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Triazole phenotypes and genotypic characterization of
clinical Aspergillus fumigatus isolates in China

Shuwen Deng"*, Lili Zhang?*, Yanfeng Ji?, Paul E Verweij’, Kin Ming Tsui*, Ferry Hagen>®, Jos Houbraken’,
Jacque F Meis>>%, Parida Abliz®, Xiaodong Wang?, Jingjun Zhao? and Wangqing Liao’

This study investigated the triazole phenotype and genotypic of clinical Aspergillus fumigatus isolates from China. We
determined the triazole susceptibility profiles of 159 A. fumigatus isolates collected between 2011 and 2015 from four different
areas in China tested against 10 antifungal drugs using the Clinical Laboratory Standard Institute M38-A2 method. For the
seven itraconazole-resistant A. fumigatus isolates identified in the study, the cyp51A gene, including its promoter region, was
sequenced and the mutation patterns were characterized. The resistant isolates were genotyped by microsatellite typing to
determine the genetic relatedness to isolates from China and other countries. The frequency of itraconazole resistance in

A. fumigatus isolates in our study was 4.4% (7/159). Six of the seven triazole-resistant isolates were recovered from the east
and southeast of China, and one from was recovered from the west of China. No resistant isolates were found in the north. Three
triazole-resistant isolates exhibited the TR34/L98H mutation, two carried the TR34/L98H/S297T/F4951 mutation and one
harbored a G54V mutation in the cyp51A gene. Analysis of the microsatellite markers from seven non-wild-type isolates
indicated the presence of five unique genotypes, which clustered into two major genetic groups. The cyp51A gene mutations
TR34/L98H and TR34/L98H/S297T were the most frequently found mutations, and the G54V mutation was reported for the first
time in China. The geographic origin of the triazole-resistant isolates appeared to concentrate in eastern and south-eastern areas,
which suggests that routine antifungal susceptibility testing in these areas should be performed for all clinically relevant

A. fumigatus isolates to guide antifungal therapy and for epidemiological purposes.
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INTRODUCTION

Invasive aspergillosis (IA) in immunocompromised patients results in
substantial morbidity and mortality."> More than 40 Aspergillus
species have been reported as causal agents of IA, and Aspergillus
fumigatus is the leading pathogen in humans in most regions of the
world.>? Antifungal agents such as the triazoles (itraconazole, posa-
conazole, voriconazole), the polyenes (e.g., amphotericin B) and the
echinocandins are commonly prescribed drugs for patients diagnosed
with IA.%> Recently, the antifungal azole isavuconazole was licensed
for primary therapy for IA.° The key to successful treatment of TA
includes early and accurate diagnosis and appropriate antifungal
therapy at an adequate dosage. However, rapid, accurate and sensitive
diagnosis is often a challenge in clinical laboratories,” and antifungal
therapy is further complicated by the emergence of triazole resistance
in A. fumigatus®® It has been suggested that triazole resistance among
Aspergillus species is more common than currently recognized.”
Recently, an expert panel recommended that initial treatment regi-
mens for IA should take into account the local drug resistance

frequency of A. fumigatus.'® Although triazole resistance has been
reported in Asia,!'”'* only a few Chinese surveillance reports on the
antifungal susceptibility of clinical A. fumigatus isolates are available.
Most reports come from restricted geographic areas and consider only
a modest number of isolates or relatively few antifungal agents.!4"18
Given the lack of comprehensive information on the triazole resistance
of isolates causing aspergillosis in China, the objectives of this study
were to investigate the following: (1) the susceptibility of clinical
A. fumigatus isolates from different areas in China to 10 antifungal
drugs; (2) the triazole phenotypes and the mutation patterns in the
cyp51A gene of resistant isolates; and (3) the genotypic relationships
among azole-resistant isolates using microsatellite typing.'®

MATERIALS AND METHODS

Isolates

A total of 159 clinical isolates, including 37 from eastern areas, 39
from the south-eastern areas, 61 from northern areas and 22 from
western areas, were collected between 2011 and 2015 in various
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medical centers from different geographic areas of China. Ethical
approval was obtained, and all patients involved understood and
agreed to the usage of these clinical specimens in the present study. All
isolates were identified to the species level by sequencing the partial p-
tubulin gene (benA) as described previously.!® The obtained sequences
were compared with the NCBI nucleotide database and the internal
sequence database of the Westerdijk Fungal Biodiversity Institute
containing verified benA sequences of Aspergillus section Fumigati. The
geographical origin, clinical data and GenBank accession numbers for
the generated benA sequences are listed in Supplementary Table S1.

