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with repeat biopsy typically recommended. However, more recent 
data suggest a lower risk of HgPIN progression, particularly with 
the standardization of biopsies consisting of more cores, limiting 
undersampling.2 Importantly, HgPIN harboring specific molecular 
alterations (such as ERG overexpression) may be more associated with 
subsequent cancer detection, implying considerable heterogeneity in 
behavior even within HgPIN sub-classes.3

Historically, perhaps, the most powerful correlate to prostate cancer 
behavior is the histologic Gleason scoring system. Gleason grading was 
devised in the 1960s and 70s by Donald F Gleason and the Veterans 
Administration Cooperative Urological Research Group, and uses the 
pattern of carcinoma cells in Hematoxylin and Eosin stained sections 
to generate a histologic score.4 Gleason grade, combined with other 
clinical factors such as prostate-specific antigen (PSA), age, clinical 
stage, MRI findings, number of positive cores, and percentage of each 
core that contains cancer has been incorporated into models which 
attempt to predict the behavior of prostate cancer. The prognostic ability 
of these models has led to the stratification of treatment according 
to risk category. In the absence of other adverse features, it is widely 
believed that men with isolated Gleason 6 disease may have a low 
risk of disease progression, and therefore do not require treatment 
when they are closely monitored.5 In contrast, men with localized 
disease with a Gleason score of 7 or above are usually recommended 
for local treatment  (either radiation or surgery), while men with 
particularly high-risk clinical or pathologic features may benefit from 
multimodality therapy.6

Despite local treatment with surgery or radiation, some patients’ 
cancers will progress again in a variable fashion, with a mix of local 
recurrence, in a nodal basin, or as a distant metastasis to bone or 

INTRODUCTION
Understanding the clinical heterogeneity seen in prostate cancer (PCa), 
where some men have indolent disease that may never need treatment 
while others have lethal disease, is one of the greatest challenges faced 
by urologists and oncologists. Prostate cancer is fundamentally a 
genetic disease, driven by genomic instability causing the activation 
of oncogenes and the inactivation of tumor suppressors. Recent work 
has begun to unravel some of the genomic heterogeneity in prostate 
cancer and to define distinct molecular sub-classes of the disease. 
Leveraging this genomic heterogeneity may fundamentally change how 
we diagnose and manage prostate cancer in the decades to come. This 
review will not only examine the heterogeneity of prostate cancer at 
multiple levels, including clinical and pathological, but also primarily 
focus on the molecular heterogeneity of prostate cancer. We will discuss 
the implications of this heterogeneity for patient care across disease 
states, ranging from low-risk clinically localized prostate cancer to 
lethal castration-resistant disease.

PROSTATE CANCER PATHOLOGICAL HETEROGENEITY
The histologic spectrum of prostate cancer ranges from its precursor 
lesion, high-grade prostatic intra-epithelial neoplasia  (HgPIN), 
to de-differentiated cancer. HgPIN is characterized by cellular 
proliferation within pre-existing glands with cytological changes 
mimicking cancer.1 The presence of HgPIN is certainly associated 
with the presence of prostate cancer, but the definitive development 
of PCa from HgPIN is much less clear. Historically, it was believed 
that adenocarcinoma would develop in most men with HgPIN within 
10 years,1 and therefore men found to have HgPIN on biopsy generally 
underwent closer surveillance than men with no evidence of disease, 
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other sites. In terms of metastatic disease, it is well known that 
localized prostate cancer nearly universally responds to androgen 
deprivation therapy  (ADT), while over time, almost all tumors 
will develop resistance to ADT and become castrate-resistant 
prostate cancer  (CRPC).7 Some of these cancers will then acquire 
neuroendocrine features, which is associated with a poor response to 
treatment and prognosis.8

DEFINING MOLECULAR SUB‑CLASSES OF PCA
Over the past 10  years, our understanding of PCa genomics has 
changed dramatically. The availability of next-generation sequencing 
technologies has allowed researchers to classify prostate cancers 
by their multiple levels of molecular signatures, exposing genomic, 
transcriptomic, and epigenetic heterogeneity. Distinct molecular 
sub-classes have emerged, with the potential to transform the disease 
from a poorly understood, heterogeneous disease with a highly 
variable clinical course to a collection of more homogeneous molecular 
sub-classes.

