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Abstract: Objectives: The COVID-19 pandemic (caused by SARS-CoV-2) has introduced significant 
challenges for accurate prediction of population morbidity and mortality by traditional variable-based 
methods of estimation. Challenges to modelling include inadequate viral physiology comprehension and 
fluctuating definitions of positivity between national-to-international data. This paper proposes that 
accurate forecasting of COVID-19 caseload may be best preformed non-parametrically, by vector 
autoregression (VAR) of verifiable data regionally. Methods: A non-linear VAR model across 7 major 
demographically representative New York City (NYC) metropolitan region counties was constructed 
using verifiable daily COVID-19 caseload data March 12–July 23, 2020. Through association of 
observed case trends with a series of (county-specific) data-driven dynamic interdependencies (lagged 
values), a systematically non-assumptive approximation of VAR representation for COVID-19 patterns 
to-date and prospective upcoming trends was produced. Results: Modified VAR regression of NYC area 
COVID-19 caseload trends proves highly significant modelling capacity of observed patterns in 
longitudinal disease incidence (county R2 range: 0.9221–0.9751, all p < 0.001). Predictively, VAR 
regression of daily caseload results at a county-wide level demonstrates considerable short-term 
forecasting fidelity (p < 0.001 at one-step ahead) with concurrent capacity for longer-term (tested 11-
week period) inferences of consistent, reasonable upcoming patterns from latest (model data update) 
disease epidemiology. Conclusions: In contrast to macroscopic variable-assumption projections, 
regionally-founded VAR modelling may substantially improve projection of short-term community 
disease burden, reduce potential for biostatistical error, as well as better model epidemiological effects 
resultant from intervention. Predictive VAR extrapolation of existing public health data at an 
interdependent regional scale may improve accuracy of current pandemic burden prognoses. 
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susceptible, unquarantined infected, quarantined infected, confirmed infected framework of 
compartmental disease modelling; AIC: Akaike Information Criteria; COVID+: confirmed positive 
COVID-19 case; MAE: mean absolute error; CDC: Centers for Disease Control and Prevention 

1. Introduction 

The ongoing global outbreak of novel coronavirus disease 19 (COVID-19, caused by the 
coronavirus strain SARS-CoV-2) represents a leading public health emergency. To date, it has affected 
at least 217 countries and territories, leading to more than 100 million positive cases and 2.2 million 
deaths as of January 2021 [1]. In this time, COVID-19 has demonstrated extensive unique properties 
including an extended incubation period, likelihood for high levels of asymptomatic transmission, and 
a very nonspecific symptomology leading to difficulty in accurately identifying positive cases. In 
addition, COVID-19 exhibits a high basic reproduction ratio (R0) combined with a high prevalence of 
cases having mild clinical presentation. Current literature shows that up to 80% of infected people may 
exhibit negligible respiratory impact [2]. Subclinically afflicted individuals are more likely to engage 
with communities during active infection periods and less likely to seek out health care services, given 
inconspicuous course of illness as well as minimal impact on quality of life. Collectively, these factors 
inherent to COVID-19 have impeded epidemiologic characterization and contributed marked difficulty 
towards efforts at accurate prognostication of future disease behaviors.  

Many contemporary infectious disease models rely on the S-I-R (susceptibility, infection, removed or 
resistant) population transmission-based framework. However, this approach, which utilizes a multitude of 
assumed variables and draws data from highly divergent sources, has received prominent criticism over 
predictive inaccuracies skewing both positive and negative in trend [3,4]. In combination with 
computational challenges associable to estimating the atypical real-time development of COVID-19, 
significant concerns have been raised regarding data integrity when collected at a macroscopic level, both 
in terms of accuracy for reported figures [5] between contrasting sources (i.e. separate agencies) as well as 
differing national-to-international classifications for what constitutes a positive COVID-19 identification 
[6]. More involved attempts to model the projected influence of changing population dynamics as well as 
quarantine measures, as operationalized through SUQC (susceptible, unquarantined infected, quarantined 
infected, confirmed infected) models, have likewise noted significant variation in data veracity, which has 
reduced predictive value even within a weekly timeframe [7,8]. Therefore, it is the position of this paper 
that accurate prediction modelling of COVID-19 disease progression at a community level in an upcoming 
weeks-to-month timeframe is best achieved at a local rather than macroscopic level, be built upon reliable 
data sources of observed COVID-19 patterns, and be adaptable to fluctuating inputs that change with 
management, contextualizing that pandemic processes will likely occur non-linearly and with imperfect 
(and difficult to express via singular-entity variables) causal relationships.  
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2. Methods 

