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ScienceDirect
Directed evolution allows the effective engineering of proteins,

biosynthetic pathways, and cellular functions. Traditional

plasmid-based methods generally subject one or occasionally

multiple genes-of-interest to mutagenesis, require time-

consuming manual interventions, and the genes that are

subjected to mutagenesis are outside of their native genomic

context. Other methods mutagenize the whole genome

unselectively which may distort the outcome. Recent

recombineering- and CRISPR-based technologies radically

change this field by allowing exceedingly high mutation rates at

multiple, predefined loci in their native genomic context. In this

review, we focus on recent technologies that potentially allow

accelerated tunable mutagenesis at multiple genomic loci in

the native genomic context of these target sequences. These

technologies will be compared by four main criteria, including

the scale of mutagenesis, portability to multiple microbial

species, off-target mutagenesis, and cost-effectiveness.

Finally, we discuss how these technical advances open new

avenues in basic research and biotechnology.
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Introduction
On a sufficiently long timescale with a large enough

population size, biological evolution can produce myriad

intricate solutions to various selective pressures. Over

time, the best performing genetic variants are continu-

ously selected resulting in highly specialized gene
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products with optimal properties. Humans have long

sought to speed up and control this process to produce

whole organisms or specific biomolecules with desired

traits [1]. With the advent and continuing advancement of

molecular biological techniques, efforts to direct evolu-

tion have greatly increased in specificity, capable of

targeting single genes within organisms [2,3]. The con-

current development of highly efficient methods for the

screening of gene variant libraries [4,5] has allowed for the

isolation of a range of enzymes with improved or

completely novel functions [6].

The most comprehensive approach for achieving these

objectives requires saturation mutagenesis, that is, the

ability to generate and screen all possible amino acid

variants and their combinations at as many positions of a

protein as possible. Although a variety of techniques have

long existed capable of generating gene variant libraries

towards this goal, recent years have seen the development

of more refined mutagenesis technologies with increased

targeting precision, increased ranges of attainable muta-

tion rates, and decreased biases in mutational spectra. We

briefly summarize these most recent advances and their

related applications, focusing on tools developed and

employed in microbial systems. These technologies

can be broadly categorized based on whether the muta-

genized target DNA is on an extrachromosomal element

or on genomic DNA. While the former is more amenable

to a wide variety of highly precise strategies, which allow

for true saturation, the latter allows probing the effects of

mutations in their truly native contexts by coupling the

mutation generation and variant selection steps. Finally,

we highlight recent approaches that are overcoming these

limitations of mutagenesis of user-defined chromosomal

segments and offer new possibilities for both fundamen-

tal evolutionary biology questions, as well as industrial

applications.

Extrachromosomal mutagenesis
Extrachromosomal mutagenesis methods have the inher-

ent ability of focusing the generation of genetic variants to

a specified segment of DNA, allowing for saturation

studies of selected regions of interest. However, these

libraries are generated separately from the functional

selection process and require labor-intensive cloning

and transformation steps that often present a limit to

the final number of variants that are screened. The most

long-standing such method has been error-prone PCR [7],

which makes use of the low fidelity of DNA polymerases

under certain conditions. This approach has long been
www.sciencedirect.com
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used for numerous protein engineering applications to

attain novel variants for example, with new catalytic

activities [8], improved stability [9], or novel binding

capabilities [10]. Drawbacks of error-prone PCR methods

include relatively low per base mutation rates and inher-

ently biased mutational spectra making it impossible to

achieve saturation [11]. Improvements to overcome these

limitations have been made in techniques such as

‘sequence saturation mutagenesis’ where a universal base

is inserted throughout the target sequence [12] and also in

‘casting error-prone PCR’, where target sequences are

divided up into smaller fragments [13], making for higher

levels of mutational coverage.

A more targeted PCR-based approach that allows for true

saturation of selected positions but generates variants of

much shorter sequences, is site saturation mutagenesis

(SSM), which utilizes synthetic oligonucleotides carrying

one or more degenerate codon (such as NNK). To

increase efficiency of this approach, prior identification

of key residues of the given gene-product through phy-

logenetic analysis of homologous proteins is usually per-

formed, and regions deemed important for functionality

are then targeted. Numerous variations of this technique

exist, the most common being QuikChange mutagenesis

[14] where overlapping oligonucleotides carrying the

degenerate codons are used to amplify the target

sequence from a plasmid. Recent variations of SSM

include nicking mutagenesis [15] and mutagenesis with

reversibly terminated deoxyinosine triphosphates [16],

both of which allowed for comprehensive saturation

libraries of the active sites of the bla gene in Escherichia
coli encoding TEM-1 b; as well as a two-step PCR

strategy applicable to difficult-to-randomize genes [17].