Antifungal susceptibility testing

All isolates were tested for antifungal susceptibility under conditions
described in the Clinical Laboratory Standard Institute M38-A2
reference method.?° The antifungals amphotericin B, caspofungin,
itraconazole, posaconazole, terbinafine and voriconazole were
obtained from Sigma-Aldrich (Basingstoke, UK), and anidulafungin,
micafungin, isavuconazole and ravuconazole were obtained from
Toronto Research Chemicals Inc. (Toronto, Canada). The tested
concentrations ranged from 0.008 to 4 mg/L for the echinocandins
(anidulafungin, caspofungin and micafungin) and from 0.031 to
16 mg/L for the other compounds. All isolates were cultured on
potato dextrose agar at 35°C for 3-5 days and subcultured at least
twice to ensure viability and purity. Conidia were harvested using
sterile saline with Tween 20, and the final inoculum concentration of
the suspension was adjusted to 0.4—5x10* colony-forming units
(CFU)/mL in RPMI 1640 buffered with morpholinepropanesulfonic
acid. Plates were incubated for 48 hours at 35°C.2° Both minimum
inhibitory concentrations (MIC) and minimum effective concentra-
tions (MEC) were determined microscopically (Primo Star Zeiss, Jena,
Germany) at X 40 magnification. Epidemiological cutoff values (ECVs)
were used to classify triazole susceptibility and to detect non-wild-type
isolates.”®~22 Isolates were considered wild type when the MIC was
equal to or lower than the ECV and non-wild type when the MIC was
higher than the ECV. Isolates with MIC values >2mg/L for
amphotericin B2 >1 mg/L for isavuconazole, itraconazole and
voriconazole and MIC values >0.5mg/L for posaconazole were
considered non-wild type (potentially resistant or less susceptible

isolates).?* There are no ECVs currently available for the echinocan-
dins, ravuconazole or terbinafine. Quality control was performed as
recommended in Clinical Laboratory Standard Institute document
M38-A2 using strains A. fumigatus ATCC MYA-3627 and C. para-
psilosis ATCC 22019.25 All experiments for each isolate were
performed using three independent replicates on different days.

Sequencing of A. fumigatus cyp51A gene

Non-wild-type A. fumigatus isolates were selected for detection of
cyp51A mutations. Genomic DNA was extracted, and the full
sequences of the cyp51A gene with the promoter region were amplified
and sequenced (the primers used are listed in Supplementary Table
$2).26 The sequences obtained were aligned with the sequence from a
triazole-susceptible isolate (GenBank accession AF338659) using
ClustalW.?” After the removal of the non-coding intron region, the
predicted cyp51A amino-acid sequence was screened for substitutions,
particularly those linked to triazole resistance.

Microsatellite genotyping

Microsatellite typing was used to determine the genetic relationships
among the triazole-resistant A. fumigatus isolates. Nine loci were
amplified in three multiplex-PCR assays, and subsequent fragment
analysis was performed using the methods described previously.?®
Data were analyzed using Bionumericsv7.5 (Applied Maths, Sint-
Martens-Latem, Belgium), and the dendrogram was generated using
the categorical similarity coefficient followed by UPGMA cluster
analysis implemented in Bionumerics. Additional microsatellite data
from 18 clinical A. fumigatus isolates from China and 14 isolates from
other countries such as Australia, Netherlands, India, Japan and
Germany were included to provide additional insight into the genetic
relationships among the triazole-resistant isolates.!31429-32

Statistical analysis

The geometric means, MIC/MEC, modal MIC/MEC, MIC /MEC
ranges and MICy, (MIC/MEC at which 90% of the isolates tested were
inhibited) were measured for all isolates. Kruskal-Wallis testing was
performed to test for significant differences between the MIC/MEC for
each drug among four geographical areas using SPSS package v 20.0

Table 1 MIC/MEC ranges, modal of MICs/MECs, distribution of MICs/MECs (mg/L) obtained by testing the susceptibility of 159 A. fumigatus
isolates to 10 antifungal agents and the percentage of non-WT isolates for the 159 isolates of A. fumigatus