ETS family members
In 2005, a series of landmark papers discovered fusions of the 5’ 
untranslated region (UTR) of the TMPRSS2 gene with the ETS family 
transcription factor family members.9–12 This discovery provided 
the framework for organizing prostate cancers into those with ETS 
rearrangements and those without those re-arrangements. The most 
common ETS family re-arrangement is TMPRSS2:ERG which has 
now been identified in approximately half of prostate cancers and 
accounts for 90% of ETS family fusions.9,13,14 Fusions of other ETS 
family members, including ETV1, ETV4, ETV5, and FLII have been 
identified.10,15–17 These re-arrangements result in overexpression of the 
ETS family transcription factors which confer a neoplastic phenotype.18 
The original report of the fusion products, which has subsequently been 
validated in other cohorts, found that fusions between ETV1 and ERG 
appear to be largely mutually exclusive.10,12,15 Several other 5’ partners 
have also subsequently been identified, most notably a fusion product 
involving the ETS family member ELK4 to SLC45A3 in 5%–10% of 
prostate cancers.19,20

ETS fusion seems to be an early event in carcinogenesis and has 
been detected in HgPIN.21–23 ERG re-arrangements when detected in 
HgPIN have also been detected in the adjoining prostate cancer and 
appear to precede other mutations.23–25 ERG re-arranged cancer is 
rarely identified distant from cancer foci in prostatectomy specimens, 
suggesting that ERG is important for the transition from HgPIN to 
cancer.22,24 Indeed, ERG re-arrangements in biopsy specimens with 
HgPIN have been shown to be predictive of the development of prostate 
cancer (53% vs 35%).3

Multiple studies have demonstrated that ETS-positive cancers 
have distinct features at a number of levels. These show a distinct gene 
expression signature from ETS-negative cancers.18,26,27 In addition, 
ETS fusion-positive tumors have distinct copy number aberrations 
and a distinct pattern of genomic re-arrangements involving 
chains of balanced re-arrangements, a phenomenon described as 
“chromoplexy.”28–30 Mice engineered to overexpress ERG or ETV1 under 
androgen regulation develop neoplastic prostate lesions similar to 
PIN,31 and ERG overexpression accelerates prostate cancer pathogenesis 
when combined with deletions in PTEN.12,32,33

Clinically, there is some evidence to support that ETS-rearranged 
cancers being more aggressive than cancers without these 
re-arrangements.14 This observation is largely derived from two studies 
from active surveillance cohorts of men diagnosed with prostate cancer 

on transurethral resection of the prostate  (TURP). In both studies, 
men with TMPRSS2-ERG rearranged cancers had an increased risk 
of prostate cancer death.34,35 In addition, ERG-rearranged tumors have 
been demonstrated to have an increased risk of progression while on 
active surveillance.36 Importantly, it has been demonstrated that a 
urine test from TMPRSS2:ERG in conjunction with PCA3 is able to 
stratify patients undergoing active surveillance to determine their risk 
of having higher Gleason scores or a larger tumor volume.37 Analysis 
of prostatectomy specimens, however, has yielded conflicting results 
regarding the relative aggressiveness of ETS-rearranged cancers.9,14,38–41 
ETS re-arrangements also appear to be more common in peripheral 
zone tumors than transition zone tumors.42–44

