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Abstract

Interpretation of stable isotope ratios of carbon and nitrogen (d13C and d15N) is generally based on the assumption that
with each trophic level there is a constant enrichment in the heavier isotope, leading to diet-tissue discrimination factors of
3.4% for 15N (DN) and ,0.5% for 13C (DC). Diet-tissue discrimination factors determined from paired tissue and gut samples
taken from 152 individuals from 26 fish species at Ningaloo Reef, Western Australia demonstrate a large amount of
variability around constant values. While caution is necessary in using gut contents to represent diet due to the potential for
high temporal variability, there were significant effects of trophic position and season that may also lead to variability in DN
under natural conditions. Nitrogen enrichment increased significantly at higher trophic levels (higher tissue d15N), with
significantly higher DN in carnivorous species. Changes in diet led to significant changes in DN, but not tissue d15N,
between seasons for several species: Acanthurus triostegus, Chromis viridis, Parupeneus signatus and Pomacentrus
moluccensis. These results confirm that the use of meta-analysis averages for DN is likely to be inappropriate for accurately
determining diets and trophic relationships using tissue stable isotope ratios. Where feasible, discrimination factors should
be directly quantified for each species and trophic link in question, acknowledging the potential for significant variation
away from meta-analysis averages and, perhaps, controlled laboratory diets and conditions.
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Introduction

The analysis of stable isotope ratios of carbon and nitrogen

(d13C and d15N) to determine an organism’s diet and to

reconstruct food webs is widespread, and d13C and d15N are

increasingly being used in the study of coral reef trophodynamics.

Interpretation of stable isotope ratios is generally based on the

assumption that with each trophic level there is a constant

enrichment in the heavier isotope, leading to diet-tissue discrim-

ination factors of 3.4% for 15N (DN) and ,0.5% for 13C (DC) [1–

4]. Post [3] noted that, in his meta-analysis, discrimination did not

vary significantly with organism body size, between species,

functional groups or even habitats, but stressed that average

discrimination factors can only be applied to entire food webs,

with many multiple trophic pathways and species. In fact, it is

increasingly being recognised that trophic discrimination has a

high degree of variability around meta-analysis averages when

examined for species or groups, e.g. [5–7]. Indeed, as Vander

Zanden and Rasmussen [1] note, Minagawa and Wada’s [2] value

of 3.4% for DN was itself variable, being determined from the

mean discrimination in only 16 individual estimates and with a

standard deviation of 1.1%. Similarly, Post’s [3] value from 56

individual estimates had a standard deviation of 0.98%. Despite

this variability, many studies using isotope ratios must rely on

assumed discrimination constants, often from different tissues or

species, to make conclusions about diet or trophic position [6].

Many recent isotope studies of coral reef fishes apply meta-analysis

average discrimination factors to the analysis of a single species or

trophic group, e.g. [8–12].

While the mechanisms of diet-tissue discrimination are still not

completely understood, tissue isotopes are generally accepted to be

the result of a dynamic equilibrium between isotopic discrimina-

tion during assimilation and excretion [13–15]. Variability in

discrimination is thus not surprising given the range of factors

known to influence assimilatory and excretory processes within an

organism. Tissue type, age or body size, diet quality, nutritional

stress, feeding rate and excretory mechanisms are all known to

influence discrimination [4–6,15–19], and there can be substantial

differences between organisms as a result [4]. The fact that feeding

on mixed diets [20] and sample preparation [4,7] can also

significantly influence discrimination factors further argues against

applying meta-analysis averages to focused field studies. Using
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incorrect discrimination constants, even though the error may be

small, has the potential to lead to large errors in the estimation of

food sources or trophic position [4], especially for DN and studies

focused on few species or groups [3]. Consequently, for accurate

estimates of diet or trophic position it is essential that

discrimination factors be quantified, whether directly or by

modelling e.g. [15], and variability accounted for in analyses

(such as through Bayesian modelling, e.g. [21,22]).

Despite the apparent variability and potential consequences, the

extent to which changes in the many factors mentioned above can

lead to differences in trophic discrimination within and between

species in the field is not well quantified. In this study,

discrimination factors are measured for variety of coral reef fishes

at Ningaloo Reef, Western Australia and examined in the context

of spatial and temporal factors that may lead to variation, and

hence error in diet or trophic position estimates.