Herein a modified vector autoregression (VAR) model based upon daily U.S. county-level public 
health agency test-positivity rate and mortality data in COVID-19 for the NYC metropolitan area 
(operationalized through selected diverse, representative counties) is developed with prediction of 
upcoming regional disease patterns given late July 2020 disease control status as well comprehensive 
data encompassing past local caseload patterns (March 8 to July 23, 2020). VAR modelling attempts to 
quantify interrelationships wherein two or more time-dependent series are collectively impactful upon 
observable trends, wherein all referenced variables are treated as being endogenous (y, dependent), rather 
than necessitating fundamental independent (x) assumptions, as might be appreciated in S-I-R 
projections. Reliable county level COVID-19 morbidity data was derived from governmental sources in 
the New York metropolitan area comprising of seven designated major counties within New York State 
(NYS) of noted COVID-19 burden (New York, Bronx, Rockland, Nassau, Queens, Westchester, Kings 
respectively; specific county data inputs available as supplemental material) and exported to 
classification on a daily continuum. Per protocol vector autoregression (VAR) of the filtered dataset was 
then conducted, sequentially in seven repetitions utilizing each individual county progression as the 
dependent (y) variable. Subsequently, one through three day lagged values were used as the independent 
variable matrix inside the encompassing VAR framework.  

VAR modelling for each county was identified using a backward stepwise regression approach, 
applied to identify the final regression equation using a validated Akaike Information Criteria (AIC) 
methodology. AIC represents an estimator of out-of-sample prediction error that quantifies the amount 
of information lost by using the model to approximate an underlying series (the true daily COVID-19 
new caseload). That is, it signifies juxtaposition of the error created by using a specific model against 
the actual data. The lesser the degree of information loss therefore, the better a trialed model is valued. 
AIC was used in this manner to sort through and quality-control the entirety of possible county-specific 
VAR models, relative to each of all alternative models under logical consideration. This process was 
done in the R project software, using the “olsrr: Tools for Building OLS Regression Models” package 
for procedures. As per the cited backward regression methodology, model analysis started with the full 
matrix of all lagged variables and then an AIC value was calculated for each variable. Variables that 
did not meet AIC criteria were iteratively dropped, until a final set of perceived best-representative 
regression variables, that all met AIC criterion, for county-wide COVID-19 caseload projections 
resulted. As reference, the initial equation for New York County is shown below. 

The equation in general form (variables interchangeable by individual county):  

𝑁𝑌𝑡 =  𝛼 + ∑ 𝛽1𝑗

3
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wherein:  
 = Intercept 
       = Regression coefficients 
B = Bronx County COVID cases   
K = Kings County COVID cases 
N = Nassau County COVID cases 
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NY = New York County COVID cases 
Q = Queens County COVID cases 
R = Rockland County COVID cases 
W = Westchester County COVID cases 
Ɛt = Regression error term  
t = Time subscript 
j, l, m, n, p, s, u = individual counting subscripts for lags 

A representative implementation of output model selection for New York County follows: 

wherein variables are as defined previously, and < xt > represents the expected value operator for new 
COVID cases in the county of reference (here New York county) at time t.  