SSM has numerous applications, including the engineer-

ing of protein binding and selectivity [18], increased

enzymatic activity [19], or enhanced therapeutic efficacy

[20]. Most recently, SSM was utilized for the mutagenesis

of phage tail fiber residues, limiting bacterial phage

resistance, thereby increasing efficiency of phage therapy

[21].

Recent advances in DNA synthesis capabilities have

allowed the massively parallel in vitro generation of gene

variant libraries by high-throughput oligo synthesis [22].

Although such oligos are limited in size (�350 nucleotide

maximal length), this has enabled complete saturation

mutagenesis of short genes, including a tRNA gene in

yeast [23]. Recently, tiling of multiple (19 in this case)

such oligonucleotide libraries allowed for the generation

of the complete first-order fitness landscape of a much

larger adeno-associated virus capsid gene [24]. The high

cost of DNA synthesis has been an obstacle in generating

large gene variant libraries in this fashion, however tech-

niques such as DropSynth, an emulsion-based DNA

synthesis method [25�] hold promise in making this

approach more attainable.
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Several methodologies also exist for mutating episomal

target genes in a continuous manner, which has the

advantage of not requiring prior in vitro synthesis of

variants of PCR-based or synthesis-based approaches.

Many of these techniques utilize error-prone (EP)

variants of DNA polymerases for replicating plasmid

DNA leading to mutagenesis of the target sequence.

This was originally achieved by transforming the vector

into a mutator host strain with EP DNA polymerase

enzymes and defective/deleted mismatch-repair sys-

tems such as E. coli strain XL1-Red [26]. However,

the systematically high mutation rates of such strains

eventually lead to deleterious effects in the cell, slow-

ing growth and making the cells difficult to transform. A

more targeted approach utilizes an EP DNA polymer-

ase I (Pol I) enzyme to mutagenize the cargo of a Pol I-

dependent plasmid [27]. A more refined version of this

principle was developed recently in yeast termed

OrthoRep, where the replication of a plasmid carrying

the targeted DNA sequence is fully dependent upon an

engineered orthologous EP DNA polymerase that oth-

erwise does not replicate the host genome or other

plasmids [28��]. This system allowed the generation

of a detailed  fitness landscape of the malarial dihydro-

folate reductase against the anti-malarial drug pyri-

methamine. An entirely different approach utilizes

bacteriophage and their lifecycles as vessels for muta-

genizing a target gene. In phage-assisted continuous

evolution (PACE), propagation of the M13 bacterio-

phage relies on bacterial production of the pIII infec-

tivity protein, which in turn is dependent on functional

library variants encoded within the phage. In this fash-

ion, genes of interest can be encoded on M13 and

continuously mutagenized to rapidly generate satura-

tion libraries. PACE was recently employed to evolve

Bacillus thuringiensis d-endotoxin variants able to target

previously resistant insect pests [29], to generate a

variety of proteins with improved soluble expression

[30], and to evolve Cas9 variants with altered PAM

specificity and higher precision [31].

Genomic strategies
Targeting chromosomal DNA sequences for mutagen-

esis has the advantages of eliminating labor-intensive

cloning and PCR steps and coupling the variant gener-

ation and selection steps, all while maintaining the

native genetic context of the target. The first

approaches aiming to generate chromosomal gene vari-

ant libraries utilized various DNA damaging forces or

compounds affecting the entire chromosome of an

organism. A range of both physical (e.g. ultraviolet

irradiation, gamma rays) and chemical (e.g. ethyl

methanesulfonate, nitrous acid) mutagens induce

mutations at random sequences throughout the genome

[32] and can be utilized for genome-wide gene inacti-

vation screens.
Current Opinion in Microbiology 2020, 57:22–30
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Chemical mutagenesis protocols are conceptually simple

and broadly applicable, but hey have associated health

hazards, and the associated mutational spectra are gener-

ally biased. In a similar vein, a mutagenesis plasmid (MP)

approach has been developed, where selected dominant

mutator genes are expressed from a vector in the bacteria

of interest, leading to a systematic increase in mutation

rates with less bias in the mutational spectra than physical

and chemical approaches [33]. Overall, mutator strains

and chemical mutagenesis do not require specification of

the genomic regions relevant for the selected phenotype:

they increase overall bacterial genomic mutation rate. As

a consequence, they cannot be focused to specific regions

for in-depth saturation studies, and result in deleterious

off-target effects.