Materials and Methods

Site description & experimental overview
The study site at Sandy Bay, Ningaloo Reef, Western Australia

is a typical fringing reef habitat. The site, including the prevailing

hydrodynamics, is described in detail in Wyatt et al. [23]. During

May 2007 and May and Nov 2008 a total of 152 individual fish

specimens were collected with line or spear under the approval of

the Department of Environment and Conservation (permit

numbers SF006335, CE001989 and SW012041). Reef-based

fishes were collected from one of seven sites that traverse the reef,

from reef slope to lagoon (Figure 1a), while pelagic species were

caught by trolling along the reef slope in the vicinity of stations 6

and 7. Upon collection specimens were immediately placed on ice

and transported to shore for dissection (maximum time between

collection and dissection was 3 hrs).

Sampling and analysis procedures
Paired tissue and gut samples were taken from each specimen

for isotopic analysis. Tissue samples were dissected from white

muscle near the base of the tail, while gut samples were collected,

where possible, from the anterior alimentary canal (very small

specimens often precluded separating fore and hind gut contents)

and placed onto Whatman GF/F filters. Samples were stored

frozen (220uC) until analysis within three months. Tissue samples

were dried at 60uC for 48 hrs before being ground to a powder

using a RetschH ball mill (Haan, Germany). Gut samples on GF/F

filters were dried for 24 hrs and then acidified dropwise using 1 N

HCl to remove carbonaceous material, before being re-dried for

24 hrs. This method of acidifying filters (direct, no rinsing) has

been found to be the most effective method of removing the

influence of carbonate on d13C without significantly altering d15N

(A.S.J.W., unpublished data).

Samples were combusted to N2 and CO2 in tin capsules

(1265 mm, SerCon, Cheshire, UK) using an elemental analyser

Figure 1. The study site, sampling stations and habitats at Sandy Bay, Ningaloo Reef, Western Australia. Panels show (a) sampling
stations 1 to 7 across the reef (see Wyatt et al. [23] for more details on the location and hydrodynamics); (b) reef zonation and bathymetry between
locations derived from hyperspectral imagery; and (c) representative images of the benthic habitat demonstrate the shift from the tabulate hard coral
dominated reef flat (station 1), to patch reef (3) and sandy lagoon (5).
doi:10.1371/journal.pone.0013682.g001
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(ANCA-GSL, Europa Scientific Ltd., Crewe, UK). The N2 and

CO2 were purified by gas chromatography and the nitrogen and

carbon elemental composition and isotope ratios determined by

continuous flow isotope ratio mass spectrometry (20-20 IRMS,

Europa Scientific Ltd., Crewe, UK). Reference materials of known

elemental composition and isotopic ratios were interspaced with

the samples for calibration (USGS40, d15N = 24.52%,

d13C = 226.39%; USGS41, d15N = 47.57%, d13C = 37.63%).

Raw nitrogen and carbon elemental composition and isotope

ratio data were corrected for instrument drift and blank

contribution using ANCA-NT software (Europa Scientific Ltd.,

Crewe, United Kingdom). Nitrogen isotope ratios (d15N) are

reported in parts per thousand (per mil, %) relative to N2 in air

and carbon isotope ratios (d13C ) relative to Pee Dee Belemnite (V-

PDB) according to the following formula:

dX~
Rsample

Rs tan dard

� �
{1

� �
|1000

where X is 15N or 13C and R is the ratio of heavy to light isotope

(15N:14N or 13C:12C). Repeatability for d15N was 60.17% and

d13C60.12%.

Diet-tissue discrimination factors were determined by subtract-

ing the gut isotope value from the tissue value for each specimen:

DX~dXT{dXG

where X is 15N or 13C for tissue (T) and gut (G).

Statistical analysis
Statistical analysis was performed in SPSS v17.0. A general

linear model analysis of variance (ANOVA) was used to check for

significant differences between groups after confirming homoge-

neity of variance using Levene’s Test. Post-hoc differences were

examined with Fisher’s LSD.