Antifungal agent MIC/MEC range

No. of isolates with MIC/MEC of

% of non-WT isolates

Triazoles 0.008 0.016 0.031 0.063
Itraconazole 0.063->16 1
Voriconazole 0.063-2 1
Posaconazole 0.031-1 4 63
Isavuconazole 0.063-4 1
Ravuconazole 0.063-8 3
Echinocandins

Micafungin <0.008-0.5 19 61 58 19
Anidulafungin <0.008-0.063 5 52 64 38

Caspofungin 0.125-0.5
Polyenes

Amphotericin B 0.5-2
Allylamines

Terbinafine 0.25-4

0.125 0.25 0.5 1 2 4 8 16
9 93 49 7 4.40
17 103 24 13 1 0.63
72 11 4 5 3.14
2 5 56 88 2 4 3.77
20 112 15 2 3 2 1 3.77
1 1 0
0
10 119 30 0
5 119 35 0
1 1 12 79 66 Unknown

Abbreviations: minimum inhibitory concentration, MIC; minimum effective concentration, MEC; values in bold indicate modal or most frequent MICs, Modal MIC/MEC; wild type WT. MICs are shown
for amphotericin B, itraconazole, posaconazole, voriconazole, ravuconazole, isavuconazole; MECs are shown for micafungin, caspofungin and anidulafungin.
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(IBM Corp., Armonk, NY, USA). The differences were considered
statistically significant at a P-value<0.05 (two-tailed).

RESULTS

The MIC/MEC ranges, modal MIC/MEC, distribution of MICs/MECs
of the 10 antifungal agents and the percentage of triazole-resistant
isolates among the 159 isolates of A. fumigatus are presented in
Table 1. Anidulafungin and micafungin were the most active drugs
against A. fumigatus in vitro as they had the lowest modal MICs/MECs
(mg/L) (0.016 (n=61) and 0.031 (1n=64), respectively), followed by
posaconazole (0.125 (n=72)), caspofungin (0.25 (n=119)), ravuco-
nazole (0.25 (n=112)), voriconazole (0.25 (n=103)), itraconazole
(0.5 (n=93)), amphotericin B (1 (n=119)), isavuconazole (1
(n=288)) and terbinafine (2 (n=79)).

The MIC values of the triazoles (except voriconazole) varied
significantly among the four geographic areas (Table 2). The activity
of itraconazole against western isolates was the most potent, whereas
eastern isolates were less susceptible. In contrast, for posaconazole and
ravuconazole, most A. fumigatus isolates from the western area had
higher GM MICs than isolates in the other three areas; for
isavuconazole, isolates from the east and the southeast had higher
MICs than isolates from the north and the west. However, all isolates
of A. fumigatus were particularly susceptible to the three echinocan-
dins, although isolates from the west had lower MECs compared with
isolates from the other areas (Table 2).

Seven isolates with MIC values above the established ECV for
isavuconazole, itraconazole, posaconazole and voriconazole were
identified, and the corresponding mutations in the cyp51A gene region
and their geographical origins are shown in Table 3.

The triazole-resistance rates for clinical isolates of A. fumigatus in
the four geographic areas were variable, with 10.8% in the east, 5.1%
in the southeast, 4.5% in the west and 0% in the north.

Analysis of microsatellite markers of the seven itraconazole-resistant
isolates indicated the presence of five unique genotypes that clustered
into two major independent genetic groups (Figure 1). The genetic
profiles of isolates STJ0119, STJ0140 and XYZ10138 were unique and
were different from other isolates in the tree. They were distantly
related to many Chinese isolates reported in previous studies.'*1¢
Three isolates (STJ0049, STJ0107 and STJ0048) were identical in their
microsatellite profiles, and they were also genetically identical to four
clinical isolates from China from previous studies (Figure 1). These
seven isolates appeared to be highly clonal based on the microsatellites.
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DISCUSSION

