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Even though research in the field of functional near-infrared spectroscopy (fNIRS) has
been performed for more than 20 years, consensus on signal processing methods
is still lacking. A significant knowledge gap exists between established researchers
and those entering the field. One major issue regularly observed in publications from
researchers new to the field is the failure to consider possible signal contamination
by hemodynamic changes unrelated to neurovascular coupling (i.e., scalp blood flow
and systemic blood flow). This might be due to the fact that these researchers use
the signal processing methods provided by the manufacturers of their measurement
device without an advanced understanding of the performed steps. The aim of the
present study was to investigate how different signal processing approaches (including
and excluding approaches that partially correct for the possible signal contamination)
affect the results of a typical functional neuroimaging study performed with fNIRS.
In particular, we evaluated one standard signal processing method provided by a
commercial company and compared it to three customized approaches. We thereby
investigated the influence of the chosen method on the statistical outcome of a
clinical data set (task-evoked motor cortex activity). No short-channels were used
in the present study and therefore two types of multi-channel corrections based on
multiple long-channels were applied. The choice of the signal processing method had
a considerable influence on the outcome of the study. While methods that ignored the
contamination of the fNIRS signals by task-evoked physiological noise yielded several
significant hemodynamic responses over the whole head, the statistical significance
of these findings disappeared when accounting for part of the contamination using a
multi-channel regression. We conclude that adopting signal processing methods that
correct for physiological confounding effects might yield more realistic results in cases
where multi-distance measurements are not possible. Furthermore, we recommend
using manufacturers’ standard signal processing methods only in case the user has
an advanced understanding of every signal processing step performed.

Keywords: optical neuroimaging, neurovascular coupling, scalp blood flow, systemic hemodynamics, signal
contamination, nirsLAB, robotics, AtlasViewer
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INTRODUCTION

Optical neuroimaging based on functional near-infrared
spectroscopy (fNIRS) is a technique increasingly used to perform
neuroscientific studies. fNIRS allows to measure changes in
tissue hemodynamics (blood perfusion) and oxygenation on
the human head non-invasively (Scholkmann et al., 2014).
Compared to other neuroimaging modalities, fNIRS offers
distinct advantages: while functional magnetic resonance
imaging (fMRI) has a higher spatial resolution and can reach
subcortical areas, fNIRS is easier to use, in a lower price segment,
and potentially portable (Cutini and Brigadoi, 2014; Piper et al.,
2014; Scholkmann et al., 2014; Nieuwhof et al., 2016). Compared
to electroencephalography (EEG), fNIRS can provide higher
spatial resolution, is user-friendlier, and more robust to head
movement (Perrey, 2008; Cutini and Brigadoi, 2014; Scholkmann
et al., 2014; Nieuwhof et al., 2016). With the growing popularity
of fNIRS and the increasing availability of commercial devices
at decreasing costs, more and more researchers start using
this technique (Boas et al., 2014) and this trend is especially
observable in the fields of rehabilitation research, psychology and
sport science. This observation is accompanied by an according
increase in publications in the respective fields.

Currently, no standardized and widely accepted signal
processing method for fNIRS exists and no fNIRS guidelines
article has been published yet, in contrast to fMRI for
example (Strother, 2006; Poldrack et al., 2008; Caballero-
Gaudes and Reynolds, 2017). This can create the situation
that novice users might mainly perform signal processing
and data analysis with the tools provided by the commercial
companies (like a ‘‘black box’’) which could lead to ‘‘false
positives’’ or ‘‘false negatives’’ in the results (Tachtsidis and
Scholkmann, 2016). In both cases, one major problematic aspect
are contaminations of the measured hemodynamic signal by
task-evoked hemodynamic changes not due to neurovascular
coupling in the extracerebral (scalp blood flow) as well as
cerebral tissue layer (systemic blood flow) (Leff et al., 2011;
Saager et al., 2011; Takahashi et al., 2011; Kirilina et al.,
2012; Scholkmann et al., 2014). In the aforementioned research
fields, this can be problematic for two reasons: (i) Blood
flow changes in the extracerebral and cerebral layers of
the head (e.g., via heart rate, blood pressure, sympathetic
activation) can be already evoked by small body movements
(e.g., finger tapping; Yamada et al., 2012) or psychophysiological
influences. Accordingly, fNIRS studies in psychology, and
especially rehabilitation research and sport science, where we
often deal with persons in motion, are generally at a high risk
of showing the described contamination of the hemodynamic
signal. (ii) Many commercial devices currently have a fixed
probe holder in their standard setup that does not enable short-
distance/multi-distance measurements. These can often, if at
all, only be realized with additionally purchased flexible probe
holders. However, short-distance/multi-distance measurements
are currently among the best methods to eliminate the signal
contamination by task-evoked hemodynamics not due to
neurovascular coupling (Scarpa et al., 2013; Scholkmann et al.,
2014; Nambu et al., 2017a,b) and will arguably be standard in a

