). (b) Estimating 

channel responses: given the known spatial selectivity (or weight) profile of each voxel as 

computed in step a, we then used the pattern of responses across all voxels on each trial in 

the ‘test’ set to estimate the magnitude of the response in each of the 36 information 

channels on that trial. This estimate of the channel responses is thus constrained by the 

multivariate pattern of responses across all voxels on each trial in the test set, and results in 

a mapping from voxel space (hundreds of dimensions) onto a lower-dimensional channel 

space (36 dimensions, for mathematical details see Online Methods). Finally, we produced a 

smooth reconstructed spatial representation on every trial by summing the response of all 36 

filters after weighting them by the respective channel responses on each trial. An example of 

a spatial representation computed from a single trial using data from V1 when the stimulus 

was presented at the location depicted in (a) is shown in the lower right panel.
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Figure 4. Task demands modulate spatial representations
(a) Reconstructed spatial representations of each of 36 flickering checkerboard stimuli 

presented in a 6 × 6 grid. All 36 stimulus locations are shown, with each location’s 

representation averaged across participants (n = 8) using data from bilateral V1 during 

attend stimulus runs. One participant was not included in this analysis (AG3, see 

Supplementary Fig. 4). Each small image represents the reconstructed spatial representation 

of the entire visual field, and the position of the image in the panel corresponds to the 

location of the presented stimulus. (b) A subset of representations (corresponding to the 

upper left quadrant of the visual field, dashed box in a) for each ROI and each task 

condition. Results are similar for other quadrants (not shown, although see Fig. 5 for 

aggregate quantification of all reconstructions). All reconstructions in a and b are shown on 

the same color scale.
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Figure 5. Fit parameters to reconstructed spatial representations, averaged across like 
eccentricities
For each participant, we fit a smooth 2D surface (see Online Methods: Curvefitting) to the 

average reconstructed stimulus representation in all 36 locations, separately for each task 

condition and ROI. We allowed the amplitude, baseline, size, and center ({x,y} coordinate) 

of the fit basis function to vary freely during fitting. Fit parameters were then averaged 

within each participant across like eccentricities, and then averaged across participants. The 

size of the best fitting surface varied systematically with stimulus eccentricity and ROI, but 

did not vary as a function of task condition. In contrast, the amplitude of the best fitting 

surface increased with attention in hV4, hMT+ and sPCS (with a marginal effect in IPS, see 

text).

*, †, × indicate main effect of task condition, eccentricity, and interaction between task and 

eccentricity, respectively at the p < 0.05 level, corrected for multiple comparisons (see 

Online Methods: Statistical Procedures). Grey symbols indicate trends at the p < 0.025 

level, uncorrected for multiple comparisons. Error bars reflect within-participant S.E.M.
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Figure 6. Results are consistent when task difficulty is matched
(a) Four participants were re-scanned while carefully matching task difficulty across all 

three experimental conditions. As in Figure 2d, performance is better on the attend fixation 

task when the checkerboard is presented in the periphery, and performance on the attend 

stimulus and spatial working memory tasks is better when the stimulus is presented near the 

fovea. (b) A subset of illustrative reconstructed stimulus representations from V1, hV4, 

hMT+, IPS 0/1, averaged across like eccentricities (correct trials only, number of averaged 

trials indicated by inset). See Supplementary Figure 7 for details on IPS subregion 

identification.
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Figure 7. Fit parameters to spatial representations after controlling for task difficulty
As in Figure 5, a surface was fit to the averaged, coregistered spatial representations for each 

participant. However, in this case task difficulty was carefully matched between conditions, 

and representations were based solely on trials in which the participant made a correct 

behavioral response (Fig. 6b). Results are similar to those reported in Figure 5: attention acts 

to increase the fit amplitude of spatial representations in hV4, but does not act to decrease 

size. In hMT+, attention also acted in a non-localized manner to increase the baseline 

parameter. Statistics as in Figure 5. Error bars reflect within-participant S.E.M.
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