Our study showed that clinical A. fumigatus isolates from different
areas in China have variable susceptibility profiles toward 10 common
antifungal drugs, including two novel triazole antifungal agents:
isavuconazole and ravuconazole. Despite the variability in drug
susceptibilities, anidulafungin and micafungin were the most active/
effective drugs (Table 1), and triazoles were active against > 95.6%
(n=152/159) of the isolates, which is in agreement with other
studies.’ >3 The novel triazoles isavuconazole and ravuconazole also
had good in vitro activity against A. fumigatus (96.2% inhibition at
MIC<1mg/L (n=153/159)). The in vitro activity of isavuconazole
against A. fumigatus (modal MIC 1 mg/L) was similar to the activity of
itraconazole (modal MIC 0.5 mg/L) but lower than either posacona-
zole (modal MIC 0.125 mg/L) or ravuconazole (modal MIC 0.25 mg/
L) and voriconazole (modal MIC 0.25 mg/L), which was comparable
to previous reports.>3373¢ Nevertheless, ravuconazole showed excellent
activity against A. fumigatus, as previously reported.>®3

In a 5-year period, the rate of triazole resistance in A. fumigatus
isolates in our study was 4.4% (n=7/159), and this percentage was
similar to the current global prevalence of triazole resistance in
Aspergillus (3-6%).1

Five of the seven resistant isolates exhibited a TR34/L98H or TR3,/
L98H/S297T mutation in the cyp51A gene, confirming the presence of
TR34/L98H mutations in China.!4!® The TR34/L98H mutation has
been associated with exposure to azole fungicides in the environment
rather than triazole therapy in patients.?® Strikingly, seven such isolates
in China (three from current study) showed no genetic variability,
albeit with two different mutation patterns, suggesting a possible single
and recent origin for these resistant isolates.

Variability in resistance frequency was observed in our study:
triazole-resistant A. fumigatus was concentrated in the east (four
non-wild-type isolates) and southeast (two non-wild-type isolates).
One triazole-resistant isolate was obtained from the western area
(Table 2), thousands of kilometers distant from the east. A similar
variation in triazole-resistance prevalence between centers was found
in the Netherlands.” Differences in resistance frequencies between
medical centers might reflect differences in environmental exposure to
triazole-resistant A. fumigatus. Further studies are needed to identify
local environmental niches as they are probably critical to decrease the
exposure of patients to A. fumigatus harboring these resistance
mutations. Azole resistance in A. fumigatus due to non-cyp51A
mechanisms is also increasingly reported,®” which including activation
of efflux pumps, in particular the overexpression of adenosine

Table 2 Comparisons of activities of eight antifungal drugs tested against A. fumigatus isolates in four geographic areas

Antifungal agents

Geometric mean (MIC9o/MECqg) (mg/L) for isolates from:

East (n=37) South-east (n=39) North (n=61) West (n=22)
Itraconazole 0.894 (16)* 0.752 (1) 0.658 (1)* 0.485 (1)*
Voriconazole 0.290 (0.5) 0.273 (1) 0.296 (0.5) 0.302 (0.5)
Posaconazole 0.116 (0.5) 0.113 (0.25) 0.091 (0.125)* 0.137(0.25)*
Ravuconazole 0.290 (2)* 0.264 (0.25)* 0.228 (0.25)* 0.401 (0.5)*
Isavuconazole 0.894 (2)* 0.915 (1)* 0.672 (1)* 0.624 (1)

0.029 (0.063)*
0.030 (0.063)*
0.319 (0.5)*

Micafungin
Anidulafungin
Caspofungin

0.023 (0.063)*
0.035 (0.063)*
0.264 (0.25)*

0.022 (0.031)*
0.028 (0.063)*
0.287 (0.5)*

0.014 (0.015)*
0.016 (0.015)*
0.194 (0.25)*

Abbreviations: minimum effective concentration, MEC; minimum inhibitory concentration, MIC. Note: The one with * means that it had statistical difference (P<0.01) when compared with the one

with #.
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Table 3 MICs/MECs of seven triazole-resistant A. fumigatus isolates and their corresponding mutation type in the cyp51A gene region and

geographical origin

Isolates MICs/MECs (mg/L) Mutation type in cyp51A gene Geographical origin
Amb Itr Vor Pos Isa Rav Anid Mic Cas Ter
STJ0048 1 >16 1 1 4 2 0.015 0.03 0.25 2 TR34/L98H South-eastern area
STJO049 1 >16 1 1 4 2 0.03 <0.008 0.25 2 TR34/L98H South-eastern area
STJO105 1 >16 1 1 4 2 0.06 0.03 0.25 2 — Eastern area
STJO107 1 >16 0.5 1 2 4 0.03 0.03 0.5 2 TR34/L98H/S297T Eastern area
STJO119 0.5 >16 0.125 0.5 1 0.125 0.03 0.03 0.5 1 G54V Eastern area
STJO140 0.5 >16 0.5 1 2 8 0.06 0.06 0.5 2 TR34/L98H/S297T Eastern area
XJ138 1 16 2 0.5 4 4 0.015 0.015 0.125 2 TR34/L98H Western area