few years’ time (Yücel et al., 2017). Short-distance/multi-distance
measurements allow for separating signals that stem from blood
flow changes in the extracerebral layers of the head (via short-
detector separation channels, with 0.5–1.0 cm source-detector
separation) from the desired neurovascular coupling-related
signals of the cerebral tissue layer (via long source-detector
separation channels, with 3–4 cm separation; Gagnon et al.,
2011; Yamada et al., 2012; Umeyama and Yamada, 2014; Yücel
et al., 2015). By using the short-detector separation channels as a
reference, the components of superficial interference in the long
source-detector separation channels can be regressed out (Zhang
et al., 2015).

However, if no short-detector separation is possible, other
approaches can and should be considered in order to remove
unwanted sources from the hemodynamic response. Examples
of such methods are the Principal Component Analysis (PCA;
Zhang et al., 2005) and Independent Component Analysis
(ICA; Kohno et al., 2007; Santosa et al., 2013), where the raw
signal is decomposed into various subcomponents, assuming
orthogonality (PCA)—or maximal statistical independence
(ICA)—between components. Another method is the regression
of the combination of long-channels from the single channels
and that approach has been used in this article.

The current study explores whether different signal
processing methods applied to data from a clinical fNIRS
protocol without short-distance channels leads to differences
in outcome. By experience, the setting without short-distance
channels is still frequently used, especially in the above-
mentioned research fields. We compared the standard signal
processing method of nirsLAB (a freeware that comes with all
instruments from NIRx Medical Technologies, Glen Head, NY,
USA) to three simple customized alternative signal processing
methods. Since nirsLAB has limited possibilities regarding
artifact removal and filtering, nirsLAB was compared to: (i) a
self-implemented signal processing method with data-adaptive
filtering and advanced artifact removal; and (ii) the same
self-implemented signal processing method together with an
additional multi-channel regression whereby two different
types of signal regression were investigated. These regressions
remove a component from the signal that is common in multiple
channels and that potentially reflects scalp blood flow. Our aim
was to investigate whether the type of signal processing method
had an impact on the final study results.

MATERIALS AND METHODS

Subjects
A convenience sample of 15 right-handed healthy adults
(4 men, 11 women), mean age ± standard deviation (SD):
29.9 ± 5.5 years (range: 24–41 years) was included in this
study. Inclusion criteria were right-handedness (i.e., they had
to write with the right hand) and being of age in the
range 18–65 years. Exclusion criteria were having neurological
disorders, or having a limiting injury of both hands or index
fingers. All subjects provided written informed consent in
accordance with the Declaration of Helsinki and the study and
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FIGURE 1 | (A) Probe array. The colored dots indicate the light sources (red), detectors (blue) and the yellow lines represent the channels. White text indicates
10/20 electroencephalography (EEG) positions. (B) Sensitivity profile. The probe array displays the channels (green lines) and the optodes (red dots). The sensitivity
values are displayed in log10 units.

protocol was approved by the Ethics Committee of the Canton of
Zurich.

Instrumentation
Finger-Hand Rehabilitation Device (Amadeo)
The protocol consisted of performing passive, assisted and active
index finger movements at a low frequency inside the Amadeo
(Tyromotion GmbH, Graz, Austria), a finger-hand rehabilitation
device with different training options for varying degrees of
finger/hand impairment. Its main console consists of guide trails
for each finger, which are aligned with the direction of motion
of each finger. The arm of the subject is mounted into the
robot by fixating the arm with cuffs and attaching the user’s
fingers to these guide trails with magnets taped to the fingers.
This allows each finger to be moved individually. Movements
can be passive (i.e., the device performs the movement for
the subject), assisted (i.e., the device assists the subject in
performing the movement) and active (i.e., the subject performs
the movement).