Results

Nitrogen discrimination factors (DN) were obtained for 126 of

the 152 individuals sampled, covering 24 species and four trophic

groups (Table 1). Due to instrument overloading, carbon

discrimination factors (DC) were only obtained for 111 individuals

from 22 species. Amongst these individuals there was evidence of

marked deviation in both DN and DC away from published

constants. Few species displayed average DN close to 3.4% [2,3],

with a study average of 2.4% and a wide individual range, 21.1 to

5.6% (Table 1). Carbon discrimination was also widely variable,

DC ranging from 25.3 to 11, with a study average of 1.1%. There

was a significant relationship between the isotope ratios of an

individual’s tissue and its gut contents at the time of sampling, for

both d15N and d13C (r2 = 0.138, p,0.001 and r2 = 0.583,

p,0.001, respectively; Figure 2).

DN
A proportion (23%) of the variation in nitrogen discrimination

across the study can be explained by variation in tissue d15N, with

DN increasing significantly with increasing trophic level (as

indicated by tissue d15N, r2 = 0.226; F[1,124] = 36.23, p,0.001,

Figure 3a).

Trophic groups had significantly different DN (F[1,117] = 4.192,

p,0.01, Figure 4a). Despite some qualitative evidence of seasonal

differences within the trophic groups, there were no significant

seasonal differences, or interaction, in the season6trophic group

ANOVA model (but see seasonal difference for individual species

below). Averaged across seasons, carnivores had higher DN than

other groups and detritivores lower, with herbivores and

planktivores not significantly different to each other.

Seasonal and spatial aspects of intra-species variation in

discrimination are difficult to comprehensively address. This

experiment was designed in a balanced way, so that the same

fish species would be sampled in each season at a number of

locations. Unfortunately, due to the fact that many coral reef

species are associated with different zones, it was not always

possible to find the same target species at different sites. Further,

the loss of data due to instrument overloading decreased the

number of replicate samples. As such, season and location as

factors in changes in trophic discrimination can only be examined

for a selected number of species for which data could be obtained

in different seasons and/or locations.

There was preliminary evidence of significant seasonal differ-

ences in nitrogen discrimination for four species (67% of species

with seasonally replicated samples). Nitrogen discrimination was

significantly lower in May 2008 compared to Nov 2008 for

Pomacentrus moluccensis (F[1,6] = 26.08, p,0.01, Figure 5a), Acanthurus

triostegus (F[1,7] = 7.404, p,0.05, Figure 5b) and Parupeneus signatus

(F[1,2] = 21.66, p,0.05, Figure 5c) and. In contrast, Chromis viridis

sampled had significantly higher discrimination in May 2008

(F[1,4] = 12.10, p,0.05, Figure 5d). Increased DN in Nov was

accompanied by lower gut d15N in P. moluccensis (F[1,6] = 15.99,

p,0.01, Figure 5a), A. triostegus (F[1,7] = 7.418, p,0.05, Figure 5b)

and P. signatus (F[1,2] = 33.98, p,0.05, Figure 5c). In contrast, C.

viridis had significantly higher gut d15N in Nov (F[1,4] = 15.12,

p,0.05, Figure 5d). There was no evidence of any significant

location effects on DN, or season6location interactions, for any of

the eleven species sampled at multiple locations and seasons.

DC
In contrast to DN, there was little evidence of significant inter-

and intra-species variation in DC. There was no significant

relationship between d13C and DC (Figure 3b), no significant

trophic group or seasonal differences, or interactions (Figure 4b),

and no significant changes in DC for any of the eleven species

sampled at multiple locations and seasons.

There was also no significant relationship between discrimina-

tion factors (DN or DC) and either tissue or gut C:N ratios.

Variations in C:N ratios only explained a very small proportion

(,5%) of the variation in discrimination factors.

Discussion

This study is the first to attempt to quantify isotope

discrimination factors in situ for a variety of fish species across

multiple trophic levels. Although the large amount of variability in

discrimination factors documented in the study is in part a

consequence of conducting the study under inherently variable

field conditions and using gut contents as a dietary proxy, the

results indicate that caution is necessary in applying discrimination

factors to isotope data gathered from natural populations. There is

the potential for significant variation in discrimination factors

away from meta-analysis averages or those determined under

controlled laboratory conditions.