The described AIC analysis sequence was stopped when the backward process indicated that an 
optimal solution (model) had been reached, in that the latest attained AIC value (minimization of 
regression variance) exists less than all other possible candidate values. Translationally, the determined 
endpoint therefore indicates statistically that remaining independent variables correspond to the best 
predictors of disease progression for the input county data per the criterion. Modelling was performed 
by log of cases rather than raw caseloads, followed by translation into raw daily future caseload 
projections. This decision derives from the fact that in tracking available COVID-19 data historically, 
the distribution of new cases generally followed a lognormal distribution more closely than it did a 
normal distribution. All resultant equations were utilized to forecast predicted disease progression in 
the 7 counties (AIC-selected county regression models, available as supplemental data). County one-
day and multi-day ahead forecasts of daily caseloads were generated from best-fit VAR models.  

Statistical determination of strength of prediction and association between VAR model projected 
values to observed quantities was the primary outcome of analysis in the present study. A one-step 
ahead projection was first examined to quantify goodness-of-fit for the VAR model to represent 
existing COVID trends. To establish longer-term prediction power for this model, an approximately 
11-week (from latest date of model adjustment on July 23 forecasting to October 9, 2020) simulation 
was performed following for all 7 incorporated study counties (sample New York and Nassau County 
projections demonstrated in Figures 1–2, counterpart projections for other counties and comprehensive 
raw projection outputs available as supplemental Figures 3–6). Following evaluation of derivative 
findings, critical examination of model implications alongside relevant strengths and limitations was 
offered (see Discussion). 

3. Results 

Correlation between predicted and observed COVID-19 new case values proved consistently 
significant at one-day-ahead predictions given latest daily caseload data (p < 0.001 all counties 
between March 8, 2020 to July 23, 2020), indicative of a high degree of model accountability for the 

< 𝑁𝑌𝑡 > = 1.14716 + < 0.15238𝐵𝑡−1 > − < 0.26944𝐾𝑡−2 > + < 0.19612𝑁𝑡−1 > + 

< 0.53047𝑁𝑌𝑡−1 > + < 0.17727𝑁𝑌𝑡−3 > − < 0.14725𝑄𝑡−2 > + < 0.15276𝑅𝑡−1    

> − < 0.10518𝑅𝑡−2 > + < 0.24493𝑊𝑡−2 > − < 0.10089𝑊𝑡−3 > 
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multifactorial influences which have moderated COVID-19 caseload changes from the onset of 
pandemic spread (and data availability) to present. By assessment therefore of both past caseload and 
present disease status representation, the AIC-driven modified VAR model described presently was 
deemed appropriately representative of disease evolutions to-date and by extension thusly appropriate 
for extrapolation of future COVID-19 potentiality. 

Having established model fidelity (based upon daily COVID-19 new case reports thru July 23, 2020 
across the included jurisdiction of interest), wider prediction of caseloads beyond one-step ahead 
assessment was performed, likewise independently for each county dataset. Herein estimates on daily new 
COVID+ case incidence was generalized to 11 weeks into the future (to October 9, 2020), again utilizing 
the latest modified VAR regression per-county based on July 23, 2020 input figures. Examination of this 
model’s expectations for disease progression across a 10 to 11 week (from July 23, 2020 onwards) for the 
greater NYC region revealed relatively consistent, gradual increases in COVID-19 prevalence across all 
seven counties of interest. Average percentage of predicted daily case growth from July 23 to October 9, 
2020 ranged from approximately 75% to 135% between counties, a significant although less distinct 
acceleration as compared to numerous locales nationally or periods of rapid disease transmission in the 
same NYC metro region during preceding months of 2020. Demonstration of county-specific projected 
versus observed COVID caseloads for Nassau County and New York county (Manhattan) are 
demonstrated in Figures 1 and 2 respectively, wherein the modified VAR projection was able to relatively 
consistently demonstrate expected new daily case quantities at one-step-ahead based on existing data 
influence on the county-specific models throughout the duration of the 11-week ahead period of prediction; 
all other county projections are included in supplemental Figures 3–6.  