Functional Near-Infrared Spectroscopy
To measure relative changes in oxygenation levels in the
sensorimotor and premotor cortex (PMC) during the tasks,
we used a continuous-wave NIRS system (NIRSport 8x8, NIRx
Medical Technologies LLC, Berlin, Germany). NIRSport employs
eight light-sources and eight detectors which can be placed
into a textile EEG cap (EASYCAP, Herrsching, Germany) using
the International 10/20 system for EEG recording (Chatrian
et al., 1985). Each light source contains two LEDs that emit
at 760 nm and 850 nm. Further information about the device
can be found elsewhere (Piper et al., 2014; Vrana et al., 2016).
Textile EEG caps of different sizes (i.e., circumferences of 54,
56, 58 and 60 cm) were used to take the participants’ head
anatomy into account (for head circumferences between two
cap sizes, the smaller cap was used). The placement of the
optodes within the caps was done in reference to other studies,
which used multi-channel fNIRS to assess topographic cortical
activity maps (Miyai et al., 2001; Harada et al., 2009). The

optodes were placed around FC3/FC4 (likely to overlie the
PMC, Brodmann area 6, see Figure 1) and C3/C4 (likely to
overlie the pre- and postcentral gyrus covering the primary
sensorimotor cortex (M1/S1; Blatow et al., 2011, Brodmann
area 4). Sources and detectors were distributed bilaterally to
define 16 channels around those regions of interest (ROI), each
adjacent pair of sources and detectors defining one channel
(source detector separation: 25–45 mm). Eight channels were
defined for each hemisphere, four channels for each PMC
and M1. The focus of this study was on M1/S1, however,
channels around FC3/FC4 were used for the multi-channel
regression (see Self-implemented Signal Processing: ‘‘Multi-
channel Regression Type A: Global Regression’’ section). Data
were acquired with the NIRStar Software version 14.0 (NIRx
Medical Technologies LLC, Berlin, Germany) at a sampling rate
of 7.81 Hz.

We calculated a spatial sensitivity profile based on the Monte
Carlo photon migration forward modeling with 107 photons
using the AtlasViewer software (part of HOMER2 software
package1, Huppert et al., 2009; Aasted et al., 2015) to assure that
the chosen probe placement is selective for the measurement of
the according ROIs (see Figure 1B). This proved that the selected
probe setup allowed for measuring fNIRS signals that at least
partly originate from changes in the cerebral compartment of
both ROIs.

Experimental Protocol
Prior to the experiment, the head circumference, nasion-inion
length and ear-to-ear distance (between preauricular points) of
the participants were measured. Participants were then seated
on a chair, the cap was positioned on their head according to
guidelines of the International 10/20 system (Chatrian et al.,
1985) and the optodes were inserted into the cap on the defined
positions. After mounting their non-dominant, left hand into the
Amadeo device, subjects were instructed to sit still during the
data acquisition to avoid motion artifacts in the fNIRS signals.

1http://www.nitrc.org/projects/homer2
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FIGURE 2 | Visualization of the research protocol involving three different types of tasks: passive, assisted and active finger movement. The whole experiment lasted
27.5 min.

The task started with a resting state baseline of 180 s. Figure 2
displays the protocol which comprised three conditions: (i)
‘‘Passive finger movement’’: Passive flexion and extension of
the index finger, movement only by the Amadeo device at a
frequency of 1 Hz (unidirectional, i.e., 1 s bending and then
1 s extending); (ii) ‘‘Assisted finger movement’’: Assisted index
finger movement: the Amadeo device guiding/initiating the
movement, subjects instructed to perform the movement along
with Amadeo at a frequency of 1 Hz; and (iii) ‘‘Active finger
movement’’: Self-paced index finger movement (at∼1 Hz) while
mounted within the Amadeo device with no guidance (there was
a slight resistance due to the static friction of the rails).

