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Abstract: Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological
reaction taking place in the endometrium of mares within 48 h post-breeding, aimed to clear seminal
plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the
arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced
endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 h post-breeding.
Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient
immune response and compromised physical mechanisms of defense against infection. Molecular
pathways of the innate immune response known to be involved in PBIE are discussed herein.
The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses.
Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and
non-traditional therapeutic modalities for endometritis are contrasted and described in the context of
clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities,
alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the
development of non-traditional therapies. Novel biological products capable of modulating the
endometrial inflammatory response are also discussed here as part of the non-traditional therapies
for endometritis.
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1. Introduction

Endometritis, infection and/or inflammation of the endometrium, is the number one cause of
subfertility and the third most common disease affecting horses [1,2]. Clinically, mares are classified as
susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to
clear this inflammation/infection by 48 h post-breeding [3,4]. Susceptible mares, or those with difficulty
clearing inflammation, may have a poor vulvar conformation in addition to a pendulous uterus [5].
Additionally, susceptible mares are typically older [6]. In a normal breeding program, as many as
25% of broodmares are ≥ 16 years old, which is when the fertility of mares starts to decline [7]. It is
estimated that 10–15% of mares are susceptible to developing PBIE [8].

A normal phenomenon, post-breeding inflammation can be caused by infectious agents
(i.e., bacteria and fungus) and or by non-infectious agents such as sperm [9]. All mares display
this transient uterine inflammatory response within 30 minutes following natural mating or artificial
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insemination [10–12]. This physiological reaction occurs to eliminate seminal plasma, excess sperm,
microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo [9].
However, mares deemed susceptible to PBIE have a delayed onset followed by a prolonged uterine
inflammatory response [12–14], which culminates with excessive accumulation of polymorphonuclear
neutrophil (PMNs) and intrauterine fluid accumulation in the uterus up to 96 h and beyond after
breeding, impairing embryonic survival and the establishment of pregnancy [8,15,16]. Additionally,
due to impaired innate immune response activation, microbes introduced into the uterus at the time of
breeding are not eliminated efficiently, leading to potential infection.

The management of mares susceptible to PBIE is a daunting task. The equine embryo migrates
from the uterine tube to the uterine lumen between 144 and 168 h after ovulation [17]. This occurs
concomitantly with the increasing production of progesterone and cervical tone, leading to minimal
time to resolve inflammation. Persistent neutrophilia, excess intraluminal fluid accumulation, and
prolonged pro-inflammatory cytokine production are all embryotoxic and lead to decreased fertility
potential of these mares in either natural mating or artificial insemination [18]. Additionally, embryo
donor mares are bred and flushed multiple times per season, for cumulative breeding seasons, making
them particularly prone to endometritis [19]. The persistent endometrial inflammation creates a
hostile uterine environment for the embryo entering the uterus, compromising embryo recovery and
pregnancy rates [12,13].

Traditionally, endometritis has been treated with multi-modal therapeutics such as a combination of
uterine lavage, ecbolic agents, anti-inflammatories, and antibiotics. Unfortunately, a subset of mares fails
to respond to traditional therapeutics [20,21]. The lack of efficacy to traditional therapeutics, alongside
the ever-increasing incidence of antibiotic-resistant microorganisms, has led to the development of
alternative therapies for mares suffering from PBIE [21].

While equine endometritis has been a widely studied disease in the past 40 years and elegant
reviews have been published on the subject [22–27], much progress has been made in the last
decade towards the understanding of the molecular aspects involved in PBIE and pathways down-
or up-regulated in response to experimental induction and treatment [17,28–35]. Therefore, this
manuscript aims to revise the clinical, molecular, and microbiological aspects of the pathogenesis,
diagnosis, and treatment of endometritis in mares.

2. Etiology and Pathogenesis of Endometritis

Endometritis can be divided into both infectious and non-infectious causes, and yet in clinical practice,
they often occur in association with another. The clinical signs for these two types of endometritis can be
indistinguishable, except that the first type has microorganism(s) involved. In addition, to date, there are
limited controlled studies comparing infectious vs. non-infectious endometritis in mares [36,37]. Mares
with defective reproductive anatomy (e.g., poor vulvar conformation, torn vestibulovaginal sphincter,
ventral sacculation of the uterus, impaired uterine contractility, cervix incompetence, and atrophied
endometrium folds) are more prone to aspirate air or accumulate fluid or urine in the vagina and
uterus, which make the mare simultaneously prone to infectious and non-infectious endometritis [20,38].
Additionally, mares with competent immune response and functional anatomy of the reproductive
tract are able to clear infections spontaneously (i.e., mares resistant to endometritis), whereas mares
with a deficient immune response may be unable to combat the development of an infection or may
have persistent inflammation [31–33,39].

2.1. Infectious Endometritis

Infectious endometritis plays a major role in equine subfertility [40,41]. Microorganisms, including
pathogenic or opportunistic bacteria and fungi, may gain access to the uterus during breeding. While
the resistant mare should rapidly respond to the presence of microorganisms, inadequate immune
response, and impaired uterine fluid drainage (e.g., due to pendulous uterus, tight cervix, or impaired
myometrial contractility) may lead to infection [42,43]. Endometritis is mostly associated with aerobic
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bacteria [40]; however, anaerobes may also invade the uterus [44]. Of interest, retrospective reports
identified that 25-60% of mares failing to become pregnant have bacterial uterine infection [45,46].
In clinical cases, the most commonly isolated bacteria linked with endometritis are the Streptococcus
species, followed by Coliforms, Pseudomonas aeruginosa, and Staphylococcus aureus [20,42,47–49] (Table 1).
Among all, Streptococcus equi subspecies zooepidemicus (Streptococcus zooepidemicus) and Escherichia coli
predominate as causes of acute and chronic endometritis, respectively [50,51]. It is worth noting
that Streptococcus zooepidemicus has also been shown to cause dormant, deep-seeded infections in the
endometrium of mares, making them resistant to traditional therapy [52].

Table 1. Common bacteria and fungi isolated from the uteruses of mares suffering from endometritis.
G+: Gram-positive; G-: Gram-negative.

Microorganisms Superfamily Features

Bacteria

Streptococcus zooepidemicus Lactobacillales G+, opportunistic agent, potentially venereal.
Escherichia coli Enterobacterales G-, opportunistic, facultative anaerobic

Pseudomonas aeruginosa Pseudomonadales G +, potentially venereal, aerobic

Klebsiella pneumoniae Enterobacterales G-, opportunistic agent, facultatively anaerobic,
potentially venereal

Staphylococcus spp Bacillales G+, opportunistic, facultative anaerobic

Taylorella equigenitalis Burkholderiales G-, venereal, microaerophilic, cause severe
purulent endometritis

Enterobacter cloacae Enterobacterales G-, opportunistic, facultative anaerobic
Proteus spp Enterobacterales G-, opportunistic, anaerobic

Fungus
Candida spp. Saccharomycetales Yeast, 58–69% of fungal endometritis

Aspergillus spp. Eurotiales Mold with septate hyphae, 25–26% of fungal
endometritis

Mucor spp. Mucorales Mold with aseptate hyphae, 5–12% of fungal
endometritis

Adapted from Canisso and Coutinho da Silva [20], Beltaire et al. [49], and Coutinho and Alvarenga [53].

Fungi are less commonly associated with endometritis (1–5%), and they may occur alone or in
association with bacteria [54]. Aspergillus and Candida are the most common genera, but other species
have also been less commonly identified (e.g., Mucor sp) [49,53,54] (Table 1). It should be noted that
fungal endometritis typically occurs as an opportunistic infection and has been identified after repeated
use of intrauterine antimicrobials [53,55,56].

Mares susceptible to PBIE are prone to developing chronic infections, and some of those infections
are due to bacteria and fungi capabilities to produce biofilm [57–59]. Biofilm is a complex aggregate of
microorganisms and their secretions (i.e., extracellular matrix of polymeric substances) [60], which
confers the ability to microorganisms to evade the immune system [61–64]. Biofilm works as a barrier for
the diffusion of antimicrobials, and this limited penetration results in resistance to antimicrobial therapy,
particularly when compared with planktonic bacterial infection (bacteria without biofilm) [65–67].

The shift of bacteria from the planktonic to the biofilm stage is attained via bacterial cell signaling
molecule cyclic di-GMP [68,69], which regulates the production of exopolysaccharides alginate, Pel
and Psl [70–72]. It is worth noting that both Pel and Psl are involved in the attachment of bacteria
to a cellular or a noncellular substrate and in the attachment of a microcolony to a substrate and
stabilization of extracellular DNA to support the biofilm [73–77]. Approximately 80% of bacteria
isolated from the equine uterus is capable of producing a biofilm [58,59,78,79]. The host immunity and
microenvironment are known to play a role in biofilm formation in other body systems such as the oral
cavity [80,81]; however, it remains to be determined how these factors contribute to biofilm formation
and pathogenesis of endometritis in the equine uterus [58,78,82].