SPINK1
Using the same Cancer Outlier Profile Analysis (COPA) used to define 
ETS gene re-arrangements, Tomlins et al. identified a second sub-class 
of prostate cancers, which overexpress Serine peptidase inhibitor, 
Kazal type 1 (SPINK1).45 SPINK1 outlier expression has been identified 
in  ~10% of prostate cancers, and appears to be mutually exclusive 
from ERG re-arrangements.45 Interestingly, patients harboring these 
tumors were found to have a shorter time to biochemical recurrence 
than patients who do not overexpress SPINK1. SPINK1 outlier 
status, independent of Gleason score, lymph node status, surgical 
margin status, seminal vesicle invasion, extracapsular extension, and 
preoperative PSA, has been shown to be a significant predictor of 
clinical recurrence.45 SPINK1 is an extracellular secreted protein and 
therefore is amenable to both therapeutic targeting and noninvasive 
diagnosis.45–47 Indeed, studies using antibodies against SPINK1 in 
mouse prostate cancer xenografts have identified SPINK1 as a likely 
target in patients harboring SPINK1+/ETS − tumors.46

SPOP/CHD1
Recurrent mutations in the SPOP gene are found in 5%–15% of tumors, 
making it the most common point mutation in prostate cancer.48,49 
SPOP encodes the substrate-binding sub-unit of a Cullin-based 
E3 ubiquitin ligase, and mutations affect conserved residues in the 
structurally defined substrate-binding cleft. SPOP mutation appears 
to occur exclusively in tumors without ERG re-arrangement and 
constitute a unique sub-class of prostate cancer.48 SPOP mutations 
have been identified in HgPIN adjacent to adenocarcinoma, and 
likely represent early events in the natural history of prostate cancer.48 
SPOP mutant tumors have been found to have recurrent somatic 
deletions at 5q21 at the CHD1 locus.48,49 CHD1 is an ATP-dependent 
chromatin-remodeling enzyme, and the genomic locus is deleted 
in  ~5%–10% of prostate cancers.50,51 A recent study found no 
association between SPOP mutation and clinical or pathological 
parameters.49 However, others have reported that mutations and 
decreased expression of the SPOP gene are associated with worse 
progression-free survival.52 Functionally, SPOP mutation has been 
shown to modulate carcinogenesis by preventing the degradation 
of oncogenic factors including ERG and the androgen receptor.53–57 
Importantly, our group recently demonstrated that SPOP mutation 
alters DNA double-strand break  (DSB) repair, is associated with 
genomic instability, and sensitizes to DNA-damaging agents such as 
PARP inhibitors.58

HETEROGENEITY BETWEEN PROSTATE CANCER CLONES
Primary prostate cancer
Primary prostate cancer has relatively few genomic aberrations compared 
to other cancers. Recent work found the mutation rate to be ~0.9 per 
Mb, which is similar to that observed in acute myeloid leukemia and 
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breast cancer, but 7 to 15-fold lower than rates reported for small cell 
lung cancer and melanoma.59 Primary tumors display a wide range of 
copy number alteration levels, from tumors appearing metastatic-like 
in whole chromosome, chromosome arm, and focal amplifications and 
deletions, to those with fundamentally diploid genomes.15

The identification of multiple distinct loci of cancer with varying 
histologic grades has led to the idea of prostate cancer as a multifocal 
disease. It is estimated that  ~80% of prostate cancers contain 
more than one focus of disease.60–62 Multiple studies have shown 
heterogeneous foci of PIN within the same prostate associated with 
carcinoma with similar aberrations.25,63 ETS fusion is both an early 
event in carcinogenesis and is thought to be maintained throughout 
prostate cancer progression, making it an excellent marker to assess 
for clonality.12,14,64,65