Alternatively, synthetic constructs can be genomically

integrated to achieve targeted mutagenesis in a continu-

ous fashion. In one approach dubbed in vivo continuous

evolution (ICE), retroelements are constructed in yeast to

encode a targeted gene of interest which undergoes EP

reverse-transcription and genomic integration in a con-

tinuous fashion [34]. In another approach, an array of

specific sites can be genomically integrated next to a

selected region of interest to which a glycosylase enzyme

is recruited that is capable of mutagenizing a �20 kb

genomic region [35]. These approaches solve the problem

of localizing mutagenesis within the genome, however

they require extensive prior construct development
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resulting in considerable modifications to the native

contexts.

Targeted mutagenesis of multiple genomic loci

Recent years have seen the development of a number of

diverse strategies that all aim to combine the high preci-

sion of extrachromosomal mutagenesis with genomic

targeting for the saturation mutagenesis of specified

genomic sequences within their native contexts. Two

key technologies have enabled these advances: the devel-

opment and optimization of single-stranded oligonucleo-

tide-based recombineering methods [36], and the advent

of CRISPR-Cas genome engineering technologies [37].

These approaches allow for unprecedented precision in

the targeted modification of microbial genomes, and,

through various strategies, can be adapted to mutagenize

distinct chromosomal regions (Figure 1 and Table 1).

Recombineering-based approaches rely on the annealing of

synthetic single-stranded oligonucleotides to the lagging

strands at open replication forks. This process requires

specific single-stranded DNA annealing proteins (e.g.

the phage l’s Red Beta protein for E. coli [38] or other

RecT variants [39]) to work at a high efficiency in a given

organism. In a landmark paper, recombineering was devel-

oped to introduce multiple mutations across the genome in

a process called multiplex automated genome engineering

(MAGE) [40]. 20 separate oligonucleotides containing

degenerate ribosome binding site (RBS) sequences were
(e)
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an extended description of each method.
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Table 1

Efficacy and costs of targeted mutagenesis methods

Basis of

technology

Method Targeting window, efficiency Applicable species Off-target effects Cost

Recombineering-

based

MAGE [40],

MAGE-seq [43]

Up to 30 nucleotides using a

single oligo or hundreds of

nucleotides (e.g. 219 of

essential gene infA) in parallel

using multiple oligos (1 per

1�2 saturated codons)

Optimized for E. coli

and available in

multiple

Gammaproteobacteria

High because MMR

deficient strain required for

high efficiency, but the use

of inducible dominant-

negative MMR variant

(pORTMAGE) can

eliminate off-target effects

Cost-effective,

however each

oligonucleotide

can only

mutagenize a

target up to 30 bp

TRMR [41] Thousands of nucleotides in

parallel using multiple oligos

Optimized for E. coli Low High cost, due to

the neccesity of

high-throughput

DNA synthesis

MO-MAGE [44] Thousands of nucleotides in

parallel using multiple oligos

Optimized for E. coli High, MMR deficient strain

required for high efficiency

High cost, due to

the neccesity of

high-throughput

DNA synthesis

Eukaryotic MAGE [48] Hundreds of nucleotides in

parallel using multiple oligos,

constrained by requirement

for replication fork, rarer in

eukaryotes

Optimized for S.

cerevisiae

High, MMR deficient strain

required for high efficiency

Cost-effective,

however each

oligonucleotide

can only

mutagenize a

target up to 30 bp

DIvERGE [47] Thousands of nucleotides in

parallel using multiple oligos

Optimized for E. coli,

applicable to a range

of Enterobacteriacae

Undetectable due to usage

of inducible dominant-

negative MMR variant

Cost-effective,

each

oligonucleotide

can mutagenize a

target up to 72 bp

Cas9-induced

DSB, HDR

CREATE [53] Thousands of nucleotides in

parallel using multiple repair

cassettes

Optimized for E. coli,

applicable to S.