We used a randomized block design (Urbaniak and Plous,
2013) with 10 repetitions of each condition. Throughout the
experiment, all other fingers remained at a constant position and
5 s before the beginning of each trial, subjects were informed
which condition they had to perform next.

The chosen paradigm was hypothesized to elicit at the most
marginal cortical effects accompanied by gradually increasing
systemic hemodynamics (due to the increased muscular
contribution from passive to active; Leff et al., 2011).

Signal Processing
Each of the four different signal processing methods had its
own processing pipeline. Signal processing and data analysis
were done with Matlab (Version R2013b, MathWorks, Natick,
MA, USA) and custom-made scripts, as well as with a
commercially available Matlab-based fNIRS freeware (nirsLAB,
version v2016.05, NIRx Medical Technologies, Glen Head, NY,
USA). Matlab codes are available from the corresponding author
upon reasonable request.

As a first step, raw optical density (OD) data were first
imported into the commercial nirsLAB analysis software together
with the probe information and all channels with a coefficient
of variation of >15% (Piper et al., 2014) were excluded from
further analysis (two channels in one subject and one channel in
two other subjects). Then, data processing was done separately
for each signal processing method according to the following
pipelines (see visualization in Figure 3).

nirsLAB-based Signal Processing
1. The ‘‘remove discontinuities’’ option was selected. Thereby,

the following steps are performed (adapted from the
nirsLAB User Manual (Xu et al., 2016), Chapter 3.3 Remove
Discontinuities GUI):

(a) From the raw data (R) in each time series, the SD is
computed.

(b) For each pair of successive data values (Ri and Ri+1),
Ji = (Ri+1 − Ri)/SD is calculated.

(c) All locations in the time series where Ji is≥5 are identified.
(d) Starting with Ri+1, a constant value is subtracted from all

data values following the jump: R’k = Rk − (Ri+1 − Ri),
with k = i + 1, . . ., n (n = final sample).

2. Motion artifacts (MA) were removed according to the
nirsLAB user manual (Xu et al., 2016; Chapter 3.4 Remove
Spike Artifacts GUI). All channels were independently
inspected by two scientists (MDP, RL) and MA were only
marked as such, if both scientists agreed. All MA that
were within stimulation periods or just before stimulation
periods were selected and replaced with ‘‘random signals’’ (a
set of random numbers that are sampled from a Gaussian
distribution, with a SD equal to the average of the 4-second
time intervals preceding and following the MA, and with a
mean equal to the data value that immediately precedes the
MA. Please note, that nirsLAB currently is programmed to
replace the according period in all channels, not just in the
selected one. On average, 2.3 MA (SD = 4.3) per subject were
detected.

3. Data were band-pass filtered (cutoff frequencies: 0.01 Hz and
0.2 Hz; Koenraadt et al., 2014).

4. By applying the modified Beer-Lambert Law (Cope et al.,
1988), the OD data were converted into the relative
concentration changes in [O2Hb] and [HHb]. Thereby, we
calculated the age-dependent differential path length factor
(DPF) for each subject according to a previously published
equation (Scholkmann and Wolf, 2013).

5. The baseline was defined as the period from second
120 to second 180 (see Figure 2). For the molar extinction
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FIGURE 3 | Visualization of the signal processing approaches used in the current study. Four different types of methods were used in stage one.

coefficients of hemoglobin, we applied the spectrum as
published by Schmitt (1986).

6. Data were exported and imported into Matlab for data
analysis.

Self-implemented Signal Processing: “Standard”
1. OD data were converted into the relative concentration

changes in [O2Hb] and [HHb] in the commercial nirsLAB
analysis software identical to step 4 in ‘‘nirsLAB-Based Signal
Processing’’ section.

2. Data were exported and imported into Matlab for further
analysis.

3. MA removal was done with the spline interpolation method
(Scholkmann et al., 2010). This method corrects each MA in
the signal per channel by subtracting the interpolated MA
segment from the MA segment and subsequently shifting the
corrected segment to match it with the baseline of the segment

preceding the MA segment. All MA were again independently
checked by two scientists. On average, 10.5 MA (SD = 9.0)
per subject were detected. The parameter values of the MA
algorithmwere chosen to be optimal for each data set (optimal
was defined so that the application of the algorithm removed
theMA efficiently while minimizing to induce new artifacts to
the data). This optimization procedure was independent from
further data analysis.