Discrimination in the gut and between tissues
A significant potential source of variability in diet-tissue

discrimination factors measured in this study was the use of gut

contents to represent an individual’s diet. While tissue samples

represent integration over time with respect to nutrient input (e.g.

Reef Fish Discrimination

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13682



weeks to months [24]), gut samples represent a ‘snap shot’ of diet

[25], containing only material that the specimen ingested

immediately before collection (e.g. hours). Thus, in addition to

containing material that will be excreted rather than incorporated

into the fish’s tissue, the gut may also contain an atypical diet at

the time of sampling or significant amounts of non-dietary

material, i.e. ingestion does not imply assimilation into tissue.

This kind of variation in gut contents almost certainly contributed

in part to the large variation in discrimination factors measured.

Differential assimilation of different components of the diet can

also mean that tissues reflect the isotopic composition of particular

nutrient components from which they are synthesised, rather than

the bulk diet [20,26,27]. There was however a significant

relationship between the isotope ratios of an individual’s tissue

and its gut contents at the time of sampling, for both d15N and

d13C, suggesting that, in general, the gut samples were a

reasonable representation of the temporally averaged diet

assimilated into tissues. Future work should consider investigating

the role of differential assimilation of dietary components in

driving discrimination factor variation, such as though the use of

compound-specific isotope analysis.

There is also the potential for gut contents to be isotopically

different to diet due to alteration during ingestion and digestion.

Few studies have examined diet-gut isotope differences in fishes,

which requires that fishes are fed a controlled diet of known

isotopic composition under laboratory conditions. One of the few

studies examining isotopic alteration of gut contents relative to diet

during both ingestion and digestion by Guelinckx et al. [14]

suggested that alteration is likely to be small compared to the total

discrimination between diet and tissue, especially where fore-gut

contents are analysed. Changes in the d15N of diet in the fore gut

of Pomatoschistus minutus were small relative to overall discrimina-

Table 1. Average tissue d15N, DN between tissue and gut d15N, tissue d13C, and DC between tissue and gut d13C (all in %) for
individuals from 26 species, showing stations and number collected (n).

Species Common name Stations (n) d15N (n) DN (n) d13C (n) DC (n)

Herbivores

Acanthurus triostegus Convict surgeonfish 1 (12), 5 (2), 6 (1) 8.3960.1 (23) 1.6760.4 (15) 212.8560.4 (23) 1.3260.3 (15)

Chrysiptera unimaculata Onespot demoislle 1 (1), 2 (1), 3 (1), 6 (9) 9.7860.1 (13) 1.9460.3 (12) 216.1860.4 (13) 0.2260.4 (10)

Stegastes fasciolatus Pacific gregory 1 (3), 3 (7), 6 (14), 7 (4) 10.0060.1 (31) 2.4960.2 (28) 216.2360.6 (31) 1.5360.4 (25)

Stegastes nigricans Dusky gregory 6 (1), 3(1) 10.0860.1 (2) 1.8661.1 (2) 216.2460.7 (2) 21.0561.8 (2)

Planktivores

Abudefduf sexfasciatus Scissortail sergeant 1 (5), 6 (7) 10.5760.1 (15) 3.2260.2 (12) 216.6761.0 (15) 2.2161.0 (11)

Chromis cinerascens Green puller 6 (1) 10.9160.1 (2) 3.0060.0 (1) 218.6760.0 (2) n.d. (0)

Chromis viridis Blue-green damselfish 1 (7), 3 (1) 10.1460.1 (11) 1.6360.4 (8) 217.3060.3 (11) 0.9360.3 (8)

Dascyllus aruanus Humbug dascyllus 1 (2), 4 (1) 10.1860.2 (3) 2.3360.3 (3) 215.0160.9 (3) 2.0960.3 (2)

Dascyllus reticulatus Reticulate dascyllus 1 (1), 7 (2) 10.5860.5 (3) 3.2260.5 (3) 217.0262.3 (3) 2.5161.3 (3)

Dascyllus trimaculatus Three-spot dascyllus 1 (2), 6 (1) 10.9060.2 (5) 2.3160.3 (3) 216.5160.1 (5) 0.7560.8 (2)