Previously, it was believed that the mammalian female uterine environment was sterile [83–85];
however, this claim was challenged after the publication of the Human Microbiome Project (2007), which
showed that the uterine cavity harbors a unique microbiome [83,85,86]. In horses, the uterus supports a
moderately diverse microbiome, and its composition appears largely shared with microbial populations
found on the external cervical os [87]. This communality of microbe populations between the cranial
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vagina and uterus in mares can be explained by the open cervix and close communication between
the uterine lumen and cranial vagina during estrus [88]. The uterine microbiome changes according
to the stage of the estrous cycle and across studies [89,90]. In one study [87], Proteobacteria-driven
microbiota was the primary population, while a more diverse microbiome, including Proteobacteria,
Firmicutes, Bacterioidetes, and Actinobacteria, was reported in a different study [91].

The uterine microbiome of women and cows suffering from endometritis differs from that
of healthy females [92], suggesting that endometritis is associated with commensal microbiome
dysbiosis [88]. Invasion of the uterine cavity in mares and other mammals mostly occurs via ascending
migration from the vagina [86,93], in association with one or more reproductive problems as described
above. The role of the resident uterine microbiome in preventing infection and its potential interactions
with the embryo and potential role on pregnancy loss have not been elucidated in horses. Similarly,
the role of therapies for uterine infections in restoring a healthy balance in the uterine microbiome has
not been studied in horses.

2.2. Non-Infectious Endometritis

In the past, endometritis was believed to be caused solely by a bacterial or fungal infection. Yet,
pioneer studies found a similar neutrophil response regardless of if the mare was challenged with
sperm, saline, or bacteria [12,37,94]. The immune system of the mucosal reproductive tract consists of
two branches: the innate and the adaptive. Adaptive immunity responds selectively and gradually to
the detection of antigens, and this is mediated by the T lymphocytes [95]. In contrast, the response to
breeding is dictated by the innate immune response [28,30]. This consists of a non-specific, rapid, and
transient response [96]. Initiated by Toll-like receptors (TLRs), immunoglobulins, and complement, it
leads to the leukocytic digestion and elimination of foreign material regardless of pathogenicity [97–99].
The predominantly innate immune response allows for repeat spermatozoic and embryonic “challenge”
to the immune system without the development of anti-sperm or anti-embryo antibodies. More
specifically, regulatory T cells (Treg cells) recognize male antigens and develop a tolerogenic immune
environment by suppression of inflammation and immune rejection responses [100,101]. Treg cells
are a population of T lymphocyte with immune suppressive properties that comprise both CD4+ and
CD8+ subtypes [102]. Treg cells generally act to suppress cytokine synthesis and effector function in
macrophages, T-, B-, natural killer (NK), and dendritic cells [103,104].

In addition, Treg cells play a paramount role in mediating the immune tolerance required for
embryo implantation by increasing circulating CD4+ CD25+ cells highly enriched with the signature
Treg transcription factor forkhead box protein P3 (FoxP3) [100,105,106]. It is worth noting that FoxP3
was identified as a potent marker for Tregs in mice; it is also essential for the immunosuppressive
action of Treg cells [107,108]. During early normal pregnancy, there is a decrease in CD4+/CD8+ ratio
and an increment of CD4+CD25+FoxP3 in the mouse model [107–109]. In addition, Treg-related
transcripts are increased during pregnancy in comparison with non-pregnant diestrus mares, and
FoxP3-positive cells in the fetoplacental unit are associated with pregnancy and gestational age in
mares [110]. However, it remains to be determined if susceptibility to PBIE is also associated with a
disruption of these physiological mechanisms in mares and consequent compromise the establishment
of a pregnancy. Soluble factors, including transforming growth factor-β, prostaglandin E, and TLR4
ligands, which are present in male seminal fluid, also contribute to an immune-deviating activity that
drives to the development of this tolerogenic immune environment in vivo mice and in vitro human
models [100,111,112]. Anecdotally, it has been long speculated in clinical practice that mares bred to
the same stallion repeatedly multiple times per season, for cumulative breeding seasons, particularly
in embryo transfer programs, are prone to develop more profound PBIE or not to become pregnant;
however, satisfactory pregnant rates can be achieved when these mares are bred to males not previously
used for breeding. The disruption of some of these physiological pathways may alter the uterine
immune response after repeated exposure to the same male; however, these hypotheses have not been
critically addressed in horses.
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2.3. Innate Immune Response to Endometritis

The local innate immune response is immediately activated after antigen recognition and signaling
by mucosal epithelial cells in the endometrium [28,30]. The detection of foreign particles induces the
activation of the innate immune system, which is the first line of defense. The major functions of the
innate immune system are to (1) recruit immune cells to sites of infection through the activation of
various cytokines including chemokines, (2) activate the complement cascade to promote the clearance
of dead cells, (3) induce the activation of the adaptive immune system through antigen presentation,
and (4) act as a physical barrier to the invading organisms and particles. Many of these functions have
been studied for their involvement in the disorder of endometritis, a review of which is provided here.

Believed to be the most ancient arm of the immune system, the complement system is utilized to
nonspecifically enhance the phagocytic clearance of damaged cells and microbes [113]. Complement
is an important contributor to opsonization activity in uterine secretions and inflammatory cell
chemotaxis, preceding an inflammatory response [114]. In the classical complement pathway, the
C4 subunit binds to IgM/IgG-associated C1q, initiating the enzymatic cleavages of C4 into C4a
and C4b and C2 into C2a and C2b [115] (Figure 1). The association of C4b with C2b activates C3
convertase. Thereafter, C3 convertase cleaves C3 into C3a, and C3b [116] and then C3a contributes
to leukocyte recruitment and further complement activation [117,118]. In addition, C3b binding to
C4b activates convertase [119,120]. Both C4b and C3b are then able to bind to microbe surfaces or
additional immunoglobulins [121]. The C5 convertase breaks C5 into C5a and C5b, and this results in
conformational changes and activation of the terminal pathway, which promotes the formation of the
membrane attack complex (MAC) [122]. The MAC is synthesized by interactions between C5b and
other terminal components (e.g., C6, C7, C8, and C9) and lyses the target cell(s) by creating pores in the
plasma membrane [123]. The complement cascade can also be triggered by an alternative pathway,
which entails C3b protein binding directly to antigens [124]. Interestingly, the activation of this system
has been found in response to breeding in the horse. Equine spermatozoa were found to induce the
complement cascade, resulting in an increase of C3b and C5a, leukotrienes, and prostaglandins, all of
which result in the chemotaxis of PMNs to the uterus [125–127].
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Additionally, complement cleavage factor C3b has been found in uterine secretions in both resistant
and susceptible mare populations [128–130]. The various classes of immunoglobulins (e.g., IgA, IgG,
and IgM) have also been identified in the uterine secretions of the mare. In addition to their relationship
to complement, these molecules are thought to play an important role in antigen presentation to T
cells [131–135]. Interestingly, no differences have been found when comparing the resistant mare to
the susceptible mare regarding the expression or production of the various complement subunits or
immunoglobulins, suggesting that they play a limited role in the pathogenesis of susceptibility to
PBIE [2,136].

Microbes and foreign particles (such as sperm and seminal plasma proteins) are also detected via
their antigen presentation to pattern recognition receptors (PRRs) located in the endometrial epithelial
cells [29,137,138]. These cells, alongside the immune cells (e.g., tissue macrophages, NK cells, and
neutrophils) that they recruit, produce various types of cytokines, including chemokines. Chemokines
further recruit leukocytes to the site of inflammation, while other cytokines enable the differentiation
and activation of other chemotaxed immune cells [139,140]. Collectively, these cells form a physical
and immunological barrier at the uterine mucosa [141].

Toll-like receptors, a family of transmembrane proteins expressed in mammal cells [142–145], play a
major role in that antigen recognition [146]. In this role, antigen-presenting cells (ACP), mainly dendritic,
macrophages, and NK cells, express molecules to recognize these patterns [97,147]. Pathogen-associated
molecular patterns (PAMPs) are recognized by the TLRs of endometrial and sentinel cells to begin
the inflammatory reaction [148]. The exposure of Gram-negative bacteria or lipopolysaccharides (LPS)
to these cells has been shown to enhance the expression of TLRs types 2 and 4 in mice, rabbits, and
cattle [61–64]. The expression of TLRs by the endometrium after interaction with sperm is still not
fully elucidated, particularly because semen is not sterile, and inherent bacterial contamination can be
responsible for conflicting results in the literature. Toll-like receptor type 4 primarily recognizes LPS
produced by Gram-negative bacteria, while TLR2 reacts to lipopeptides of Gram-positive bacteria, which
may invade the uterus during breeding [149,150]. It is known that TLR2 and TLR4 are increased in the
uteruses of mares resistant to PBIE after inoculation with Escherichia coli [29]. Additionally, work in other
species indicates that human and murine sperm express TLR2 and TLR4, although this has not been
confirmed in the horse [151]. In bovine, in vitro studies suggested that sperm can stimulate transcription
of pro-inflammatory cytokines, including chemokines (TNFα, IL1β, CXCL8) and prostaglandin E and
activate the local complement system (C3) mediated via TLR2/4 [152–154].