 

Figure 1. Multi-step (11 weeks) ahead comparison of projected upcoming daily COVID-
19 caseloads against observed new daily cases of Nassau county-wide COVID+. 

As depicted in Figure 1 (Nassau sample), based on COVID-19 containment status and case 
progression in Nassau County (and similarly across all seven examined counties in this study) from 
the onset of COVID community spread in early March through late July, the VAR projected rate of 
future caseload anticipated relatively stable, small-amplitude increases across the upcoming 11-week 
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predictive timeframe. By illustration, in contrast to the lowest daily new cases of 26 persons noted 
June 28, 2020 (smallest quantity recorded since March 12, 2020, during the earliest stages of 
community COVID-19 outbreak in the NYC region), a proposed VAR model for Nassau County 
suggested that by October 9, 2020 daily caseload would likely rebound to approximately 105 or more 
positive cases per day. Upon retrospective comparison of the actual recorded COVID+ daily values to 
those projected, strength of predictive correlation remained high, with error rate of new daily test 
positives in Nassau county minimized at an average of roughly 22 patients for the entirety of the 11-
week prediction period from July 23 to October 9, 2020 (Table 1). This measured uncertainty also did 
not increase throughout the timeframe of projection (as dates of estimation became further in future 
from time of modelling). 

 

Figure 2. Multi-step (11 weeks) ahead comparison of projected upcoming daily COVID-
19 caseloads against observed new daily cases of New York county-wide COVID+. 

Similar projective extrapolation as modelled by the VAR function upon 7/23/2020 caseload data 
for New York county is demonstrated in Figure 2, and all other county models are shown in 
supplemental materials as aforementioned. New York County VAR-estimated to actual daily caseloads 
exhibited a comparable average error of approximately 46 patients per day countywide, comparable to 
both the Nassau findings described previously as well as all other county samples (error range of 20 to 
90 patients per county per day; see Table 1). For all analyzed counties in this study furthermore, the 
out-of-sample (11-weeks prediction) error from subsequently observed was similar if slightly smaller 
than in-sample (VAR representation of past and current data used for projection, 3/8–7/23/2020) which 
intuitively suggests that at an 11-week frame of projection the current VAR model for the 7 presently 
selected NYC metropolitan counties was able to accurately correlate future forecasts with existing 
community data.  
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Table 1. Multi-step predictive VAR model mean absolute error (MAE) of daily COVID-
19 cases across select NYC metro counties. 

MAE Bronx Kings Nassau New York Queens Rockland Westchester 
In Sample 72.04 96.10 65.78 48.03 109.27 31.86 62.03 
Out of Sample 67.72 71.17 21.81 46.36 88.79 23.54 34.36 
Total 70.48 87.10 49.90 47.43 101.87 28.86 52.04 

 

Table 1 Mean absolute error of daily predicted COVID-19 positive caseloads per county by 
modified VAR regression. Note error levels are separated by in-sample (VAR representation of past 
and current case trends through 7/23/2020) and out-of-sample (future projections from 7/23–
10/09/2020). MAE units of measurement as demonstrated is individual patients (persons). 

Of note, wherein the sampled NYC region data over the period of VAR analysis has relatively 
reliably progressed within relatively small magnitudes of caseload variation, the capacity for this VAR 
model’s “shock”-predicting capacity (commonly utilized in econometrics to predict market response to 
individual events) relative to exponential real-time case increases as in Florida or Texas, could not be 
efficaciously evaluated. A new case data outlier recorded on April 14, 2020 (1737 cases) resulting from 
inclusion of previously uncounted presumed COVID positives (owing to changes to data classification 
guidelines by the CDC and NY State Department of Health) provides only a very limited amount of 
insight towards this consideration given the limited sample size (including one-day duration) and 
extenuating data spike circumstances (case allocation reclassification). With wider available data and 
empirical course of COVID-19 community transmission however, the strong expectation persists that 
adapted VAR impulse-response evolution estimates may well concurrently provide a moderately 
accurate accommodation of periods of either rapid growth or decay in regional COVID-19 new 
identifications incidence. Empirical quantification of VAR model adjustment from extreme trends of 
epidemiological data alteration therefore requires further investigation and follow-up. 