Pomacentrus albicaudatus Whitefin damsel 6 (1) 10.17 (1) 1.65 (1) 214.76 (1) n.d. (0)

Pomacentrus chrysurus Whitetail damsel 6 (2) 11.1860.1 (2) 3.2460.1 (2) 218.6060.0 (2) 23.5460.0 (1)

Pomacentrus coelestis Neon damsel 1 (3) 10.1460.1 (3) 0.8060.9 (3) 218.6160.2 (3) 20.8860.6 (3)

Pomacentrus moluccensis Lemon damsel 1 (8) 10.1360.1 (9) 3.0860.3 (8) 216.2960.3 (9) 0.2260.3 (6)

Pterocaesio tile Neon fusilier 6 (3) 10.1560.1 (3) 2.3060.2 (3) 217.2560.6 (3) 1.4060.2 (3)

Carnivores

Cephalopholis sexmaculata Sixblotch hind 5 (1) 9.94 (1) 2.49 (1) 210.32 (1) 2.71 (1)

Lethrinus miniatus Trumpet emperor 7 (2) 13.1960.2 (2) 4.7660.3 (2) 216.4360.0 (2) 0.9960.4 (2)

Lethrinus nebulosus Spangled emperor 5 (2), 7(2) 11.1560.8 (4) 3.2960.3 (4) 212.6362.0 (4) 22.2760.8 (4)

Lutjanus sebae Emperor red snapper 7 (1) 13.55 (1) n.d. (0) 216.56 (1) n.d. (0)

Parapercis clathrata False-eye grubfish 3 (1) 10.62 (1) n.d. (0) 210.26 (1) n.d. (0)

Parupeneus signatus Black-spot goatfish 3 (4), 6 (1), 7 (2) 9.6660.4 (7) 2.1960.6 (7) 213.1661.7 (7) 1.5160.6 (5)

Pristipomoides filamentosus Crimson jobfish 7 (2) 12.1960.1 (2) 4.8360.7 (2) 217.8160.8 (2) 0.9660.4 (2)

Sarda orientalis Striped bonito 6–7 (1) 11.51 (1) 3.98 (1) 217.80 (1) 20.19 (1)

Thunnus tonggol Longtail tuna 6–7 (2) 11.6160.3 (2) 4.73 (1) 216.9060.0 (2) 3.55 (1)

Detritivores

Amblygobius phalaena Banded goby 5 (2) 7.4760.0 (3) 0.7260.3 (2) 212.4860.8 (3) 4.7260.3 (2)

Gobiodon histrio Broad-barred maori
goby

4 (2) 8.1260.1 (2) 1.1360.1 (2) 212.5560.0 (2) 2.7760.1 (2)

Average
(range)

9.96
(7.42–13.6)

2.41
(21.14–5.57)

215.6
(220.3–28.59)

1.13
(25.29–10.70)

Common names and trophic group based on Froese & Pauly [39]. Data are mean 6 s.e and show the number of individuals each calculation is based on (n). n.d. = no
data.
doi:10.1371/journal.pone.0013682.t001
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tion (diet to tissue) and negligble for d13C. Diet to fore gut

discrimination (i.e. largely undigested material) led to enrichment

in d15N by 1.31% (approximately 20% of the total DN of 6.6%),

with no signficant difference in d13C. Discrimination during

digestion (i.e. diet compared to hindgut/faecal material), has been

investigated in more detail but without consensus. Results have

ranged from depletion [28], to no change [29] to enrichment

[14,30]. Guelinckx et al. [14] found that digestive alteration of gut

contents, together with the additon of excretory products,

represented approximately 9% and 12%, respectively, of the total

diet to tissue discrimination observed in P. minutus (6.6% for DN

and 6.66% for DC). While efforts were made in the current study

to sample fore gut contents from each specimen, it was very

difficult to exclude hind gut contents especially for very small

species. Inclusion of mixed gut contents is likely to alter the

discrimination measured, since hind gut contents are generally

composed increasingly of excretory material that is significantly

different isotopically to the diet [14].