Another group of PRRs is NOD-like receptors (NLR), which are responsible for the intracellular
detection of pathogens [155]. NOD-like receptors are expressed in many cell types, including immune
cells and epithelial cells, although certain NLR family members are expressed primarily in phagocytes,
including macrophages and neutrophils. A genetic variation in these genes may predispose humans to
several inflammatory diseases [155,156]; however, the role of NLRs on the pathogenesis of endometritis
has not been elucidated in horses.

Pattern recognition receptors can respond to a diverse array of antigens and then activate
pro-inflammatory cytokines [157–159] to regulate the immune response [160,161]. Activation of TLRs
is a key event in the initiation of the inflammatory cascade [148], which stimulates nuclear factor kappa
beta (NF-κB). The nuclear NF-κB is composed of five subunits, (RelA {p65}, RelB, ReL, p50, p52) and can
be activated by innate (i.e., canonic) or adaptive (i.e., alternative) immune pathways [162]. The canonic
pathway is triggered by microorganisms and pro-inflammatory cytokines (e.g., IL1 and TNFα) [162].
The triggering of this pathway entails the activation of RelA- or cRel- [163], which are regulated by IkB
kinase β (IKKβ) through phosphorylation of inhibitors of kB (IkB) [164]. The IkB kinases are the key
regulators of the NF-κB pathway [165]; conversely, in the alternative pathway, NF-κB is activated by
other bioproducts such as lymphotoxin β, CD40 ligand, B cell-activating factor, and receptor activator
of NF-κB [166–171]. The activation of RelB/p52 complex and IkB kinase α is required in this pathway
for phosphorylation and processing of the precursors p52 p100 [166] (Figure 2).
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Figure 2. Canonic and alternative pathways for activation of the nuclear factor kappa beta (NF-kB)
in the endometrium of mares. BAFF: B cell activating Factor; CD40: Cluster of differentiation 40;
COX-2: cyclooxygenase-2; IFN1: type 1 interferons; IL1: interleukin 1; IL6: interleukin 6; LPS:
lipopolysaccharides; LTβ: lymphotoxin β; MyD88: Myeloid differentiation primary response 88;
NF-κB: nuclear factor kappa beta; NOD: nucleotide-binding and oligomerization domain; PAMPs:
pathogen-associated molecular patterns; PRR: pattern recognition receptors; RelA/p50 and RelB/p52:
subunits of the NF-κB complex; Rip2: receptor-interacting protein 2; TLR2: Toll-like receptors type
2; TLR4: Toll-like receptors type 4; TNFα: tumor necrosis factor-alpha; TRIF: TIR-domain-containing
adapter-inducing interferon-β; TRAF6: receptor-associated factor 6.

The NF-κB pathway then activates genes coding for pro-inflammatory cytokines, including
chemokines and cyclooxygenase-2 (COX-2) [148,172]. Cytokines and COX-2 signal the immune cells
modulating the acute inflammatory response [173]. Gene expression of members of both NLR and
TLR families are upregulated after intrauterine inoculation with Escherichia coli in mares. In addition,
several immune-related signal transduction pathways, including the mitogen-activated protein kinase,
the NF-κB and TNFα signaling pathways, and the pathway for cytokine–cytokine receptor interaction,
were also enriched after inoculation with Escherichia coli [29]. It should be noted that it remains to be
determined if sperm induces a similar immune response to microorganisms.
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A subset of these PRRs requires simultaneous binding to other endogenous cell surface receptors
to be activated. As an example, when TLR4 binds to CD14, the subsequent detection of LPS alters
downstream inflammatory responses [138,172]. After antigen recognition, the recruitment of adaptor
proteins together with the MyD88-dependent cascade leads to the secretion of pro-inflammatory
cytokines or the TIR-domain-containing adapter-inducing interferon-β (TRIF)-dependent cascade,
which results in the production of type 1 interferons (IFN) in addition to inflammatory cytokines
including chemokines [138,172]. The MyD88-dependent cascade induces the IL-1R-associated kinase
family of kinases and consequently, activation of the ubiquitin-dependent kinase by TNFR-associated
factor 6 [174,175]. The ubiquitin-dependent kinase induces NF-κB activation and the induction of the
non-specific immune response by NF-κB transcription [176].

Initially, cytokines are synthesized as pro-molecules needing to be activated. Many types of
molecules can activate cytokines (e.g., elastase, cathepsins, metalloproteinases, and trypsin). However,
caspases, a large family of evolutionarily conserved proteases, play this role more broadly than other
molecules [177]. For instance, the caspase-1 family (i.e., caspase-1, -4, -5, -11, -12, and -14) is primarily
involved in the regulation of cytokines activation [177], and the caspase-3 family (e.g., caspases -3
and -7) can activate pro-inflammatory cytokines [178–180]. Specifically, caspase-1 activates IL1β,
which is constitutively expressed and up-regulated in the endometrium of mares after experimental
bacterial inoculation [29] and is also synthesized by NF-κB stimulation [173]. Under the action of
prostaglandin-endoperoxide synthase, especially COX-2 during inflammation, prostaglandin synthesis
occurs [181]. In the horse, an increase in COX-2 expression has been noted in the endometrium after
exposure to seminal plasma or extender [182], as well as a local increase in prostaglandin F2 alpha
(PGF2α) concentration in the uterus of normal mares 16 h after breeding [30].

From the synthesis of prostaglandins and pro-inflammatory cytokines, mainly interleukin 1 (IL1),
interleukin 6 (IL6), and tumor necrosis factor-alpha (TNFα), vascular endothelial cell activation occurs.
This leads to a constriction of the arterioles and dilation of the venules at the affected site, thereby
increasing vascular permeability and exudate leakage to the interstitium, causing local edema [183].
The endometrial expression of various pro-inflammatory interleukins, including interleukin 1β (IL1β),
chemokine ligand 8 (CXCL8, formerly known as IL8), and TNFα, is higher in susceptible mares to
PBIE than in resistant mares, even before exposure to an antigen. This increase in susceptible mares is
also noted following challenges with pathogens or sperm [31,182,184].

With alterations in the permeability of the vascular endothelium, cellular responses begin. Vascular
endothelial cells increase in the expression of P-selectin via the inflammatory stimulus, which binds
to L-selectin on the surface of neutrophils, inducing chemotaxis [185]. Then, neutrophils produce
integrins to bind to adhesion molecules on endothelial cells until complete arrest and adherence to
the walls of blood vessels [186]. Following the detection of foreign material, neutrophils migrate
from the endometrium to the uterine lumen within 30 minutes [11] and have a peak inflammatory
response between 6 and 12 h later [2] (Figure 3). Mares susceptible to PBIE experience increased
neutrophilia at 2 and 12 h after breeding in comparison with resistant mares [16]. In addition to
phagocytosis, neutrophils also secrete additional cytokines and chemotactic mediators, further inducing
inflammation [186]. Leukocytes then release prostaglandins, which promote myometrial contractility
and assist with the physical clearance of the uterus in the healthy mare [187].
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Neutrophils are the first immune cell line to respond after antigen recognition by innate
immunity. In addition to phagocytosis and the release of lytic enzymes in response to antigens
and pathogens, neutrophils form neutrophil extracellular traps (NETs). Neutrophil extracellular traps
are DNA-associated molecules with antimicrobial and immunomodulating properties [188], which are
induced by different inflammatory agents, such as reactive oxygen species [189], antibody-antigen
complexes [190], CXCL8, lipopolysaccharide, and phorbol-myristate-acetate [191]. The antimicrobial
activity of NETs, called NETosis, is due to neutrophils rupture and release of granules, allowing
their chromatin to come in contact with antigens and other immune cells [192]. Several enzymes
(e.g., elastase, protein 3, cathepsin G, and myeloperoxidase) and histones play a role in NETosis [193–196].
The formation of NETs is a complementary mechanism to eliminate bacteria, which may cause
endometritis in mares [197].

When exacerbated, this increase in pro-inflammatory signals and the recruitment of immune
cells can lead to tissue damage. Therefore, mechanisms are necessary to terminate the process for the
resolution of the inflammatory process. An increase in anti-inflammatory or pleiotropic cytokines is
noted as quickly as 2 to 6 h after breeding in the resistant mare [16] (Figure 3). They enact their properties
by inhibiting the production of pro-inflammatory mediators, competing for pro-inflammatory receptors,
or causing cell death [198]. Interleukin-10 (IL10), -1R antagonist (IL1RN), -4 (IL4), and -13 (IL13) are
all considered anti-inflammatory and play an important role in the termination of this inflammatory
response [14,199–201]. It has been well documented that IL1RN plays a role in balancing pro- and
anti-inflammatory effects, because this cytokine competes with IL1 for binding to IL1 receptors,
which prevents the binding of IL1α and IL1β [202]. Typically, IL10 is synthesized relatively late
in the inflammatory response and acts as a generalized anti-inflammatory effector by reducing the
transcription of pro-inflammatory cytokines by monocytes and macrophages [203,204].