4. Discussion 

This paper proposes that COVID-19 community containment and modeling may be best 
represented at a local or regional level, given persistent uncertainties regarding data quality and 
reliability at national and global scale. Furthermore, the study develops a modified VAR-based 
predictive representation based on New York City metropolitan area (7 NYS counties) disease data 
from July-through-October at the county level, in order to demonstrate prospective near- and medium-
term epidemiological trends for COVID-19 cases. Note that the presently proposed model has been 
built with a minimum of distributional assumptions (inferences on either variable interrelationships or 
resultant caseload outcomes), allowing any results to closely mirror observable empiric trends [9]. 
Moreover, a VAR foundation is useful in examining the dynamic effects of each variable on all others 
simultaneously [10]. Across incorporated datasets across major NYC regions subjected to VAR 
analysis, the modified VAR model suggested that under late July 2020 containment status and 
continued maintenance of local management measures (data available to the VAR system at the time 
of predictive modelling) COVID-19 cases would expect to rebound in daily incidence, although at a 
less marked (or unsustainable) pattern as seen in numerous other regions of the United States. Through 
comparison of actually recorded subsequent caseload figures over the NYC metropolitan region over 
a following 11-week period (until October 9, 2020), the accuracy of VAR projections at caseloads at 
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such a projective timeframe proved generally accurate (Figures 1–2) with average error in expected 
versus actual daily COVID cases falling approximately between 20 to 90 patients per county per day 
(Table 1, out-of-sample error). Considering that U.S. management strategy of COVID-19 has centered 
around reduction of peak disease burden to a systemically manageable level rather than systematic 
viral eradication [11], evidence proposed presently would suggest that the greater NYC region remains 
amongst few counterparts currently close to meeting such expectations of temporally-dispersed and 
manageable COVID case burdens upon local healthcare infrastructure. However, as has been observed 
across both the U.S. as well as numerous countries globally, changing community containment 
stringency as well as seasonal population patterns may considerably exacerbate case progression 
beyond what has been projected by this model herein.  

A modified VAR model carries marked regression capacity of representing observed caseload 
patterns alongside generally significant predictive value for estimation of new COVID-19 cases as 
shown by an analysis of NYC metropolitan county data from the period of July 23 (latest date of data 
entry and by association model adjustment) to October 9, 2020. This functionality and efficacy denotes 
a significant improvement upon both prospective and retrospective accuracy reached by numerous 
mainstream state- and national-level models founded upon variations of S-I-R epidemiologic 
interactions [12,13], and as such may be utilized to better prepare regional public health and medical 
resources for expected immediate-term changes to new case patterns. In context of this model’s mean 
daily COVID caseload error of between 50 to 100 individuals per county, this variability in the authors’ 
opinion represents a practically manageable level of uncertainty at the county scale (unlikely to cause 
sudden, unexpected medical resource strain).  

Furthermore, given literature which has noted that a major challenge to accurate prediction of 
pandemic modeling at a macroscopic level derives at least partially from inherent differences between 
diverse populations [14,15], a past-data driven model such as that currently described may prove more 
applicable to individualized regional disease patterns in terms of predicting upcoming development since 
it amalgamates rather than reduces influential epidemiological influences impactful upon overall 
observed disease patterns. Concurrently, wherein across S-I-R models multiple assumptions—essentially 
independent predictions—have to be made before dependent caseload projections can be obtained, 
relative to VAR only observed relevant data patterns have the capacity to influence the resultant model’s 
expectations and implications. Moreover, wherein S-I-R type models require at a minimum distinct 
representations of three separate patient population subclasses, more complex models (i.e. SUQC) 
predicate even more indirectly upon further assumptions of quarantined patients, mortality, or any 
number of further uncertain disease properties. By contrast, the present VAR modality requires only 
empirical caseload data as input, and directly translates this single independent dataset towards 
forecasting of upcoming new cases; additional error from multiple necessary assumptions or prospective 
confounding variables is minimized in this VAR implementation. The authors therefore propose that 
singular estimation of COVID-19 cases represents an appropriate application for the described model, 
given dynamism in disease severity and prevalence across socio-demographic boundaries [16,17] 
difficult to linearly represent through susceptibility variable valuation.  