Although it is not possible to definitively determine diet to gut

content isotope changes in the field, since the diet is not known,

Figure 2. Fish tissue isotopes compared to gut content isotopes. Data shows isotope ratios at the time of sampling for (a) nitrogen (d15N,
n = 126) and (b) carbon (d13C, n = 111). Solid lines represents significant linear regression relationships for nitrogen (Tissue d15N = 0.3256Gut
d15N+7.535; r2 = 0.138; F[1,124] = 19.93, p,0.001) and carbon (Tissue d13C = 0.5476Gut d13C26.472; r2 = 0.583; F[1,109] = 152.2, p,0.001).
doi:10.1371/journal.pone.0013682.g002
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our data tend to support a minimal amount of discrimination

between the diet and gut. As an example, the average gut d15N of

5.99% (60.13, s.e.) for Abudefduf sexfasciatus was very similar to the

of d15N of their assumed zooplankton prey at around 6% (6.19%
(60.01) for the .500 mm fraction, 6.09% (60.00) for .300 mm

and 6.26% (60.20) for .105 mm, A.S.J. Wyatt, unpublished

data). Thus any discrimination between diet and gut contents

would appear to be negligible compared to the total discrimination

between diet/gut and tissue (DN of 3.22 (60.2) for Abudefduf

sexfasciatus, Table 1). This would appear to support Guelinckx et

al.’s [14] suggestion that the timing of sampling after feeding time,

and hence the degree of digestion, is relatively unimportant and

does not confound isotopic values for diet determined from gut

contents. Although gut content analysis is very difficult for small

amounts of gut contents subject to differing degrees of digestion,

future more focused studies should consider gut content analysis as

a means of directly quantifying dietary components and the role of

discrimination during digestion.

Variations in tissue composition may also lead to observations of

variable discrimination factors. Isotopic composition is known to

vary significantly between different tissue types, which in turn vary

in composition over different temporal scales [19,31,32]. In this

Figure 3. Discrimination factors versus tissue isotopic composition. Data is shown for (a) nitrogen (DN vs. d15N, n = 126) and (b) carbon (DC
vs. d13C, n = 111 ). Solid line represents a significant linear regression relationship for nitrogen (DN = 0.5746d15N–3.32; r2 = 0.226; F[1,124] = 36.23,
p,0.001). There was no relationship for carbon (r2 = 0.005; F[1,109] = 0.0569, p = 0.452).
doi:10.1371/journal.pone.0013682.g003

Reef Fish Discrimination

PLoS ONE | www.plosone.org 6 October 2010 | Volume 5 | Issue 10 | e13682



study only white muscle tissue was examined for tissue isotope

analysis and should therefore represent similar metabolic processes

and rates between samples. However, the carbon isotope

composition of fish tissue is known to change depending on lipid

content because lipids are 13C-depleted relative to proteins [33–

35]. Lipid extraction significantly alters d15N, e.g. [34] but see

[36], and was not considered suitable in this study where d15N and

d13C were obtained from a single sample. Further, a meta-analysis

by Caut et al. [6] did not reveal a significant effect of lipid

extraction on discrimination factors. Regardless, any potential

effect of variation in lipid content between samples would be

confined to our estimates of DC, which showed no significant

differences between sample groups.

Inter-species differences in discrimination factors
The limitations of gut contents for representing diet aside, there

are a number of additional factors that could explain the wide

variations in discrimination factors within and between species.

Differences in discrimination factors between species are expected

due to differences in diet and/or metabolic processes. For instance,

Mill et al. [16] suggested that herbivorous fishes often have

markedly higher DN than the meta-analysis averages of 3.4%.

Figure 4. Discrimination factors by trophic group. Data is shown for herbivorous, planktivorous, carnivorous and detritivorous trophic groups
in terms of (a) nitrogen (DN) and (b) carbon (DC). Data are mean 6 s.e. (n as per Table 1); * and ** denote significantly different trophic groups (no
significant seasonal differences or season6trophic group interactions).
doi:10.1371/journal.pone.0013682.g004

Reef Fish Discrimination
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This could be due to differences in the diet quality (C:N ratio) of

herbivorous relative to carnivorous species (the latter displaying

much more consistent nitrogen discrimination [16]) and/or

metabolic differences (such as herbivorous fish having greater

excretion rates [16]). In contrast, other studies have found that

carnivorous species have significantly higher DN, attributed to a

high protein diet [1,4]. In the current study, fish species were

sampled across a range of trophic levels, with d15N ranging from

7.4 to 14% (Table 1). The species sampled therefore represent a

range of trophic groups expected to have widely different diets,

including herbivores, planktivores (e.g. zooplankton), carnivores

(e.g. benthic invertebrates and other fishes), and detritivores.