4. Band-pass filtering was done with the following approach:
High-frequency noise of the signal was removed by applying a
third degree Savitzky-Golay filter (Savitzky and Golay, 1964)
with a window length of 4 s (Schafer, 2011); low-frequency
noise was removed by subtracting the low-frequency trend,
determined by applying the Savitzky-Golay filter with a
window length of 80 s, from the data (Vrana et al., 2016). The
Savitzky-Golay filter performs a local polynomial regression
(in our case with order 3) and has the advantage of preserving
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the high-frequency structure of the data in a data-adaptive
manner (Schafer, 2011).

Self-implemented Signal Processing: “Multi-channel
Regression Type A: Global Regression”
1. OD data were converted into the relative concentration

changes in [O2Hb] and [HHb] in the commercial nirsLAB
analysis software identical to step 4 in ‘‘nirsLAB-Based Signal
Processing’’ section.

2. Data were exported and imported into Matlab for further
analysis.

3. MA were removed identical to step 3 in ‘Self-implemented
Signal Processing: ‘‘Standard’’’ section.

4. Filtering was done identical to step 4 in ‘Self-implemented
Signal Processing: ‘‘Standard’’’ section.

5. To reduce the contamination of the fNIRS signal from
changes not due to neurovascular coupling, a multi-channel
regression was applied employing the approach presented
by Saager and Berger (2005). The corrected [O2Hb] and
[HHb] signals were determined by removing a contamination
surrogate signal from each channel. The surrogate signal
thereby consisted of the median of all channels (see Figure 1,
henceforward called ‘‘global regression’’).

Self-implemented Signal Processing: “Multi-channel
Regression Type B: Unilateral Regression”
1. OD data were converted into the relative concentration

changes in [O2Hb] and [HHb] in the commercial nirsLAB
analysis software identical to step 4 in ‘‘nirsLAB-Based Signal
Processing’’ section.

2. Data were exported and imported into Matlab for further
analysis.

3. MA were removed identical to step 3 in ‘Self-implemented
Signal Processing: ‘‘Standard’’’ section.

4. Filtering was done identical to step 4 in ‘Self-implemented
Signal Processing: ‘‘Standard’’’ section.

5. To reduce the contamination of the fNIRS signal from
changes not due to neurovascular coupling, a multi-channel
regression was applied employing the approach presented
by Saager and Berger (2005). The corrected [O2Hb] and
[HHb] signals were determined by removing a contamination
surrogate signal from each channel. The surrogate signal
thereby consisted of the median of all channels on the
contralateral hemisphere to the respective channel (e.g.,
median of channels 1–8 to correct channel 15, see Figure 1,
henceforward called ‘‘unilateral regression’’).

Further Signal Processing: Detrending, Normalization
and Block Averaging
After the individual processing per method, the datasets were
segmented into intervals with a length of 20 s (stimulus duration)
plus 5 s prestimulus baseline. Following this procedure, the whole
dataset was segmented into 10 intervals per condition. These
segments were then detrended by applying a linear regression to
remove the slow physiological drift during each segment period.
Furthermore, the segments were normalized by subtracting the
median value of the prestimulus baseline from the signal in each

segment in order to remove the intraindividual variance of the
starting values. Then, block averages were calculated.

Statistical Data Analysis
Relative changes of [O2Hb] and [HHb] were obtained by taking
themedian value of the period from 5 s after stimulus initiation to
15 s after stimulus initiation of each channel’s block average due
to non-normal distribution of data. To test for differences across
signal processingmethods, a Friedman test was used accordingly.
Alpha was set to 0.05. We additionally calculated topographic
maps of the hemodynamic states with the commercial nirsLAB
analysis software (nirsLAB User manual, Chapter 5.3 Map
Hemodynamic States: All States, Xu et al., 2016) to provide a
visual comparison between different signal processing methods.

RESULTS

Figure 4 shows the block averages of [O2Hb] and [HHb]
and allows for a visual comparison of the outcome of
the different signal processing methods. Generally, an
increase in response amplitude could be seen when subjects
increased their active participation (from passive via
assisted to active finger movement). However, the direction
of the response seems contrary to what is published in
literature (when looking at the yellow and green traces in
Figure 4; Perrey, 2008; Leff et al., 2011; Scholkmann et al.,
2014). Furthermore, there is no clear lateralization of the
response.