Additionally, while IL6 is initially pro-inflammatory in response, its function is pleiotropic due
to its ability to activate varying receptors and pathways to function as anti-inflammatories later in
the inflammatory process. A study found the initiation of these anti-inflammatory cytokines to be
defective in the susceptible mare [16]. At 6 h post-challenge with sperm, the endometrium of the
resistant mare experienced an increase in IL10, IL1RN, and IL6 expression [16]. Susceptible mares had
a significantly lower expression of these cytokines, indicating a failure to induce their response [184].
The authors hypothesized that this failure to mount an anti-inflammatory response leads to a prolonged
endometrial inflammatory response in the mare susceptible to PBIE.

In addition to a defective anti-inflammatory cytokine production, susceptible mares have also
been reported to have impaired myometrial contractility. A study found mares susceptible to PBIE
to have a different myometrial response to the bacterial challenge when compared with the resistant
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mare, and this included the frequency, duration, and intensity of the contractions [205]. Interestingly,
myometrial contractility is strongly connected to signaling within the immune system and particularly
in the cytokine induction of nitric oxide (NO). Produced by inducible nitric oxide synthase, NO is a
calcium-independent widespread signaling molecule that induces smooth muscle relaxation [206,207].
Interestingly, pro-inflammatory mediators, such as IL1 and IFNα, lead to increased transcription of this
molecule [206]. This reduced smooth muscle activity is thought to interfere with the uterine clearance
of mares susceptible to PBIE [10].

Numerous studies have investigated the role of NO in susceptibility to equine endometritis. Studies
conducted with equine endometrial explants indicated a dose-dependent response to stimulation with
NO, although a decreased response was noted in samples with lower endometrial quality [208]. In the
susceptible mare, both NO expression and activity are upregulated [10,35,209]. The prolonged and
undeterred increase in pro-inflammatory cytokines, such as IL1β, may be the cause of this increase
in NO activity, leading to smooth muscle relaxation and decreased myometrial activity, all of which
contribute to the pathophysiology of PBIE.

The stage of the estrous cycle (i.e., high vs. low progesterone concentrations) also plays a role
in the uterine immune response in mares [210]. During progesterone dominance, the equine uterus
is highly susceptible to infection, whereas, under estrogen dominance, the uterus is more capable of
clearing infections [210]. For instance, expression of serum amyloid A (SAA) and the anti-inflammatory
IL10 increased 3 h after bacterial inoculation in diestrus, but it did not in estrus [30,211].

Interestingly, matrix metalloproteinases (MMP) types 2 and 9 are significantly up-regulated 5 h after
inoculation with Streptococcus zooepidemicus in both estrus and diestrus [212]. Matrix metalloproteinases
are involved in extracellular matrix (ECM) remodeling [213] and modulated by tissue inhibitors of
MMPs (TIMPs), which also have been identified in the endometrium of mares and women [212,214].
The activity of TIMP-2 decreases during induced endometritis in mares [212]. The fine balance between
TIMPs and MMPs has been suggested to play a role in the development of endometrial fibrosis and
degeneration in mares [212], but this is still controversial [215]. It is worth noting that mares susceptible
to PBIE typically display endometrial fibrosis and other degenerative changes such as modifications in
the type of collagen deposition [216].

The pathogenesis and etiology of endometrial fibrosis in mares remain poorly understood. It is
known that MMPs and TIMPs regulate collagen deposition and other components of the ECM associated
with fibrosis [217–220]. Also, NET components (e.g., myeloperoxidase, elastase, and cathepsin G)
also up-regulate collagen types 1 and 3 and transforming growth factor-β1 [221–223]. In addition,
endometrial expression of IL1β and IL6 is up-regulated during the progression of endometrial fibrosis
in mares [224]. In vitro studies have shown the profibrotic effects of IL1β in the endometrium and other
tissues [220,225,226]. A recent in vitro study suggested that IL1β and IL6 modulate ECM, MMP, and
TIMP production in equine endometrium cells and might be important regulators in the pathogenesis
of fibrosis [227]. Apparently, there might be an association between inflammation and development of
endometrial fibrosis, in which IL1β and IL6 increase expression of ECM components, such as MMPs [227].

Additionally, endometrial epithelial cells produce antimicrobial peptides (e.g., defensins, elafin,
cathelicidin, lactoferrin, and lysozyme), allowing for the nonspecific degradation of microbes and sperm
alike [228]. In addition to their microbiocidal activity, these proteins affect cytokine induction, chemotaxis,
and cell proliferation and modulate both innate and acquired immunity [211]. Antimicrobial peptides are
modulated by the presence of bacteria, stage of the estrous cycle, and inflammation. These include factors
that destabilize bacterial cell walls, such as defensins, lysozyme, and secreted phospholipase A2 [229,230]
and those that inhibit bacterial enzymes, such as secretory leukoprotease inhibitor, which is also known as
equine neutrophil antimicrobial peptide 2 [231–233]. Many of these antimicrobial proteins are increased
in the endometrium of the susceptible mare population, including secretory leukoprotease inhibitor,
equine β-defensin, lactoferrin, and lysozyme [28,234]. As many of these proteins are also produced within
neutrophil granules, it is unknown if this increase is due to a defense mechanism within the endometrial
glands of the susceptible mare or the increased neutrophilia caused by prolonged inflammatory processes.
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Acute-phase proteins have also been investigated for their involvement and diagnostic capabilities
in endometritis, as they are systemic markers of inflammation in the horse [235–237]. Serum amyloid A,
haptoglobin, and fibrinogen have all been investigated [238]. The histologically normal endometrium of
the mare has been shown to constitutively express mRNA for SAA at moderate levels [239]. Conflicting
information exists regarding a detectable systemic SAA response to endometritis. One study found
circulating SAA and fibrinogen to increase at 3- and 12-hours post-inoculation with Escherichia coli,
and this increase correlated with the endometrial expression of SAA [240]. In contrast, another study
found no change in SAA concentrations following breeding with frozen/thawed semen [30]. Whether
this difference was caused by the type of challenge used or due to the limited sample sizes remains to
be determined. It should be noted that no difference in circulating SAA concentration or expression
has been noted when comparing the susceptible to the resistant mare [199].

3. Diagnosis

The diagnosis of endometritis entails a multi-modal approach coupled with a detailed clinical
history. Endometrial culture, cytology, and biopsy are the most common tools employed to diagnose
endometritis in mares [241] (Table 2). Mares susceptible to PBIE may have a history of accumulating
intrauterine fluid before and after breeding (Figure 4), recurrent embryonic loss, early return to estrus,
failure to become pregnant despite good breeding management, and presenting vulvar discharge.

Table 2. Summary of common tools used to diagnose endometritis in mares.

Technique Approach and Applications Limitations

Ultrasound
Used as a screening tool to detect the presence,
amount, and appearance of IUF, which can be

suggestive of endometritis.

Not all mares affected by endometritis,
particularly chronic endometritis, accumulate
IUF. The amount and echogenicity of fluid can

be useful to direct the need for additional
diagnostic techniques and therapeutic regimens.

Cotton-tip swab

Fast, user-friendly, and inexpensive approach to
collect samples for culture and cytology. Results

in combination with cytology can be used to
dictate therapeutic approaches

Only a small segment of the uterus is sampled,
and thus, focal infections not generating a

diffuse endometrial response can be missed.
In comparison with cytobrush, fewer cells are
recovered, and cells are slightly compressed,

making the evaluation more difficult

Cytobrush
Fast, user-friendly, and inexpensive approach to

collect samples for culture and cytology,
although it is more commonly used for cytology.

Only a small segment of the uterus is sampled,
and thus, focal infections can be missed. Bacteria

in biofilm may not be detected.

Low-volume
uterine lavage

The whole surface of the uterus can be sampled
for culture and cytology, and thus this technique
is more utilized for the diagnosis of challenge
and chronic endometritis. The recovered fluid
can be centrifuged or allowed to decant before

cytological evaluation.

There is a risk of contamination with commensal
microorganisms of the caudal reproductive tract.
It requires at least one well-trained clinician and
an assistant. An excessive amount of fluid can

overdilute the sample and cause a false-negative
and may challenge the cytological evaluation.
Mares with a pendulous uterus can have poor

fluid recovery.

Endometrium
biopsy

While this approach is primarily used for
histological evaluation, endometrium biopsy is
a sensitive and specific approach to diagnose

endometritis in mares by histological evaluation
and culture of the biopsy. Particularly useful for

deep endometrium infection. Results may
guide the treatment strategies employed.

It requires a biopsy, which is a minor procedure
but still invasive. It also requires well-trained
laboratory personnel capable of performing

cultures and histological evaluations

Adapted from Riddle et al. [40] and Canisso et al. [20]. IUF: intrauterine fluid accumulation.
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Endometrial cytology can be used to assess the type and proportion of inflammatory cells 
regarding endometrial epithelial cells present in the uterine lumen (Figure 5). In addition, cytology 
can occasionally detect the presence of bacterial colonies, hyphae, yeast, and urine crystals [242]. 