Abbreviations: amphotericin B, Amb; anidulafungin, Anid; caspofungin, Cas; isavoconazole, Isa; itraconazole, Itr; minimum effective concentration, MEC; micafungin, Mic; minimum inhibitory

concentration, MIC; posaconazole, Pos; ravuconazole, Rav; terbinafine, Ter; voriconazole, Vor.

Similarity scale STRAf profile
'T“ S @ 3 N & 2 S o S S 8 8 < Q Q  Strain# Source City Country CYP51A wildtype/mutation(s)
: 110 210 110 280 120 33.0 180 9.0 10.0 MF-1011 Clinical Nagasaki Japan G54W
180 240 140 110 190 290 160 9.0 20.0 C821 Clinical Chengdu China TR34/L98H
230 120 150 300 240 260 100 100 7.0 E1001 Clinical Fuzhou China TR34/L98H/S297T/F495I
230 120 110 360 250 260 9.0 11.0 10.0 20643.023 Clinical n/a China TR34/L98H
230 120 11.0 230 230 260 100 100 10.0 20677.079 Clinical n/a China TR34/L98H
—1 270 120 110 350 19.0 26.0 9.0 9.0 10.0 20684.007 Clinical n/a China TR34/L98H
180 120 170 360 150 260 100 110 7.0 20677.089 Clinical n/a China TR34/L98H
26.0 210 90 330 110 220 8.0 140 10.0 CF/NL2992 Clinical n/a The Netherlands ~ TR46/Y121F/T289A
230 180 140 360 120 250 11.0 11.0 11.0 STJO119 * Clinical Shanghai China G54V
260 210 120 250 90 190 140 9.0 9.0 C195 Clinical Beijing China TR46/Y121F/T289A
210 210 100 230 110 270 8.0 9.0 8.0 MF-0327 Clinical Nagasaki Japan G54R
260 120 110 220 100 260 120 10.0 10.0 20684.022 Clinical n/a China TR34/L98H
240 190 140 500 140 290 100 7.0 9.0 IFM60237 Clinical Chiba Japan P216L
23.0 120 150 230 220 6.0 13.0 100 7.0 C485 Clinical Shenyang China TR34/L98H/S297T/F4951
230 120 150 230 220 6.0 13.0 100 7.0 E739 Clinical Beijing China TR34/L98H/S297T/F495]
230 120 11.0 300 220 60 11.0 100 7.0 20677.086 Clinical n/a China TR34/L98H
230 120 150 230 120 6.0 130 100 7.0 C9% Clinical Shanghai China TR34/L98H/S297T/F4951
250 200 19.0 310 9.0 100 100 140 5.0 12-90032258 Clinical n/a Australia TR34/L98H
180 200 150 430 230 60 150 100 10.0 STJO140* Clinical Nanjing China TR34/L98H/S297T
180 200 150 420 240 6.0 9.0 100 10.0 20643.017 Clinical n/a China TR34/L98H
250 100 13.0 450 100 9.0 100 7.0 11.0 1978 Clinical n/a Germany TR34/L98H
230 120 170 43.0 130 70 100 110 7.0 20684.002 Clinical n/a China TR34/L98H
] 230 100 9.0 370 9.0 100 80 10.0 8.0 XYZ10138% Clinical Urumgi China TR34/L98H
250 200 9.0 450 9.0 6.0 8.0 100 9.0 M143040.1 Water n/a The Netherlands ~ TR46/Y121F/T289A
13.0 100 9.0 380 9.0 100 80 10.0 8.0 STJ0049 » Clinical Fuzhou China TR34/L98H
13.0 10.0 9.0 380 9.0 100 80 10.0 8.0 STJO107 * Clinical Shanghai China TR34/L98H/S297T
13.0 100 9.0 380 9.0 100 80 10.0 8.0 STJ0048 % Clinical Fuzhou China TR34/L98H
] 13.0 10.0 9.0 380 9.0 100 80 100 8.0 Co4 Clinical Shanghai China TR34/L98H
L 13.0 10.0 9.0 380 9.0 100 80 100 8.0 C116 Clinical Fuzhou China TR34/L98H
13.0 10.0 9.0 380 9.0 100 80 100 8.0 C135 Clinical Fuzhou China TR34/L98H
13.0 10.0 9.0 380 9.0 100 80 10.0 8.0 C136 Clinical Fuzhou China TR34/L98H
13.0 9.0 90 380 9.0 100 80 100 8.0 STJO105 * Clinical Shanghai China Wildtype
100 100 80 310 9.0 11.0 8.0 100 9.0 MYC-2008-002/46 Soil Nijmegen The Netherlands ~ TR34/L98H
140 210 80 31.0 9.0 6.0 80 10.0 20.0 04-202165 Clinical Sydney Australia TR34/L98H
200 210 100 310 110 100 80 10.0 200 A31 Clinical n/a Taiwan TR34/L98H
140 240 140 310 90 10.0 100 10.0 20.0 0817960/39 Clinical Rotterdam The Netherlands ~ TR34/L98H
14.0 200 9.0 310 9.0 100 8.0 100 280 VPCI320/14 Clinical Delhi India TR34/L98H
{ 230 220 130 680 9.0 8.0 8.0 9.0 11.0 2087 Clinical Essen Germany TR34/L98H
230 220 13.0 980 9.0 8.0 8.0 9.0 11.0 1899 Clinical Essen Germany TR34/L98H