Indeed, a proportion (23%) of the variation in nitrogen

discrimination across the study was explained by variation in

tissue d15N, with DN increasing significantly with increasing

trophic level. There were also significant differences in DN

between the trophic groups. Thus, in contrast to the findings of

Mill et al [16], herbivores did not display significantly higher DN

as would be expected a priori based on differences in diet quality

(Figure 4a). In fact, diet quality appeared to have little influence on

discrimination factors for any trophic groups in this study, with no

significant relationships between discrimination factors and either

tissue or gut C:N, suggesting that factors other than diet quality led

to differences in discrimination between trophic groups.

Intra-species differences in discrimination factors
Variation in diet-tissue discrimination could also be expected at

the intra-species level due to differences in diet, feeding rate and

assimilatory and excretory mechanisms between individuals. Such

differences could reflect the life history stage of the individual, as

well as having spatial (e.g. habitat) and seasonal components.

Ontogenetic changes in diet, as well as metabolism, have

previously been demonstrated in coral reef fishes, leading to

differences in tissue isotope composition for differently aged

organisms of the same species, e.g. [37]. Thus it could be expected

that the degree of discrimination between tissue and diet would

also change with size as diet and metabolism changes. No attempt

was made in this study to examine changes in discrimination with

fish size, however samples of a single species were targeted so that

they were all of a similar size and within the adult size range for

that species. Thus, ontogenetic changes in diet and trophic

discrimination are unlikely to explain the intra-species variability

observed.

Two other factors are possible in driving the intra-species

seasonal changes in DN observed: changes in metabolism driven

by reproductive cycles or environmental change, or changes in

diet. Ningaloo Reef is influenced by distinctly seasonal oceano-

graphic conditions that alter both physical conditions on the reef

and the biogeochemical environment [23]. There is the possibility

Figure 5. Seasonal variation in isotope discrimination factors. Plots show average nitrogen discrimination factors (DN, bars, left axis), tissue
d15N (solid circle, right axis) and gut d15N (hollow circle, right axis) during May and Nov 2008 for (a) Pomacentrus moluccensis and (b) Acanthurus
triostegus from 1 and 6a; (c) Parupeneus signatus sampled from 2, 3, 4, 6 and 7; and (d) Chromis viridis sampled from station 1. All DN and gut d15N
differences significant, no significant tissue d15N differences or sample period6location interactions. See Figure 1 for locations. Fish images obtained
from Froese & Pauly [39]; copyright J.E. Randall, 1997, used with permission. Data are mean 6 s.e. (n as per Table 1).
doi:10.1371/journal.pone.0013682.g005
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that reproductive cycles or metabolic changes, for instance due to

significantly cooler water temperatures in November than May

(average 24uC compared to 28uC, A.S.J. Wyatt et al.,

unpublished data), led to seasonal changes in DN, e.g. [5].

However, despite a lack of evidence for significant seasonal

change in diet from tissue d15N, gut d15N suggests that a change

in diet may have been the principal factor in the altered

discrimination factors between seasons for all species with

sufficient replication for temporal analysis (although the small

sample numbers mean these data should still be viewed as

preliminary). The significant increases or decreases in d15N of gut

samples for each species mirrored the direction of change in DN

and were of similar magnitude (Figure 5). Increased DN in Nov

appeared to be driven by lower gut d15N in P. moluccensis, P.

signatus and A. triostegus. Interestingly C. viridis, also a planktivore

and therefore expected to have a similar diet to P. moluccensis, had

significantly higher gut d15N in Nov. Indeed, tissue d15N suggests

these species have similar diets over time, averaging 10.1 and

10.3% for C. viridis and P. moluccensis, respectively, so the

differences in seasonal change is puzzling and may warrant more

detailed investigation.