Figure 4. Cross-section ultrasonographic images of the uterine horns in mares: (A) An image from
the equine uterus with no endometrial edema, or intraluminal fluid accumulation, typically seen in
mares during diestrus; (B) the uterine horn of a mare in estrus, characterized by the presence of edema
in the lymphatic vessels surrounding the endometrium submucosa giving the “orange-slice” aspect,
(C) Exacerbated endometrium edema with extravasation and intraluminal fluid accumulation (*) in a
mare with endometritis, and (D) extensive hyperechogenic intraluminal fluid accumulation (**) in a
mare with endometritis. Scale bars 10 mm (A–D)

Endometrial cytology can be used to assess the type and proportion of inflammatory cells regarding
endometrial epithelial cells present in the uterine lumen (Figure 5). In addition, cytology can occasionally
detect the presence of bacterial colonies, hyphae, yeast, and urine crystals [242]. Specimens for endometrial
cytology can be obtained with a simple or double-guarded cotton-tip swab, cytobrush, or low-volume
uterine lavage [242–244]. Cytobrush and low-volume uterine lavages yield superior diagnostic samples
than cotton-tip swabs [47,244] (Table 2). In addition, smears obtained with a cytobrush yield more
cells (endometrial and PMNs) than cotton-tip swabs [47]. In addition, cytobrush smears had a positive
association between the number of PMNs and the number of colonies of β-hemolytic streptococci[244] but
not when Escherichia coli was the primary bacterial isolate [245]. After collection, endometrial smears
are fixed and stained with Romanovsky-type stains for evaluation. Samples can be evaluated at 400x
or 1000x magnification and quantified as the number of neutrophils for every 100 epithelial cells (EC)
(Figure 5). The following categories may be used to define the endometrial inflammation: normal (no
white blood cells (WBC) to rare WBC/100 EC), mild inflammation (1–2 WBC/EC), moderate inflammation
(3–5 WBC/EC), and severe inflammation (>5 WBC/EC) [242]. As noninfectious endometritis will still lead
to chemotaxis of neutrophils into the uterine lumen, cytologic examinations cannot be used singularly to
rule out infectious endometritis. Therefore, samples for endometrial culture should always be harvested
and interpreted in conjunction with cytology results.
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in this slide, but, conversely, hypersegmented neutrophils are overly represented in this smear. Scale 
bars 50 µm (A and B). 
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Figure 5. Endometrial cytology in mares stained with Romanowsky-type stain (×100). (A) Negative
endometrial cytology; in this slide, endometrium epithelium cells, can be seen in the absence of
inflammatory cells. (B) Positive endometrial cytology; few endometrium epithelium cells can be seen
in this slide, but, conversely, hypersegmented neutrophils are overly represented in this smear. Scale
bars 50 µm (A and B).

Endometrial culture should always be collected before any uterine or vaginal procedure to
avoid potential contamination. Endometrial culture can be done via double-guarded cotton-tip swab,
low-volume uterine lavage, or biopsy [46,241,246–248]. Endometrial culture with double-guarded
cotton-tip swab has lower sensitivity (0.34) in comparison with endometrial culture off a biopsy
(0.82) [241] or low-volume uterine lavage (0.75) [245]. However, the specificity of low-volume uterine
lavage (0.72) is reported to be lower than the other two techniques (swab—0.90; biopsy—0.90) [245].
After collection, the sample should be processed or placed in transport media (e.g., Ames or Steward)
and kept refrigerated until arrival at the laboratory or streaked over culture media right way. In addition,
to have microorganisms identified with biochemical tests or microbial proteins or genes, the growth
can be grossly estimated by the number of colonies per plate as no growth (no colonies), very light
(≤2 primary streak), light (3–5 primary streak), moderate (>5 into secondary streak), and heavy (>5 into
tertiary streak) [33,249]. After bacterial or fungal isolation, an antimicrobial sensitivity test should be
performed to determine the most suitable antimicrobial to treat the infection. In addition, PCR has
been gaining popularity in clinical practice to identify bacteria and fungi in endometrium samples.
Results can be available in 6 h, while the final culture and sensitivity results are pending [250].

The endometrial biopsy also can be used as a diagnostic tool for endometritis, as well as for a proxy
for putative ability of mares carrying a foal to term [246,251–253]. A grading system was developed
by Kenney and Doig, where the endometrium is assessed for glandular distribution, inflammatory
cells, lymphatic lacunae, and fibrosis and then graded on a scale of I–III [254] (Figure 6). As these
aspects of endometrial degeneration are associated with a predisposition to endometritis, a biopsy
score combined with the mare’s clinical history can be used to predict fertility [251,253]. In addition,
as mentioned above, the culture of biopsy samples improves sensitivity (0.82) when compared with
double-guarded cotton-tip swabs (0.34) [246]. Recently, it has been proposed that gene expression in
endometrial biopsies, such as equine β-defensin 1, lysozyme, and secretory leukoprotease inhibitor,
can be used as a diagnostic test to identify mares susceptible to PBIE with overall sensitivities of
78-94% [28]; however, to date, these genes have yet to be tested in clinical practice.
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Figure 6. Endometrial biopsy specimens stained with H&E (×20 magnification, insert ×40): (A) A mare 
with acute, persistent breeding-induced endometritis characterized by a massive neutrophilic 
infiltrate in the stratum compactum and spongiosum; black arrows indicate neutrophils (B) a mare 
with chronic persistent breeding-induced endometritis characterized by heavy lymphocytic infiltrates 
present in the stratum compactum of the endometrium; white arrows indicate lymphocytes. Scale 
bars 10 µm inserts (A and B); and 20 µm (A and B). 

4. Treatment 

Traditionally, endometritis has been treated with uterine lavage, ecbolics, anti-inflammatories, 
and antimicrobials [20]. In recent years, the lack of response to traditional therapy and the increasing 
prevalence of antimicrobial-resistant pathogens has led to the development of alternative therapies 
to treat mares suffering from chronic endometritis [21]. Traditional and alternative therapeutic 
modalities are discussed herein. 

4.1. Ecbolics 

Ecbolics, are a pharmacological class of drugs used to stimulate uterine contractions to eliminate 
intrauterine fluid accumulation via the cervix and lymphatic drainage [255–257]. Oxytocin, the most 
commonly used ecbolic, is typically administered any time before breeding (except, up to 1 hour 
before breeding) and then between 4 hours post-breeding and 72 hours after ovulation. It is believed 
that sperm transportation to the uterine tubes is complete by 4 hours post-breeding; thus, this is the 
shortest amount of time in which mares can receive an ecbolic or uterine lavage without 
compromising pregnancy rates [258]. 

After ovulation, cervical closure occurs, preventing the elimination of uterine fluid through the 
cervix [12]; however, minimal amounts of fluid can still be eliminated via lymphatic vessels present 
in the uterus. Smaller doses of oxytocin (10-20 units) induce rapid uterine contractions of short 
duration, whereas higher doses (e.g., 40 units) result in tetanic, less effective contractions [256,259–
261]. The effects of exogenous oxytocin are expected to last ~45 minutes and therefore, requiring 
repeated doses [187]. 

Cloprostenol, a PGF2α analog, is another ecbolic used in clinical practice to treat intrauterine 
fluid accumulation in mares [21]. This drug induces longer myometrial activity (5 hours) when 
compared to oxytocin [262,263], benefiting uterine cleansing and lymphatic drainage in mares with 
a pendulous uterus [263]. However, colic-like signs (e.g., pawing, abdominal contractions, sweating, 
tachypnea) following PGF2α are undesirable features [264]. In addition, administration of PGF2α 
starting 18–24 hours post-ovulation can compromise corpus luteum formation and function, thus 

Figure 6. Endometrial biopsy specimens stained with H&E (×20 magnification, insert ×40): (A) A mare
with acute, persistent breeding-induced endometritis characterized by a massive neutrophilic infiltrate
in the stratum compactum and spongiosum; black arrows indicate neutrophils (B) a mare with chronic
persistent breeding-induced endometritis characterized by heavy lymphocytic infiltrates present in the
stratum compactum of the endometrium; white arrows indicate lymphocytes. Scale bars 10 µm inserts
(A and B); and 20 µm (A and B).

4. Treatment

Traditionally, endometritis has been treated with uterine lavage, ecbolics, anti-inflammatories,
and antimicrobials [20]. In recent years, the lack of response to traditional therapy and the increasing
prevalence of antimicrobial-resistant pathogens has led to the development of alternative therapies to
treat mares suffering from chronic endometritis [21]. Traditional and alternative therapeutic modalities
are discussed herein.

4.1. Ecbolics

Ecbolics, are a pharmacological class of drugs used to stimulate uterine contractions to eliminate
intrauterine fluid accumulation via the cervix and lymphatic drainage [255–257]. Oxytocin, the most
commonly used ecbolic, is typically administered any time before breeding (except, up to 1 hour before
breeding) and then between 4 h post-breeding and 72 h after ovulation. It is believed that sperm
transportation to the uterine tubes is complete by 4 h post-breeding; thus, this is the shortest amount of
time in which mares can receive an ecbolic or uterine lavage without compromising pregnancy rates [258].