Detailed spatial sampling and sequencing of prostate tumors 
has identified significant heterogeneity within multifocal tumors 
in the same patient (Figure 1).61,66,67 Using a combination of exome 
sequencing and copy number alteration profiling of 23 loci from five 
patients, Boutros et  al. identified both divergent tumor evolution 
in multifocal cancer as well as tumors of independent clonal origin 
in three of those patients.61 Using whole genome sequencing, 
examining 12 cancer specimens and three normal specimens from 
three men, Cooper et al. identified mutations present at high levels 
in morphologically normal tissue, sometimes distant from the 
cancer.67 In addition, subsets of mutations were shared by normal and 
malignant tissues and between different ERG lineages, with multiple 
distinct ERG fusions noted within a single cancer nodule.67 These 
results were thought to be consistent with “field effects” underlying the 
evolution of prostate cancer with subsequent branching evolution and 
cancer clone mixing. Additional studies will be necessary to establish 
the pathogenicity of this “field effect” or whether this observation is a 
reflection of the expected accumulation of germline mutations during 
normal development. Finally, a recent effort found that categorizing 
men into four categories based on genomic subtype and including 
measurements of tumor hypoxia was able to accurately predict the 
outcome following local therapy.68

Metastatic prostate cancer
Metastatic prostate cancer arises from rare subclones that attain metastatic 
potential. This “seed and soil” hypothesis, where rare cells acquire 
metastatic potential has been supported in a number of studies.69–71 
Interestingly, a recent study of longitudinally collected primary and 
metastatic samples identified one metastasis comprising three distinct 
clones derived from two separate waves of metastasis from the prostate.70

The most commonly mutated gene in metastatic PCA is the 
androgen receptor (AR).15,72 AR mutations occur almost exclusively 
in mCRPC, and are virtually never seen in localized disease.48,73 After 
ERG and AR, the most common alterations involve the inactivation 
of PTEN in approximately  ~40% of cancers resulting in activation 
of the PI3K pathway.6,74 PTEN copy number loss is consistently 
associated with aggressive disease features, cancer progression, and 
the development of castration-resistant disease.74–76 PTEN alterations 
are enriched in the ERG-rearranged subclass of PCA, and in this 
class, in particular, PTEN loss may be associated with more aggressive 
disease.32,33,77–79 Interestingly, PTEN deletion appears to occur after ERG 
rearrangement in these tumors, further complicating intratumoral 
heterogeneity and the search for the “lethal” subclone that leads to 
CRPC. Other common genetic alterations include p53 mutation (40%), 
RB loss (28%), aberrations in BRCA1, BRCA2, and ATM (19%), and 
MYC amplification also commonly occur in metastatic lesions.6

The heterogeneity in mutation status between patients has already 
begun to be exploited for therapeutic benefit. Our institution recently 
published the results of whole exome sequencing in 154 tumor-normal 
pairs from 97 patients with metastatic prostate cancer, 94% of whom 
were found to have alterations which were potentially actionable, similar 
to the 89% of actionable mutations previously published.6,80 Five percent 
of these patients actually received therapy based on these results.80

Between metastatic foci
Characterization of lethal prostate cancer by whole genome sequencing 
of 51 sites from 10 patients found metastasis-to-metastasis spread to 
be common, either through de novo monoclonal seeding of daughter 
metastases or transfer of multiple tumor clones between metastatic 
sites. Importantly, lesions affecting tumor suppressor genes usually 
occurred as single events while mutations in genes involved in AR 
signaling commonly derived from events in different metastases.69

By sequencing circulating tumor DNA, Carreira et al. examined 
the tumor clone dynamics of 106 sequential plasma samples, CRPC 
tumor biopsies, and precastration tumor cores in 16 ERG-positive 
patients. Multiple independent clones were differentially expressed in 
circulation in metastatic disease (Figure 2). Importantly, treatment 

Figure 1: Illustration depicting prostate cancer heterogeneity. Within the 
prostate are multiple distinct clones of HgPIN. One of these clones (e.g., one 
with ETS rearrangement) is adjacent to the primary prostate cancer. Within 
the primary cancer, a clone with metastatic potential developed which 
metastasized to the iliac wing. Within this metastasis, multiple subclones 
developed, one of which has reached a second metastatic site in the sacrum.