Figure 5 shows the topographic maps of the relative changes
of [O2Hb] and [HHb] in response to the stimulation, compared
to baseline. It highlights that there is a visually discernible
difference between signal processing methods that incorporate a
multi-channel regression and those that do not.

Figure 6 displays the statistical consequences of applying
different signal processing methods. Each signal processing
method leads to a different set of statistically significant channels.
Thereby, especially the differences between methods with vs.
methods without multi-channel regression become apparent.
While the former led to 3–4 significant channels in [O2Hb] and
0 significant channels in [HHb], analyses with regression yielded
0 significant channels in [O2Hb] and 0–2 significant channels in
[HHb].

DISCUSSION AND CONCLUSIONS

Over the course of the last few years, a large body of
evidence has been published regarding the contamination of the
cortical hemodynamic signal acquired by fNIRS by cerebral and
extracerebral hemodynamics not due to neurovascular coupling
(Saager et al., 2011; Takahashi et al., 2011; Kirilina et al.,
2012; Yamada et al., 2012; Gagnon et al., 2014; Tachtsidis and
Scholkmann, 2016), and some were even specifically addressed
to researchers new to the field (Orihuela-Espina et al., 2010;
Leff et al., 2011). Nevertheless, especially in the fields of
rehabilitation research, psychology and sport science, many
articles were recently published that ignore the issue of signal
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FIGURE 4 | Block averages of each channel, separately for [O2Hb] and [HHb]. All eight recorded channels of the motor cortex are displayed in a top-view
topographical organization around the left (C3) and the right motor cortex (C4). The labels in the red dots/next to the blue dots indicate 10/20 EEG positions. Shown
are block averages of the data analyzed with nirsLAB-based signal processing (yellow curves), with the self-implemented signal processing: “standard” (green
curves), with the self-implemented signal processing: “multi-channel regression type A: global regression” (blue curves), and with the self-implemented signal
processing: “multi-channel regression type B: unilateral regression” (red curves). The x-axes display the time from 0 s to 25 s (purple line indicates stimulus initiation)
and the y-axes display the relative hemoglobin concentration (0 corresponds to the median baseline), whereby the scales were kept constant for all curves in [O2Hb]
and [HHb], respectively, to facilitate comparison (according to the axes in each top left chart).

contamination (suspected examples in the field of rehabilitation
research: Basso Moro et al., 2014; Chang et al., 2014; Jang
et al., 2015; Maidan et al., 2015, 2016; Al-Yahya et al., 2016;
Mahoney et al., 2016; Nieuwhof et al., 2016; psychology: Bigliassi
et al., 2014; Balconi et al., 2015; Lukanov et al., 2016; and
sport science: Byun et al., 2014, 2016; Ono et al., 2015).
Possible reasons include for example lacking knowledge, or
technical limitations of the instrumentation (e.g., short-distance
measurements are not possible due to fixed probe holders). In
most of these articles, analyses were done using the software
provided by the manufacturers of the used fNIRS devices,
possibly applying the default configuration regarding filtering
or artifact removal. To simulate the consequences of such
an approach, we compared the standard processing method
(nirsLAB) of the manufacturer of our fNIRS device without
short-distance channels to three alternatives. We thereby used
data from a sample of healthy individuals performing a motor
task which we expected to lead only to a minor task-related
cortical activation due to neurovascular coupling. However, it

still elicited gradually increasing systemic hemodynamics due
to the increasing muscular contribution. This can be seen
in Figure 4 (yellow and green traces), where, especially in
[O2Hb], an increase in response amplitude can be seen from
passive to active finger movement. This increase, however, is
only visible, when no multi-channel regression (blue trace)
was applied. Obviously, the choice of the signal processing
method had a considerable impact on the statistical results and
consequently also on the conclusions one can draw from these
results.