Figure 1 Genotypic analysis of triazole-resistant Aspergillus fumigatus clinical isolates, including seven triazole-resistant isolates in this study, and analyses
published previously from China and other countries. The dendrogram is based on a categorical analysis of nine microsatellite markers in combination with
the unweighted Pair Group Method with arithmetic mean clustering. The scale bar indicates the percentage identity. *Denotes the seven clinical Chinese

isolates in this study.

triphosphate-binding cassette transporters, transporters of the major
facilitator superfamily, transcription factors, and non-synonymous
mutations. The mutation P88L in HapE, an important subunit of the
CCAAT-binding transcription factor complex, was found to confer
resistance in A. fumigatus.*’ The occurrence of genomic deletions and
non-synonymous mutations in genes (afyapl and aldA) other than
cyp51A has been described in A. fumigatus as possibly leading to azole
resistance.!
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A. fumigatus isolates harboring the mutation TR34/L98H are found
globally, and in this study, they conferred high MICs to all five triazole
drugs. The results were different with the TR3,/L98H/S297T mutants,
which had lower voriconazole MICs (Table 3). This discrepancy had
previously been noted, and we suggested at that time that the extra
$297T mutation might represent a compensatory mutation.*> The
strain with the G54 point mutation represents the first report from
China. Recently, this mutation in cyp51A, known previously from



Europe and India, was also reported in Argentina.’**>%* Two new
azoles, ravuconazole and isavuconazole, which are not yet approved
for clinical use in China, showed reduced in vitro activity against
itraconazole-resistant A. fumigatus isolates. This result is probably due
to azole cross-resistance: 85.7% (n=6/7) of the itraconazole-resistant
isolates were also resistant to ravuconazole and isavuconazole, and
71.4% (n=5/7) were resistant to posaconazole (Table 3). The isolate
(STJ0119) with the G54 mutation was only resistant to itraconazole
(MIC>16 mg/L) but not to the other triazoles.*> This isolate was
obtained from a patient admitted to a hospital in Shanghai with azole
preexposure in the period before isolation. Unfortunately, we have no
detailed information regarding the use of azole drugs in this patient.
However, the TRys/Y121F/T289A combination of mutations was not
found in this study, although recently a clinical isolate was reported
from Beijing, China.'®

The geographical variation in A. fumigatus azole-resistant isolates
suggests a need to include local drug resistance rates to devise public
health policies and local guidelines for treatment and management.
Furthermore, in the east and the southeast, where resistant isolates are
prevalent, routine antifungal susceptibility testing should be performed
for all clinically relevant A. fumigatus isolates to guide antifungal
therapy and for epidemiological purposes.
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