4.1. Public health applications and outlook of VAR-based modelling 

S-I-R models are fundamentally parametric and so implicitly assume an S-shaped curve for the life of 
an outbreak. As shown by previous data from representative NYC metropolitan counties however, 
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observed daily infection counts did not in fact follow a logarithmic or logistic sigmoid regression. Instead, 
new infections started slowly and grew exponentially (as would be expected with a traditional S-I-R model) 
but consequent infection quantities declined significantly less precipitously and in a more linear fashion 
than would be projected by many transmission-variable derived models [18]. Prominently propagated 
examples of S-I-R constraints in active pandemic modelling can be viewed through the Imperial College 
London (U.K.) and University of Washington (U.S.) morbidity and mortality projections, each of which 
demonstrated major inflexibility to changing containment conditions and increased data availability for 
COVID transmission rates and necessitated frequent (bi-weekly respective to the U.S. model) major 
corrections to upcoming caseload predictions [19]. At both extremes of S-I-R projection from the 
Washington U.S. model, total COVID morbidity in the U.S. by late October 2020 was variously estimated 
in May and July as 4 million and 20 million with significant variability in between. To correct for theorized 
S-I-R methodologic limitations, this paper utilizes a modified multiple regression analysis to forecast 
county-by-county (Bronx, Kings, Nassau, New York, Queens, Rockland, and Westchester counties) 
outbreaks in NYC through autoregressive lagged values as well as lagged values from the counterpart 
neighboring counties. VAR adaptation in this manner allows the produced model to account for the fact 
that regional viral dissemination encompasses a function of past cases within individual counties as well 
as established shifts with neighboring locales, given inevitable dynamism of population movement and 
disease spread across a macroscopically interconnected geography.  

The largely non-parametric COVID projection model discussed in this study is founded upon 
practices inherent to traditional vector autoregression (VAR) modelling within the field of 
econometrics. VAR models have been well validated in economic studies wherein intertemporal 
relationships between variables are hypothesized, a characteristic which implies considerable utility in 
medicine. In the setting of novel infectious diseases, adaptation of VAR allows for the simultaneous 
evolution of multiple interconnected yet singularly unquantifiable disease-modifying variables such as 
disease basic reproduction number (R0), test availability, asymptomatic transmission and population 
susceptibility status or degree of social contact over time. It is the position of this paper therefore, that 
a VAR-based modelling of regional disease patterns carries highly translatable advantages in COVID-
19 modelling derived from this described allowance for multiple evolving variables. Unlike S-I-R or 
univariate mechanisms, VAR is not critically driven by assumptions or awareness of the underlying 
forces that impact variable behavior or patterns. VAR as mentioned represents a nonparametric model, 
indicating that there is no pre-existing shape assumption made about the disease-progression curve; 
instead, any visualized curve shape is generated solely based on trends in pre-existing data. This 
contrasts with the parametric S-I-R model that assumes an S-shaped curve. All predictions are based 
only specific to the ongoing development of COVID-19 community disease spreads, this quality is 
critical given that all derivative predictions by VAR are extrapolated from existing variable trends 
(derived from daily case rate) rather than theorized structural statistical relationships. 