After ovulation, cervical closure occurs, preventing the elimination of uterine fluid through the
cervix [12]; however, minimal amounts of fluid can still be eliminated via lymphatic vessels present in
the uterus. Smaller doses of oxytocin (10-20 units) induce rapid uterine contractions of short duration,
whereas higher doses (e.g., 40 units) result in tetanic, less effective contractions [256,259–261]. The effects
of exogenous oxytocin are expected to last ~45 minutes and therefore, requiring repeated doses [187].

Cloprostenol, a PGF2α analog, is another ecbolic used in clinical practice to treat intrauterine fluid
accumulation in mares [21]. This drug induces longer myometrial activity (5 h) when compared to
oxytocin [262,263], benefiting uterine cleansing and lymphatic drainage in mares with a pendulous
uterus [263]. However, colic-like signs (e.g., pawing, abdominal contractions, sweating, tachypnea)
following PGF2α are undesirable features [264]. In addition, administration of PGF2α starting 18–24 h
post-ovulation can compromise corpus luteum formation and function, thus resulting in suboptimal
systemic progesterone concentrations and decreased pregnancy rates function [262,265].
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Carbetocin, an oxytocin analog, is another ecbolic drug used to promote milder and longer
uterine contractions when compared with oxytocin [266,267]. Carbetocin is a cyclic octapeptide with a
substitution in the amino group by a hydrogen atom with a modification of the disulfide bond by a
thioether bond and substitution of the hydroxyl group of tyrosine by a methoxyl group, which helps to
avoid early metabolization following administration [266]. Carbetocin has a 2.5-fold longer half-life
(17 minutes) than oxytocin (6 minutes) [266,267]. However, to date, there is no study comparing the
ability of oxytocin and carbetocin to promote uterine clearance in mares.

4.2. Antibiotics

While antimicrobials are necessary to treat infectious endometritis in mares, these drugs are also
often used with no clear medical indication, an example of which is the common single antibiotic dose
intrauterine infusion following breeding [8]. The irrational use of antimicrobials has led to the rapid
development of antimicrobial resistance. Therefore, the proper identification of microorganism(s),
in addition to sensitivity to antimicrobials, is paramount to treat endometritis and prevent the
development of antimicrobial resistance successfully.

Because the most common bacterial isolates in the mare’s reproductive tract are Streptococcus spp,
Escherichia coli, Klebsiella sp, Pseudomonas sp, and Staphylococcus sp [20,42,47–49], the most common
antimicrobials used to treat endometritis include β-lactam (e.g., ceftiofur, ampicillin, penicillin) and
aminoglycosides (i.e., gentamicin and amikacin) [268] (Table 3). It is interesting that Streptococcus
zooepidemicus and Escherichia coli, the two most common isolates from mares with endometritis, were
reported to be highly resistant to common antimicrobials [269].

Table 3. Common antimicrobials used to treat mares suffering from bacterial endometritis.

Drug Class Therapeutics Mechanism of Action AMR

Aminoglycosides
(e.g., amikacin sulfate,
gentamicin sulfate, and
neomycin)

Concentration-dependent,
bactericidal,
broad-spectrum, G-

Irreversible inhibition of bacterial
protein synthesis by binding to the
30S subunit of the bacterial
ribosome

Low incidence, efflux pumps,
mutation at the drug binding site

Cephalosporin (β-lactam, third
generation) (e.g., ceftiofur
sodium, and ceftiofur
crystalline-free-acid)

Time-dependent,
bactericidal,
broad-spectrum, G- and
G+

Inhibition of cell wall synthesis by
disruption of the peptidoglycan
layer

Growing resistance based on PBP
mutation-reduced permeability
and enzymatic inactivation by β

-lactamase. Most G- rods can
produce β-lactamase

Fluoroquinolones
(e.g., enrofloxacin, and
ciprofloxacin)

Concentration-dependent,
bactericidal,
broad-spectrum, G- and
some G+

Inhibits DNA gyrase
(topoisomerase II) and
topoisomerase IV

Mediated by target mutations in
DNA gyrase

Extended-spectrum penicillins
(β-lactam) (e.g., Ampicillin,
and Ticarcillin)

Time-dependent,
bactericidal,
broad-spectrum, G+ and
some G-

Interference in bacterial cell
membrane synthesis by inhibition
of the transpeptidases and
peptidoglycan enzymes

Acquired resistance in G- by
plasmid- or integron-mediated

Penicillins (natural β-lactam)
(e.g., K penicillin, Na penicillin,
and G Procaine)

Time-dependent,
bactericidal,
broad-spectrum, G+

Lysis of cells weakened by the loss
of the peptidoglycan layer in the
membrane by binding the PBPs in
the outside of the bacteria wall

Mutation of PBPs that reduces
bacterial permeability, and
production of β-lactamase

Polymyxins (e.g., polymyxin B)

Concentration-dependent,
bactericidal,
broad-spectrum, G-
(e.g., Pseudomonas spp).

Disorganize the membrane by
binding LPS, disrupting the cell
wall membrane, and increasing cell
permeability by detergent-like
action

Rare; modification of the LPS in the
bacterial membrane and
development of an efflux
pump/potassium system

Sulfonamides
(e.g., sulfamethoxazole)
associated with pyrimidine
(trimethoprim)

Time-dependent,
bacteriostatic,
broad-spectrum, G- and
G+ (Streptococcus spp)

Interference in the biosynthesis of
folic acid by competition with
PABA for dihydropteroate
synthetase

Mediated via a chromosomal
mutation causing the
hyper-production of PABA or
insensitive dihydropteroate
synthase

Nitroimidazole
(e.g., metronidazole)

Concentration-dependent,
G+ anaerobes

Adapted from Giguère [270]. AMR: antimicrobial resistance; PABA: para-aminobenzoic acid; PBPs: penicillin-binding
proteins; LPS: lipopolysaccharides.
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The mechanisms through which bacteria become resistant to antibiotics have been characterized
as modifications in the cell target that prevent antibiotic binding, synthesis of enzymes that digest
the antimicrobial agent, activation of an alternate pathway that bypasses the mechanism of action of
the antimicrobial drug, down-regulation or elimination of transmembrane porins from where drugs
can access the cell, and elimination of drugs by efflux pumps [271,272]. Additionally, Streptococcus
zooepidemicus can cause deep-seeded dormant infections (i.e., vegetative stage) in the uteruses of
mares, making the bacteria resistant to conventional therapy [51]. One commercial product called
b-Activate (Bojesen and Petersen Biotech, Copenhagen, Denmark) has been developed to stimulate
dormant Streptococcus into an active proliferative stage, thus making the infection treatable with
antimicrobials [52]. The cost of the product has limited its widespread use in clinical practice.

Antimicrobial usage for the treatment of endometritis can be administered either via intrauterine
infusion or systemically. It should be noted that not all systemic antimicrobials can be administered in
the uterus without some adjustment. An example of this is in fluoroquinolones such as enrofloxacin.
The systemic formulation of enrofloxacin cannot be used in the uterus, as the vehicle causes endometrium
necrosis [273]. However, if prepared with a different vehicle, enrofloxacin can be safely administered
within the uterus [274]. In addition, aminoglycosides (e.g., gentamicin and amikacin) need to be buffered
with sodium bicarbonate to counterbalance their acidic pH of 4 [20,275]. Infusion of incompatible
antimicrobials into the uterus may precipitate and leave residues in the uterus, which could disturb
embryo–endometrium interactions.

There is conflicting evidence regarding the most suitable route for antimicrobial administration
to treat endometritis in mares. Intrauterine antimicrobial administration involves minimal systemic
disturbances of the microbiome in other body systems, higher local endometrium concentrations, and
a lower total amount of antimicrobial needed when compared with systemic administration [268,275].
It should be noted that systemic administration of antimicrobials, particularly for a prolonged period and
when drugs need to be changed during treatment, can result in highly undesirable complications such as
diarrhea, colitis, and systemic anaphylactic reactions [268]. In contrast, intrauterine administration may
also irritate the endometrium and create noninfectious endometritis itself. Additionally, intrauterine
antibiotics are presumed to lead to inconsistent tissue penetration, which favors the development of
antimicrobial resistance. Presumably, deep-seeded and dormant endometrial infections, such as those
caused by Streptococcus, may benefit from systemic administration, as intrauterine infusions may not
result in deep penetration of antimicrobials.