Figure 2: Graphical representation of tumor clonal diversity over time and 
in response to therapy. Multiple clones of HgPIN develop, only a few of 
which go on to become adenocarcinoma with subsequent clonal evolution 
throughout progression.
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with abiraterone and enzalutamide in men who subsequently 
progressed was correlated with the emergence of clones harboring 
mutations in AR that are activated by glucocorticoids.81

CLINICAL IMPLICATIONS
Localized disease
The high degree of heterogeneity in individuals has wide ranging 
implications for prostate cancer diagnosis and treatment. In terms of 
diagnosis, the genomic heterogeneity seen in localized prostate cancer 
challenges the idea of a “dominant lesion,” which is defined solely 
by size or histologic criteria, being largely responsible for a patient’s 
clinical course. Molecular heterogeneity seen in PCa may instead 
suggest that genomic features, rather than size or histology alone, 
will determine the biology of disease.82 This raises questions about the 
underlying assumptions of both standard template biopsy, as well as 
image-guided targeted biopsies. Template biopsy, commonly utilizing 
12–14 cores, is based on probabilistic sampling of the prostate to 
detect larger lesions. Given the spatial heterogeneity of prostate cancer, 
sampling of one larger lesion does not necessarily provide insight into 
the other lesions that are present. Similarly, targeted biopsy assumes 
that the MRI-visible lesion is clinically the most relevant, which also 
may not be the case that ongoing studies are crucial to validate this 
idea. This type of heterogeneity is also problematic for personalized 
genomic testing, as prognostic information may be clouded by a lack 
of adequate sampling.

Similarly, tumor heterogeneity is particularly problematic, given 
the increasing acceptance of focal therapy for prostate cancer. As 
discussed above, prostate cancer is often multifocal, however even the 
surrounding normal tissue can harbor clonal mutations.67 Furthermore, 
the marked heterogeneity seen in localized disease re-inforces how 
little understood prostate cancer pathogenesis is and how difficult it 
is to predict who requires therapy. This is because even if we are able 
to determine which mutations confer worse prognosis, the ability to 
sample all clones continues to be problematic.

Metastatic disease
Multiple reports have demonstrated polyclonal sub-populations 
in metastatic foci, as well as heterogeneity within a single focus 
and between foci. The dynamics of resistant clones in response to 
therapy suggest that preexistent clonal populations are responsible 
for resistance to therapy and disease progression. This has important 
implications for how we treat metastatic disease, as using multiple 
concurrent agents may be preferable to single-agent therapy as these 
will target multiple populations, similar to the rationale for highly 
active antiretroviral therapy for human immunodeficiency virus 
treatment. Indeed, recent work has demonstrated that combination 
of docetaxel and ADT was superior to ADT alone, perhaps because 
of this reason.83

In addition, there is increasing evidence that local treatment with 
radiation or surgery of lymph node-positive or oligo-metastatic disease 
may be beneficial in prostate cancer.84–92 While the data to this point 
are limited to case series, ongoing clinical trials will help to further 
elucidate this question. One hypothesis for how local control may 
benefit patients is the clearance of foci harboring resistant or more 
aggressive clones even if some cancer cells remain.

CONCLUSIONS
The past decade has brought new insights into the genomic 
pathogenesis of prostate cancer. The discovery of sub-classes of 
prostate cancer categorized by ETS rearrangement, SPOP mutation, 

and SPINK1 overexpression has paved the way for novel insights into 
the diagnosis, prognosis, and treatment of the disease. The molecular 
characterization of prostate cancer has also allowed examination of the 
spatial and temporal heterogeneity of prostate cancer with previously 
unobtainable resolution. These findings have important implications 
for prostate cancer screening and diagnosis. They also provide insights 
into the treatment of disease, and will likely be the basis for future 
therapeutic approaches.
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