Statistical Consequences
“nirsLAB” vs. “Self-implemented Signal Processing”
The publicly and freely available commercial nirsLAB analysis
software is a rather comprehensive fNIRS analysis package.
However, nirsLAB has only limited filtering and artifact
removal options, as becomes apparent from the manual:
‘‘The components of Data Preprocessing (Chapter 3) allow
you to: delete experimentally irrelevant time intervals from
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FIGURE 5 | Topographic maps of the relative changes in amplitude of [O2Hb] and [HHb] compared to baseline. Blue areas represent channels where the amplitude
was lower compared to baseline and dark red channels represent channels where the amplitude was larger compared to baseline. Please note that orange-red areas
indicate no change compared to baseline.

data; remove artifacts (‘‘steps’’ and ‘‘spikes’’) from data; and
apply band-, low- or high-pass frequency filters to exclude
experimentally irrelevant frequency bands’’ (from the nirsLAB
User Manual, Chapter 1.4.4.2 Data Preprocessing, Xu et al.,
2016). To investigate whether these limitations had an influence
on the results, we compared nirsLAB to a self-implemented
data-adaptive filtering and artifact removal method. While
the visual comparison did not show distinct differences
(Figures 4, 5), the statistical comparison presented a discrepancy
between the two approaches. This finding stresses the importance
of data filtering and artifact removal, as already repeatedly
reported in literature (Zhang et al., 2009; Scholkmann et al., 2010,
2014; Brigadoi et al., 2014; Tak and Ye, 2014), and highlights the
need for signal processing standards in the field.

Methods with vs. Methods without Multi-channel
Regression
As already noted above, there were distinct differences between
methods incorporating multi-channel regression and those
without multi-channel regression (Figure 6). We speculate that
the multi-channel regression reduced the sensitivity of fNIRS to
measure changes in the hemodynamics not due to neurovascular

coupling (Saager and Berger, 2005; Zeff et al., 2007), but
this would have to be verified in a study using actual short-
distance channels. Accordingly, when using a commercial device
that by default does not offer the possibility of multi-distance
measurements, it is strongly recommended to modify the device
(as done e.g., in the article of Vrana et al., 2016) or to take the lack
of multi-distance measurements into account by adjusting the
signal processing appropriately as suggested in literature (Zhang
et al., 2005; Kohno et al., 2007; Santosa et al., 2013; Tak and Ye,
2014).

Unilateral vs. Global Multi-channel Regression
We selected two different signals as a contamination surrogate:
(i) the median of all channels (‘‘global regression’’); and (ii) the
median of all channels on the opposite hemisphere (‘‘unilateral
regression’’). The idea behind this approach is to eliminate
the task-related physiological noise from the signal that is
suspected to be similar in (half of) all channels (assuming that
this component is mainly induced by systemic hemodynamics;
Saager and Berger, 2005). This should increase the sensitivity
of fNIRS to changes in the cortical compartment (Saager and
Berger, 2005; Zeff et al., 2007).
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FIGURE 6 | Statistical consequences of applying different signal processing methods. The bars represent the relative mean ranks from the non-parametric Friedman
test (corresponds to the parametric repeated measures analysis of variance (ANOVA)) per channel in a top-view topographical organization around the left (C3) and
the right motor cortex (C4). The labels in the red and white dots indicate 10/20 EEG positions. Yellow bars indicate that the Friedman test was significant, thus
showing a statistical difference between the signal processing methods.

The unilateral regression is supposed to show its strengths
when being applied to the active hemisphere (contralateral
to the moving finger), as the opposite hemisphere then
presumably only shows minimal task-related cortical activation,
thus reducing the probability of removing components of
functional brain activity. On the other hand, when being applied
to the non-active hemisphere (ipsilateral to moving finger), the
surrogate signal might contain large components of functional
brain activity which would then be eliminated from the respective
channels.

The global regression might capture all the hemodynamic
changes not due to neurovascular coupling happening in
both the extracerebral (scalp blood flow) as well as the

cerebral compartment (e.g., changes due to blood pressure
or respiration (CO2 concentration in the blood)). The global
regression is a rather blunt approach and, together with the
unilateral regression, might be used only if no multi-distance
measurements are possible. However, semi-simulations should
first verify the usefulness of these approaches in improving the
data quality of clinical measurements.