cerevisiae

Not examined in-depth,

expected to be low

High cost, due to

the neccesity of

high-throughput

DNA synthesis

CRISPR library [55],

CHAnGE [56],

MAGESTIC [57�],
CRISPR variant

libraries [58�], CasPER

[59��], CRISPEY [60]

Thousands of nucleotides in

parallel using multiple repair

cassettes

Optimized for S.

cerevisiae

Low, Cas9-mediated

targeting showed high

specificity

High cost, due to

the necessity of

high-throughput

DNA synthesis

dCas9/nCas9-

guided

AID-induced

mutagenesis [61–63]

Maximum of 2 parallel targets

demonstrated, mutagenesis

limited to �100 nucleotides

surrounding PAM-

constrained target site, high

bias in mutational spectra

E. coli, S. cerevisiae,

human cells

Potentially high Moderate, due to

the necessity of

plasmid

construction

before

mutagenesis

EvolvR [64] Targeting of 2 parallel targets

demonstrated, mutagenesis

limited to 50�350 nucleotides

in vicinity of PAM-constrained

target site with declining

mutagenesis with increased

distance

Optimized for E. coli High, low-fidelity DNA

polymerase raises

background mutation rate

over 100-fold

Moderate, due to

the necessity of

plasmid

construction

before

mutagenesis
simultaneously targeted to various genes all involved in the

biosynthesis of lycopene, leading to a fivefold increase in

the production of this industrially relevant isoprenoid com-

pound in only three days. In a method termed trackable

multiplex recombineering, the MAGE approach was fur-

ther refined to include barcodes within each oligonucleo-

tide to allow for massively parallel mutagenesis of multiple

genomic regions and the subsequent identification of mod-

ified sequences that resulted in improved phenotypes of

interest [41]. This approach allowed for the mutagenesis of
www.sciencedirect.com 
the RBSs of close to all genes in E. coli to modify their

expression levels allowing improved growth in various

environments [42]. MAGE can be employed in a highly

focused manner, as synthesizing a library of oligonucleo-

tides each carrying a degenerate codon of the same gene,

allowed for the saturation codon mutagenesis of the essen-

tial gene infA in E. coli [43]. Measuring the fitness of each

individual variant, combined with amplicon deep sequenc-

ing, enabled the in-depth analysis of the effects of codon

usage across an entire gene.
Current Opinion in Microbiology 2020, 57:22–30
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In order to scale up the mutagenizing capabilities of

MAGE to allow for potential saturation of extended

genomic targets and enhanced multiplexability, micro-

array-oligonucleotide (MO)-MAGE was developed,

where the mutation-inducing oligos are synthesized from

microarray chips, allowing for parallel synthesis of large

(>55 000) libraries [44]. Alternatively, the introduction of

exogenous oligos to generate variants may be circum-

vented through a retroelement-based approach where a

mutagenic T7 RNA polymerase enzyme generates var-

iants of a sequence encoded on a retroelement in a

continuous manner [45]. A specialized reverse transcrip-

tase ultimately generates variants of single-stranded

DNA which then edits the target sequence through

ssDNA-recombineering.

A key drawback of MAGE-based recombineering

approaches is the requirement of a mismatch repair

(MMR)-deficient host for high efficiency mutagenesis.

This leads to a high background mutation rate, leading to

several off-target mutations, potentially confounding the

phenotypic effects of saturation mutagenesis of

the targeted region. One solution to this obstacle is

the utilization of counter-selection markers such as

the tetA-sacB system [46] or a system employing ccdB
[47]. Through a two-step recombination process, the

counter-selectable markers are integrated at the genomic

site of interest, which is subsequently targeted using

mutagenizing oligos. Counter-selection allows enrich-

ment of cells which have incorporated the mutagenizing

oligos all without the requirement of MMR inactivation.

Alternatively, a simplified approach dubbed portable,

plasmid-based MAGE (pORTMAGE) was developed,

which utilizes inducible expression of a dominant nega-

tive MMR protein allele to achieve high efficiency

recombineering while eliminating off-target effects

[48]. Building on this advance, it became possible to

specifically target extended genomic regions for satura-

tion mutagenesis without any detectable off-target

effects. This was achieved in a method called directed

evolution with random genomic mutations (DIvERGE),

which utilizes pools of oligonucleotides synthesized

using a soft-randomization protocol (where the

alternative nucleotides are spiked in at low (0.5–2%)

amounts) at each nucleotide position [49��]. Such a

synthesis approach significantly reduces the oligonucle-

otide costs of other methods such as MO-MAGE. The

tiling of such 90mer oligos allows for the coverage of

entire chromosomal genes for saturation mutagenesis.