Treatments for fungal endometritis are not well elucidated, as there is a lack of controlled studies
on fungal endometritis in mares and the pharmacokinetic and pharmacodynamics of these drugs
in the reproductive tract. The initial treatment should address the predisposing factors (e.g., poor
perineal conformation, immunosuppression, discontinue intrauterine infusions with antibiotics)
in combination with uterine lavages and ecbolic drugs. Elimination of predisposing factors for
endometritis can sometimes restore the fertility of these mares [54,56]. However, when needed, three
types of antifungal agents (polyenes, imidazoles, and triazoles) can be used to treat mares with fungal
uterine infections [49,56]. The polyenes are considered fungicidal drugs, and the azoles (e.g., imidazoles
and triazoles) are fungistatic [270]. Interestingly, polyenes and azoles have similar mechanisms of action,
as they act in the fungal membrane by binding the ergosterol or inhibiting ergosterol biosynthesis [276],
respectively (Table 4). In vitro results indicate that polyenes (e.g., amphotericin B, natamycin, and
nystatin) are more effective in treating fungal endometritis than azoles (e.g., ketoconazole, fluconazole,
and miconazole), mainly for molds with septated hyphae [49].
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Table 4. Common anti-fungal drugs used to treat mares suffering from fungal endometritis.

Drug Class Therapeutics Mechanism of Action AMR

Polyenes
(e.g., amphotericin B,
natamycin, and
nystatin)

Fungicidal or fungistatic,
broad-spectrum against
Candida spp, Aspergillus
spp, and Mucor spp

Binding to ergosterol in the
membrane to disrupt the
cell wall

Rare; the only mutant
fungus enhances
synthetic pathways for
alternative sterols that
replace ergosterol in the
cell membrane

Imidazoles
(e.g., clotrimazole,
ketoconazole,
miconazole)

Broad-spectrum activity
against Candida spp

Inhibition of ergosterol
synthesis in the fungal cell
membrane by inhibiting the
enzyme 14-α-demethylase,
ultimately increasing
cellular permeability and
cell leakage

Resistance is found in
filamentous fungi and
after prolonged
therapeutic regimens

Triazoles
(e.g., fluconazole,
itraconazole)

Potent anti-Aspergillus
activity

Blockage of cytochrome
P450–dependent enzyme
C-14-α-demethylase
(necessary for the
conversion of lanosterol to
ergosterol)

Resistance involves a
single-point mutation in
the cyp51A gene, which
encodes for 14-α sterol
demethylase

Adapted from Giguère [270] and Beltaire et al. [49].

4.3. Uterine Lavage and Treatment for Biofilm

Uterine lavage is recommended in mares with excessive intrauterine fluid accumulation (e.g., >2 cm
depth) and high ultrasonographic echogenicity [277]. Crystalloid solutions such as lactated Ringer’s
solution (LRS) and 0.9% saline are most commonly used to lavage mares’ uteruses [278]. As studies
have demonstrated that some bacteria, such as Escherichia coli, can utilize lactate (present in LRS) [279]
and gluconate (present in Plasmalyte, a crystalloid solution less commonly used for uterine lavages) as
substrates for growth [280], uterine lavage with crystalloids cannot be used alone to treat infectious
endometritis. These solutions can be enriched with anti-septics (e.g., povidone-iodine and hydrogen
peroxide), vinegar to change the uterine microbiome in cases of fungal endometritis, and additives to
break biofilm such as mucolytics (e.g., N-acetylcysteine, dimethyl sulfoxide, ethylenediaminetetraacetic
acid-2-amino-2-hydroxymethyl-propane-1,3-diol alone or in combination with Tris; disodium
ethylenediaminetetraacetate dehydrate-2-amino-2-hydroxymethyl-1,3-propanediol). Despite the wide
use of these products in the treatment of endometritis, it is unknown how they affect the resident
uterine microbiome and how these agents can be used to restore the balance of microorganisms in utero.

Uterine lavage helps by physically removing microorganisms, debris, inflammatory cells and
mediators, and dead sperm from the lumen, which can be detrimental for the sperm before breeding or
the embryo after breeding [277,278,281]. It can be performed at any time before or starting four hours
after breeding. Four hours after breeding is recognized as the minimal time necessary for sperm
to reach the uterine tubes, not interfering with fertility [258,282,283]. Additionally, in a stagnant
inflammatory state, the use of uterine lavage can reintroduce viable neutrophils to reinstate an active
degradation of microbes.

4.4. Immunomodulatory Agents

The treatment of PBIE with non-steroidal anti-inflammatory drugs (NSAIDs) is still controversial,
as inhibition of prostaglandin-endoperoxide synthase (types 1 and 2) and therefore the arachidonic
acid cascade is a primary effect. This would decrease PGF2α production, potentially diminishing
myometrial activity and leading to delayed uterine clearance. Two studies on phenylbutazone and
flunixin meglumine (non-selective COX-2 NSAIDs) observed delayed uterine clearance and an increased
inflammatory reaction in mares receiving treatment [284,285]. Additionally, the administration of high
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(>2X labeled dose) and sustained doses of NSAIDs in pre-ovulatory mares has been shown to increase
the rate of anovulatory hemorrhagic follicles [286,287]. However, the labeled dose of NSAID did not
interfere with ovulation [288]. In addition, the combination of NSAID with oxytocin has been shown
to improve uterine clearance [255], reduce PMNs infiltration, and decrease endometrial expression of
COX-2 [289] in susceptible mares.

Another alternative is the selective COX-2 NSAIDs, which do not act on the cyclooxygenase-1
(COX-1) pathway [290]. Firocoxib, a COX-2 selective NSAID, has been described to mitigate
post-breeding inflammatory response in mares with a reduction in COX-2 in the endometrium
of mares treated during the periovulatory period, while not affecting ovulation rates [291]. Vedaprofen,
another selective COX-2 inhibitor, has been reported to affect fertility in mares with PBIE positively
but without interfering with intrauterine fluid accumulation and the inflammatory score of the
endometrium [292]. Based on these results, selective COX-2 NSAIDs may be an alternative treatment
to mares suffering from PBIE.

Glucocorticoids are routinely used to modulate the post-breeding inflammatory response in mares.
The seminal study used multiple prednisolone doses before ovulation for mares being bred with
frozen semen [136,293]. A posterior study demonstrated that administration of dexamethasone before
breeding reduced endometrial inflammation and improved pregnancy rates in barren mares with a
history of or presenting predisposing signs for PBIE [15].

On a molecular level, dexamethasone affects the endometrial expression of cytokines and SAA in
susceptible mares after intrauterine inoculation with Escherichia coli [33] or sperm [34,294]. A reduction
of pro-inflammatory IL1β, CXCL8, and SAA and suppression of inflammatory mediators, such as
COX-2, lipo-oxygenase 5, and NO, were reported after dexamethasone therapy, while an increase
in the inflammatory modulating and anti-inflammatory IL6, IL10, and IL1RN was also observed
after treatment [33]. Additionally, the administration of dexamethasone altered the production of
acute-phase proteins following bacterial challenge [295] and did not alter the phagocytic function of
blood-derived PMNs [296], which could predispose the mare to a secondary infection. This alteration
in the acute phase protein profile has also been noted following treatment with prednisolone [297].
A study found that the administration of prednisolone following inoculation with bacteria to increase
antitrypsin and transthyretin while reducing IgG [297]. It should be noted that while glucocorticoid
therapy is associated with reduced endometrial edema following breeding, repeated administration
of either dexamethasone and prednisolone may suppress the luteinizing hormone (LH) surge and
increase the rate of ovulation failure [298]. In one study, prolonged administration (5 days) of
dexamethasone tended to reduce (40%) ovulation rates in mares when compared with placebo (100%),
while the prolonged administration of prednisolone did not alter these results (83%) [298]. In horses,
dexamethasone may affect hypothalamic GnRH and pituitary LH secretion [299,300], and in other
species, glucocorticoids may alter hypothalamic [301], anterior pituitary [302], and ovary [302,303]
function. Therefore, a single and low-dose injection is recommended for the treatment of post-breeding
endometritis in mares rather than repeated doses.

The use of bacterial extracts has also been found to alter the immune response to
endometritis [31–33,184,304,305]. Mycobacterium phlei cell wall extract (MCWE) is a commercial
immunomodulator (Settle, Bioniche Animal Health, Athens GA, USA) that is used for the treatment of
equine endometritis caused by Streptococcus zooepidemicus. This immunomodulator acts by enhancing
the innate humoral immune response. It has been shown to decrease the endometrial expression of
pro-inflammatory cytokines IL1β, IL6, and TNFα in susceptible mares following both breeding and
challenge with Gram-positive bacteria, while also increasing the expression of the anti-inflammatory
IL10 [32]. In addition, mares treated with MCWE also show a decrease in NO [36]. Although MCWE
did not affect endometrial cytokine expression following challenge with Escherichia coli, a pronounced
reduction in bacterial growth was noted following treatment, in addition to a reduction in intrauterine
fluid accumulation [33]. This was confirmed in the following study, and MCWE was found to be
bactericidal regardless of being administered intravenously or in the uterus [304].
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Another immunostimulant that has been described to be able to improve pregnancy rates in
mares is the Propionibacterium acnes (EQStim, Neogen Corp, Lexington KY, USA) [305]. This therapy
induces a non-specific cell-mediated response, predominantly by macrophage activation and cytokine
release. In the single study investigating this immunostimulant, mares with clinical endometritis were
treated with intravenous Propionibacterium acnes [305]. Repeated administration of this treatment as an
adjunct to conventional therapies has improved pregnancy rates and increased live foaling rates in
mares with a cytologic diagnosis of endometritis in comparison with a placebo. Unfortunately, the
molecular mechanisms of using this therapy have yet to be investigated.