Shape of fNIRS Block Averages
We expected that the tasks would lead at the most to marginally
detectable cortical activation, as the movements were very slow
and minimal, and required no mental effort (as opposed to
sequential finger tapping for instance; Leff et al., 2011). The
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results in Figures 4, 5 (‘‘global regression’’) seem to support
this hypothesis, as neither [O2Hb] nor [HHb] show a distinct
activation pattern as known from literature (Perrey, 2008; Leff
et al., 2011; Scholkmann et al., 2014). Even though the actual
response to the task is secondary, since we were mainly interested
in the comparison between signal processing methods, the
results of the analyses without regression nevertheless were
unanticipated. We hypothesized an actual increase in [O2Hb]
and a decrease in [HHb] in these signal processing methods,
since we expected an increase in scalp skin blood flow to
happen. However, a hemodynamic task-evoked response due to
neurovascular coupling seems absent. Further studies are needed
to clarify this phenomenon.

LIMITATIONS

First of all, our measurement setup did not include multi-
distance measurement. Therefore, we can only estimate which
channels were effectively active. However, this article was written
to convince researchers new to the field of fNIRS to implement
mechanisms to avoid a contamination of the signal to an extent
which might lead to an invalid interpretation of the results.
Therefore, we decided to use a setup similar to that presumably
used by such researchers. Furthermore, the calculation of the
global regressor includes the signal of target channels where an
actual task-evoked hemodynamic response due to neurovascular
coupling is expected. In case of a strong response, which was not
the case in our study, this could negatively influence the efficacy
of the regression. In that case, a leave-one-out method would be
more appropriate.

It is important to say that we applied the regression analyses
exploratively. The chosen approach might not be generalizable
to other measurement setups and it needs to be verified first
in a setup containing short-channels. However, the focus of
the project was to highlight possible consequences of applying
different methods.

Even though we tried to objectify the process of selecting
motion artifacts (e.g., by choosing a consensus approach),
it is still possible that this process led to the exclusion of
physiological signals or contributed to the shown differences
between methods (see ‘‘nirsLAB’’ vs. ‘‘Self-implemented Signal
Processing’’ section). Additionally, including random signals or
applying the spline interpolation method add non-physiological
data which are also actually artifacts. Furthermore, the motion
artifact detection method applied in the self-implemented signal
processing (Scholkmann et al., 2010) is more sensitive and allows
for a more fine-grained detection of motion artifacts compared
to the manual method applied within nirsLAB. This fact also
contributes to the differences in statistical outcome.

Furthermore, we applied a block design with a constant
duration of task and rest intervals (Figure 2). This is known to
cause artifacts as well that are not eliminated by the filtering
procedures we used (Scholkmann et al., 2014). Further studies
are necessary to determine to which extent these artifacts can be
avoided by using block designs with variable block lengths.

To help maintaining the focus of the participants, they were
given information on the type of condition shortly before its

start. This might have led to an anticipation effect which we
have not controlled for. Nevertheless, it is unlikely that this
influenced the results on statistical differences between different
signal processing methods.

Finally, we decided to analyze the data with simple block
averages. General linear models offer additional possibilities to
reduce the signal contamination (e.g., by adding simultaneously
recorded physiological signals, like heart rate, blood pressure,
or breathing parameters, as independent factors to the model).
However, we kept it deliberately simple to specifically address the
target audience of researchers new to the field of fNIRS.

CONCLUSION

Even though the field of fNIRS just turned 20 years old (Boas
et al., 2014), a consensus on a common signal processing
and data analysis pipeline is still lacking. On the one hand,
established and experienced research groups regularly publish
new recommendations which eventually should build the basis
for such a consensus. On the other hand, many new researchers
enter the field, creating a significant knowledge gap which
is hard to bypass. This study highlights the importance of
correcting for the contamination of the measured fNIRS signals
by task-evoked (or stimulus-evoked) hemodynamic changes not
due to neurovascular coupling. Failing to do so can have a
significant influence on statistical results and possibly on their
interpretation. Accordingly, we recommend to use standard
signal processingmethods as provided by themanufacturers only
when having an advanced understanding of every performed
step. Furthermore, when lacking the possibility of applying
multi-distance measurements, we recommend clinical users to
adopt according signal processing methods, as proposed in
literature.
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