DIvERGE simultaneously targets multiple, user-

defined regions, up to 10 s of kilobases in total, and

has broad, controllable mutagenesis spectra for each

nucleotide position [49��]. Importantly, DIvERGE is

applicable to a range of bacterial host species without

the need for prior genomic modification and off-target

mutagenesis rate is expected to be very low [49��].
DIvERGE was utilized to perform simultaneous
Current Opinion in Microbiology 2020, 57:22–30 
combinatorial saturation mutagenesis of the 4 genes

(a total of 9.5 kb) encoding the target proteins of the

antibiotics ciprofloxacin and gepotidacin [39,49��], while

saturation mutagenesis of the target gene for the drug

trimethoprim resulted in combinations of 5 mutations

showing a >3900-fold increase in drug resistance [49��].
Overall, recombineering-based approaches now allow for

the most extensive and controllable mutagenesis of

multiple chromosomal regions in microbes, opening

entirely new possibilities for future applications (see

future perspectives).

Despite these unmatched capabilities, recombineering-

based approaches do have some inherent limitations.

Recombineering relies on active replication forks

within the target cell, meaning the slower division time

of eukaryotes makes the approach less efficient [50].

Also, ssDNA annealing proteins are not universal in

their efficiencies in diverse bacterial organisms, mean-

ing specific systems have to be optimized for different

species [39, 51–53,68]. Finally, it generally relies on the

in vitro synthesis of oligonucleotides to generate diver-

sity. The advent of CRISPR-Cas-based gene editing

technologies has offered solutions to some of these

limitations. Double-stranded breaks of chromosomal

DNA greatly enhance the recombination frequency

of introduced homologous templates. Repurposed

CRISPR-based systems (generally employing Cas9)

can specifically cleave a genomic sequence of interest,

leading to a vast improvement in the frequency of

edited microbial cells [54]. Combining this capability

with large-scale oligonucleotide  synthesis led to the

development of CRISPR-enabled trackable genome

engineering (CREATE), which utilizes  pools of 104–

106 barcoded oligos to achieve genomic mutagenesis at

chromosomal sites in bacteria [55]. A number of similar

approaches were recently developed in yeast

[56,57�,58�,59��,60,61], demonstrating the expanded

potential of CRISPR-based targeted mutagenesis

approaches in eukaryotes (see Box 1 for specific appli-

cations of these technologies).

All of these CRISPR-based methods require the prior

synthesis of large pools of DNA oligonucleotides which

serve as the editing templates for gene variation gener-

ation. Fusing various mutagenizing enzymes to a cata-

lytically inactive version of Cas9 (dCas9) allows for

their targeted localization within the genome, allowing

for highly specific mutagenesis. One such approach

utilizes fusion [62] or recruitment [63] of activation-

induced cytidine deaminase (AID) to dCas9 to generate

targeted mutagenesis specified by the single guide

RNA (sgRNA) sequences. Using multiple sgRNAs

allowed for tiling of longer mutagenized sequences

and was used to identify drug resistance mutations

against various cancer therapeutics in mammalian cells

[62,63]. A similar approach fused AID to zinc-finger and
www.sciencedirect.com
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Box 1 Current applications of CRISPR-based mutagenizing

technologies

CRISPR-enabled trackable genome engineering (CREATE) combines

the genome editing capabilities of CRISPR-Cas9 with large-scale

DNA oligo synthesis to achieve targeted chromosomal mutagenesis

in bacteria [55]. This approach was used to saturate all codons of the

folA drug-target gene in E. coli, and identify all resistance conferring

individual mutations. CREATE can be used in multiplex, and was

used to target 50 000 genomic sites to select for variants with

improved tolerance to temperature and to the industrial solvents

furfural and acetate [55]. CREATE can also be performed iteratively,

generating combinations of thousands of mutations to achieve 60-

fold improvement in the production of the industrially important

chemical 3-hydroxypropionic acid [66]. The technique has also been

used for the parallel mutagenesis of 19 genes involved in lysine

metabolism in E. coli, identifying determinants capable of increasing

production of the metabolite [67]. Building upon the basic principles

laid down by CREATE, several methods have been recently devel-

oped to expand these capabilities to eukaryotes as well. These

approaches have allowed the genomic integration of large libraries of

variants and have enabled a wide variety of applications, including:

determining the functional consequences of premature-termination

codons at various locations within all annotated essential genes

[57�], the saturation mutagenesis of a 29 amino acid region of the

Siz1 protein for increased tolerance to the growth-inhibitor furfural

[58�], the saturation editing of the essential gene SEC14 and identi-

fication of amino acids critical for chemical inhibition of lipid signaling

[59��], the generation of a set of tiling deletion mutants for charac-

terization of the SGS1 DNA helicase enzyme [60], the generation and

screening of combinations of mutations in two key enzymes of the

mevalonate pathway resulting in improved isoprenoid production

[61], and studying the fitness consequences of 16 006 natural

genetic variants through a retroelement-based approach to generate

variation [62].
transcription activator-like effector proteins to achieve

targeted variant generation in E. coli [64]. Finally, a

CRISPR-guided Cas9 nickase was recently used to

guide an engineered EP nick-translating DNA poly-

merase to specific genomic target sites, raising mutation

rate by 3–4 orders of magnitude compared to back-

ground levels [65��]. This system, termed EvolvR is

capable of generating all single substitutions in a 60-

nucleotide window after 16 hours in 1 ml of saturated

culture. Notwithstanding certain limitations of existing

CRISPR-guided targeted genomic mutagenesis tools

such as biases in mutational spectra, potential off-target

effects, limited targeting window size, and an increased

background mutation rate in the case of EvolvR, these

technologies hold great promise in potential applica-

tions going forward.

Future perspectives for in vivo chromosomal
saturation mutagenesis
The technologies currently allowing for the most con-

trolled and complete mutagenesis of chromosomal

sequences of interest (such as DIvERGE [49��], CRE-

ATE [55], and EvolvR [65��]) will open new doors in

what is possible in directed evolution. Broadly, examples

of these future applications include: (1) Targeted
www.sciencedirect.com 
mutagenesis along the full length of multiple genes

within a genome. This will allow the engineering of novel

cellular functions involving multiple proteins, such as

evolving novel metabolic functions from complex path-

ways. (2) Metabolic engineering in previously under-

utilized species. These above techniques can be adapted

to a range of bacteria, including those with untapped

metabolic potential resulting in optimization of novel

industrially relevant pathways. (3) Saturation mutagene-

sis of multiple genes, allowing the directed evolution of

multiprotein complexes. Improvement of complex traits

often requires co-evolution of interacting amino acids

coded at distinct loci, whose mutations provide no ben-

efits individually. (4) Forecasting the dynamics of resis-

tance evolution to novel antimicrobial drugs. System-

wide mutagenesis affecting gene expression levels will

aid in identifying primary drug targets and mechanisms of

action. Once these are identified, saturation mutagenesis

of the encoding genes will allow detailed fitness land-

scapes in the presence of a given drug. (5) Optimization of

in vitro synthesized DNA constructs. In vitro constructed

DNA elements encoding for example, biosynthetic path-

ways, genetic circuits, or entire genomic segments often

lack clear design principles thus leading to suboptimal

performance. High-throughput variant generation of the

constructs will lead to rapid optimization. Finally, (6)

fundamental evolutionary biology questions, such as

the conservation of epistatic effects between related

species or the phenotypic effects of varying codon usage

in different species could be studied in greatly enhanced

detail.

In summary, the last several years have seen great

strides in the ability to generate genetic variant libraries

capable of saturation of selected sequences. Many of

these techniques can complement each other and

depending on the studied organism, the level of speci-

ficity, targeting window size, and level of saturation, the

ideal strategy can be chosen for a range of diverse

applications.
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The authors describe EvolvR, that introduces semirandom mutations in a
small region at the vicinity of any genomic or plasmid site that can be
targeted by CRISPR/Cas9. By fusing a nicking variant of Cas9 (nCas9) to
an DNA polymerase I, the EvolvR system recruits the increased muta-
genesis activity of the error-prone polymerase to the Cas9 recognition
site. The authors also apply EvolvR to select mutations that confer
antibiotic resistance in plasmid and at genomic target sites.
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