4.5. Lactoferrin

Lactoferrin is an 80kDa protein found promiscuously throughout the body, including in both the
reproductive and immune systems [306]. It is believed to be bactericidal due to its ability to chelate
free iron [307]. The endometrial expression of lactoferrin varies depending on the stage of the estrous
cycle and is increased during estrus, indicating its endocrine dependency [234]. The administration of
recombinant lactoferrin at the time of breeding in the normal mare has shown varying results, with
one study finding no change in cytokine expression [308], while another found a significant decrease
in endometrial IL6, alongside a trend towards a decrease in CXCL8, IL1β, and TNFα [309], indicating
its anti-inflammatory properties.

Interestingly, this decrease in TNFα was also noted in mares susceptible to PBIE when lactoferrin
was administered at the time of breeding [310]. When administered 6 h post-breeding in susceptible
mares, lactoferrin decreased the expression of pro-inflammatory interferon gamma while increasing
anti-inflammatory IL1RN [311]. This study also found varying concentrations of lactoferrin (50–500 µg)
to decrease PMN infiltration in the susceptible mare, although it did not affect uterine fluid retention.
The authors suggested that the recommended dose for human recombinant lactoferrin intrauterine
infusion should be 1mL (50 µg/mL) diluted in 10 mL of LRS, which is comparable to the average
concentration noted in the equine ejaculate. Interestingly, in other species, lactoferrin is administered
for its bactericidal and anti-biofilm properties [312,313], but these findings have not been investigated
in the horse.

4.6. Platelet-Rich Plasma

Platelet-rich plasma (PRP) is whole blood plasma with concentrated platelets (3-5-fold). It has been
commonly used in equine clinical practice to treat joints, bursae, and soft tissue injuries (e.g., tendonitis,
tenosynovitis, and skin wounds) [314–317]. Additionally, the combination of autologous plasma to
antibiotic therapy has been reported to improve pregnancy rates for lactating and barren mares [318].

The biological mechanisms of PRP on the inflammatory response are not yet well elucidated.
However, some studies [319–322] have demonstrated an anti-inflammatory action of PRP due to its
ability to suppress the expression of COX-2, metalloproteinase-3 (MMP-3), TNFα, IL1, and vascular
adhesion molecules [323]. Additionally, platelet granules contain antimicrobial peptides (RANTES,
platelet factor 4, and thymosin beta-4), and these peptides may contribute to PRP’s known bactericidal
activity against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae in the human [324–331].
All these bacteria are known causes of endometritis in mares [20].

For the treatment of endometritis in the horse, one study found that PRP administration at the
time of breeding decreased the intrauterine inflammatory response in mares suffering from chronic
endometritis, although it did not affect NO production [332]. This concurs with another study
reporting that PRP decreased endometrial expression of COX-2, decreased PMN numbers in the uterine
lumen, and increased pregnancy rates [333]. It has also been shown to act as an anti-inflammatory,
and treatment of susceptible mares led to a down-regulation of endometrial IL1β, IL6, and CXCL8
expression [332–335].
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4.7. Stem Cells

The use of mesenchymal stem cells (MSCs) has rapidly gained interest in human and veterinary
medicine to modulate the inflammatory processes [336,337]. These cells can differentiate into skeletal
myoblasts, renal parenchyma, hepatic epithelium, gut and skin epithelia, neuroectodermal cells [338],
and even endometrial cells [339]. They can also signal residual cells through anti-apoptotic, chemotactic,
and immune-modulatory properties and can be harvested from variable tissues with differential potency.

Injection [340] or infusion [341] of MSCs has been described as a possible alternative for the
treatment of endometrial fibrosis. Therapy with MSCs can induce an early (7 days) and also a prolonged
(60 days) remodeling of the endometrium of mares suffering from chronic-degenerative endometriosis
by modulating the expression patterns (e.g., cytokeratin, vimentin, α-smooth muscle actin, and
laminin) associated with the development of pathological fibrosis in the horse endometrium, as well
as promoting glandular epithelial cells proliferation [341]. A report found that MSC administration
decreases neutrophil numbers and increases anti-inflammatory ILRN expression in the endometrium
of the normal mare [342]. Interestingly, while one study found that MSCs also attenuate markers
of uterine inflammation following treatment, cells were unable to penetrate the endometrium and
remained within the uterine lumen [343]. However, another study reported that intrauterine infusion
of MSCs effectively engrafted MSCs in periglandular spaces [344]. In addition, it is known that MSCs
can up-regulate anti-inflammatory cytokines (e.g., IL2, IL4, IL10 and basic fibroblast growth factor)
and down-regulate pro-inflammatory cytokines (TNFα, IL1β and IL17) in animal disease models and
rats within the endometrium [345–347]. Using rats as an experimental model, some authors indicated
a regeneration of endometrial cells or a protective effect against cell damage in rat’s endometrium
using an intrauterine MSCs therapy by the higher expression of cytokeratin and vimentin, a marker of
endometrial cells [345]. In addition, in that study, intrauterine MSCs therapy was able to up-regulate
markers for endometrial receptivity (integrin agb3 and leukemia inhibitory factor) [345], which are
regulators of endometrial function and have an important role in embryo implantation [348]. To date,
no studies have evaluated the efficacy of MSCs in mares susceptible to PBIE, so additional work
is necessary. In addition, it is worth noting that primates and rodents undergo decidualization
(i.e., morphological and functional changes of the endometrium in preparation for pregnancy), and
horses do not; thus, findings obtained in these species cannot necessarily translate into similar findings
in horses.

5. Conclusions

Endometritis is the most important cause of subfertility in mares. Mares susceptible to PBIE are
frequently older, have an impaired uterine immune response, and deficient physical barriers and other
mechanisms of defense against infection. An imbalance of pro- and anti-inflammatory mechanisms
plays a pivotal role in the immunopathogenesis of PBIE in mares. Infections of the endometrium can be
established if the natural mechanisms (physical and molecular) of defense are compromised. In addition,
the pathobiology of microorganisms associated with endometritis in mares has been poorly understood,
along with the role of the resident uterine microbiome in preventing infection and how diseases and
treatment alter the composition of these microbe populations. Traditional and non-traditional therapies
for endometritis are based on reestablishing the natural mechanisms of defense (e.g., fixing some
reproductive seals of the reproductive tract or immunomodulate inflammation). The current trend of
preventing indiscriminate use of antimicrobials in animals and humans will benefit from the continued
attempts to develop alternative antibiotic-free therapies to treat endometritis.
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Abbreviations

ACP Antigen-presenting cells
BAFF B cell-activating factor
C1q Complement component 1
C3a Complement 3a
C3b Complement 3b
C4a Complement 4a
C4b Complement 4b
C5a Complement 5a
CD14
CD40

Cluster of differentiation 14
Cluster of differentiation 40

COX-1 Cyclooxygenase-1
COX-2 Cyclooxygenase-2
CXCL8 Chemokine ligand 8
EC Epithelial cells
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetic acid-2-amino-2-hydroxymethyl-propane-1,3-diol
FoxP3 Forkhead box protein P3
GnRH Gonadotropin-releasing hormone
IFN Interferon
IFNα Interferon type I α
IgA Immunoglobulin A
IgG Immunoglobulin G
IgM Immunoglobulin M
IL1 Interleukin1
IL1RN Interleukin 1 receptor antagonist
IL10 Interleukin 10
IL13 Interleukin 13
IL17 Interleukin 17
IL1α Interleukin 1alpha
IL1β Interleukin 1Beta
IL4 Interleukin 4
IL6 Interleukin 6
LH Luteinizing hormone
LPS
LRS

Lipopolysaccharides
Lactated Ringer’s Solution

MAC Membrane attack complex
MCWE Mycobacterium phlei cell wall extract
MMP-3 Metalloproteinase-3
MMPs Matrix metalloproteinases
MSCs Mesenchymal stem cells
MyD88 Myeloid differentiation primary response 88
NETs Neutrophil extracellular traps
NF-κB Nuclear factor kappa-B
NK Natural killer cells
NLR NOD-like receptors
NO Nitric oxide
NOD Nucleotide-binding and oligomerization domain
NSAIDs Non-steroidal anti-inflammatory drugs
PABA
PBIE

Para-aminobenzoic acid
Persistent breeding-induced endometritis

PBPs
PGF2α

Penicillin-binding proteins
Prostaglandin 2α
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PMNs Polymorphonuclear neutrophils
PRP Platelet-rich plasma
PRRs Pattern recognition receptors
SAA Serum amyloid A
TIMPs Tissue inhibitors of MMPs
TLR2 Toll-like receptors type 2
TLR4 Toll-like receptors type 4
TLRs Toll-like receptors
TNFα Tumor necrosis factor-α
TRAF6 Receptor-associated factor 6
TRIF TIR-domain-containing adapter-inducing interferon-β
WBC White blood cells
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