The seasonally changing diets appeared to alter gut isotope

composition but not tissue composition. There are several

potential explanations for this. Firstly, the changes may simply

be a reflection of the lag time between the isotope compositions of

the diet and tissues changing. The isotopic composition of a tissue

changes in response to diet through two mechanisms: dilution –

the formation of new tissue with the new dietary composition,

and metabolic turnover – the replacement of old tissue with new

during tissue repair [19,31,38]. Thus, even with significant

dietary change, a significant change in tissue d15N may not be

detected if there has not been sufficient time for marked dilution

or turnover. The consistency of measurements within periods,

which represent sampling over 3–6 weeks, and the time between

the two periods (approximately six months) suggests that there

should have been sufficient time for tissue composition to reflect

the diet change.

Secondly, the seasonal change in discrimination could be due to

the composition of the diet. There was no evidence of a significant

change in diet quality (C:N ratio of gut contents) for any of the

species that could explain altered discrimination. Feeding on a

similar composition prey at a different trophic level could also be

expected to alter discrimination. The gut isotopes of P. moluccensis,

P. signatus and A. triostegus, suggest that they were feeding almost a

trophic level lower (average gut d15N decreased ,1.5–2.5%) when

discrimination was higher, and conversely for C. viridis when

discrimination decreased. This is however contrary to the general

increase in discrimination with increasing trophic level (Figure 3a),

and requires further investigation.

In contrast to apparently strong seasonal effects on discrimi-

nation, there was little evidence of any changes with location.

The lack of location effects may be partially due to the fact that

many species are mobile and move between feeding sites, thereby

integrating any factors likely to affect discrimination. For

instance, there was no significant difference in Abudefduf sexfasciatus

DN between stations 1 and 6, but it is likely that there is exchange

of fish at these two nearby stations, with large populations

congregating and feeding between the reef slope and forward reef

flat. However, Stegastes fasciolatus (a more site specific species) also

showed no location changes in DN, even though it was sampled

across the reef (stations and numbers as per Table 1), in vastly

different habitats ranging from reef slope (20 m water depth) to

the shallow reef flat (2 m), and displayed some evidence of

changing diet (A.S.J.W., unpublished data). The presumption

must therefore be that no diet or metabolic factors changed

sufficiently to alter discrimination for S. fasciolatus across this

range.

Implications of discrimination factor variation
The variations in DN presented above, ranging from trophic

group to intra-species level differences, confirm that meta-analysis

averages for DN are likely to be unsuitable for examining diets in a

small number of species or a limited number of trophic links under

field conditions [3,7]. For instance, the application of meta-

analysis average diet-tissue discrimination factors to tissue d15N

would mask the apparent species-specific seasonal dietary shifts

observed through quantification of DN in the four species above.

While habitat seemed to have little influence on DN, seasonality in

DN variation was highly species-specific and requires further

examination in future studies if isotope values are to be accurately

interpreted. In contrast, DC, although variable, did not appear to

be significantly influenced by trophic level or group, by season, or

by location. Thus, meta-analysis averages may indeed be more

applicable in the case of DC [3]. The direct quantification of

discrimination factors may be especially important with the

increasing use of Bayesian mixing models that allow uncertainty

in discrimination factors to propagate through the analysis,

returning a true probability distribution of estimated dietary

proportions, e.g. [21,22]. Such analysis is dependent on measuring

and understanding discrimination factor variation. Furthermore,

small differences in discrimination factors also contain important

information on the feeding rate and metabolic state of individuals

[15], and thus may warrant investigation independent of their

influence on food web and trophic position analyses.

Conclusions
Although the use of gut contents to represent diet requires some

caution, the results of this study confirm that, where feasible,

discrimination factors should be directly quantified for each

species and trophic link in question, acknowledging the potential

for significant variation away from meta-analysis and controlled

laboratory averages under variable field conditions. Future studies

examining the trophic ecology of fishes at the species level would

be greatly enhanced by detailed data on the variability in

discrimination factors, ideally obtained from a large number of

individuals over space and time. The addition of tissue and

dietary-component specific analysis, such as through compound-

specific isotope analysis, is likely to greatly enhance our

understanding of the processes influencing discrimination factor

variation, and thereby the applicability of stable isotope analyses to

trophic ecology.
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