4.2. Model limitations 

Major constraints in predictive value by this model persist mainly from quality of input data. 
Considering ongoing uncertainties as to the protective value of COVID-19 antibodies in terms of both 
efficacy as well as duration of immunity [20,21], unaccounted for variability is introduced through the 
possibility of a changing susceptible baseline population longitudinally. Furthermore, it remains very 
difficult to regularly predict upcoming disease patterns based on past data for timeframes greater than 
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a few weeks-to-months in advance given highly volatile quarantine and social distancing measures 
across most surveyed locations. Whereas the improved reliability for predicting caseload (dependent) 
outcome shifts given a mature data cycle of COVID-19 outbreak as well as management in the NYC 
region should improve forecast accuracy as opposed to manual estimation of R0 or further variables, it 
remains largely impossible to quantify with any confidence what impact longitudinal dynamisms such 
as virus mutation or previous exposure may introduce. When considering COVID-19 represents 
arguably the most extensive and bio-statistically confounding global pandemic since the 1918 
influenza outbreak, there persists high likelihood that the most productive analysis and shaping of 
future disease modeling practices will occur at the conclusion of generalized COVID-19 spread, 
wherein detailed examination of disease predictions via contemporary modelling methodologies may 
be objectively contrasted against quantifiable longitudinal outcomes. 

Viewed from a practical perspective moreover, an inherent limitation to VAR-derived 
epidemiological modelling lies in the lagging of observed-to-predictive patterns, particularly relevant 
compromise in the setting of large, sudden data modifications. Specific to COVID-19 and disease 
dynamics, this is important as salient epidemiologic events such as mass holiday travel or fluctuation 
viral mutants of differing infectivity variably exert major impacts upon observable downstream 
caseloads. By illustration, the need for the model to better adjust future projection expectations at a 
lagging interval to new system shocks (significant deviations) can be preliminarily observed through 
the model for Rockland County (Supplemental Figure 6), wherein a period of anticipated gradual 
COVID-case rise (consistent with trends in the encompassing wider region) has been superseded by a 
rapid early-October week-long spike in cases. In this instance, the predictive VAR model based on 
07/23/2020 expectedly becomes more conservative than reality, and a more accurate VAR revision of 
projections based upon all caseloads through 10/09/2020 would require trend-establishing data of at 
least several days in order to modify predicted COVID progression with any degree of validity. One 
potential solution to this inherent VAR lag limitation could be to independently simulate (by VAR) 
the past influence of such systemic shocks upon subsequently necessary model adjustments, such that 
newly introduced large data transformations might be able to be accurately accounted for across future 
instances with only a minimal period of requisite data input (leading to a more adaptable, dynamic 
model). As discussed previously however, in the setting of the ongoing COVID-19 crisis and 
associated uncertainty of disease behaviors (see Results), for the present scenario it appears reasonable 
that only retrospective analysis of extensive datasets in latter stages of the pandemic would enable such 
a concurrent VAR error-accounting incorporation. 

Prognostic modelling involving mortality projections, a similar measure of interest across 
pandemic progressions, prove more difficult to quantitatively predict given an even greater quantity of 
uncertainties than is seen in caseload forecasts. Numerous mainstream S-I-R based models have come 
under heavy criticism for significant temporal adjustments to expected COVID-19 death toll from over 
the course of the pandemic progression [22,23], yet meaningful improvement of accuracy in this regard 
necessitate fundamental shifts in the method and means of epidemiologic disease tracking rather than 
simple refinement of modelling methodology. A comparable past-trend driven estimate for upcoming 
mortality rates from the present morbidity model remains unfeasible given wide-ranging uncertainties 
in vital influencing factors such as incomplete hospital censuses, severity symptomology within 
hospitalized patients, and a host of incompletely understood genetic-demographic factors which appear 
to critically moderate COVID-19 prognosis. Perhaps even more articulated in mortality VAR estimates 
would remain input data integrity, given wildly varying debates in society at present regarding what 
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qualifies as a COVID-19 death as well as noted inconsistencies in timely recording of critical mortality 
figures. Relative to cumulative COVID-19 deaths and longitudinal incidence then, at present an 
assumptive variable-driver S-I-R (and derivatives) model would appear the most manageable means 
for estimation. However, whereas the high variability of input assumptive variables central to this 
approach was previously discussed in context of caseload projections, herein further uncertainty for 
more complex SUQC model population subclasses concurrently arises. 

4.3. Future directions for VAR-based epidemiology 

Future directions of development from the currently constructed model may center about using 
VAR to examine possible delivery mechanism between geographic areas at a wider (i.e. national level), 
possibly allowing for a more concise predictability regarding warning indicators or at-risk medico-
societal practices influencing disease distribution. By example, we might feasibly gain insight towards a 
potential returned period of caseload maximization in New York City through VAR analysis of lagged-
indicators between hypothesized influential demographics (i.e. community socio-ethnic status) or 
bridging of the urban-rural divide (leading time from urban case development to corresponding rural 
disease increases) in ongoing hotspots (i.e. metropolitan areas within Florida or Texas as of July 2020). 
A vigilant, regionally-based monitoring program could therefore quickly identify and potential concerns 
for community COVID-19 exacerbation or recurrence. Further study of VAR translational value for 
COVID-19 disease modelling thusly persists in need of model predictive power evaluation between the 
regional geographic scale illustrated herein, and more macroscopic VAR projections in example at the 
national level. The upcoming question of public health utility should center on if given robust historical 
case data, whether VAR-type epidemiologic models will be able to accurately predict population disease 
progression patterns across larger and more diverse patient or dataset characterizations.  

Mathematically, one-to-three days lags of the model variables (relatively short) were chosen with 
intent to most accurately represent regional disease propagation patterns on a short-term basis, due to 
a continued state of incomplete understanding regarding COVID-19 and its epidemiologic behaviors. 
Considering the strong capacity of VAR-founded modelling to account for NYC metro region COVID-
19 caseload trends, an appropriate next step may involve trialing of longer lag times (i.e. 1–2 weeks) 
in order to more efficaciously evaluate extended-period (multiple months) predictive power of this 
VAR model. In contrast to S-I-R projections wherein predictive uncertainty rises exponentially with 
increasingly long-term projection, a validated VAR forecast might reasonably be expected to minimize 
degree of probable variability given that constituent long-term outlooks are based on similarly 
extended lag-values (extensive past COVID-19 case patterns) rather than parametric extrapolation of 
static variables made at a singular timepoint. 

5. Conclusions 

According to extensively updated reviews, a significant proportion of previous and ongoing 
modeling efforts related to COVID-19 are significantly constrained by poor input data quality and 
inflexible guiding parameters. The current study develops a county-based VAR model derivative from 
infection data reported in the greater NYC metropolitan area, which demonstrates significantly 
improved correlation between projected and observed new cases, with promising predictive value at 
the short (days-to-weeks) to intermediate-term (months) regional level. Furthermore, as described 
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previously the data-driven VAR approach as adapted in this framework remains of greater statistical 
reliability than assumed dynamics in S-I-R projections, given that all derived inferences built upon the 
significant quantity of COVID-19 progression data at a local level to-date; this functionality allows for 
greater tailoring to alternative projections in counterpart geographies or disease settings whilst 
minimizing quantity of necessary assumptions as long as there exists a robust source of input raw 
COVID-19 caseload measurements. In example, wherein major increases for New York and 
comparable U.S. metropolitan areas were separated by significant temporal distribution (March and 
April versus current June and July respectively), significant similarities in affected population [24] and 
epidemiologic patterns [25] have been noted between the regions. It would therefore stand to reason 
that the present modified VAR regression of the initial NYC outbreak of COVID-19 may be not only 
prove highly applicable to any consequent recurrence in the same geography, but also adaptable to 
many alternative regions of interest since the currently implemented basis of projection and AIC 
selection is wholly founded upon disease data available via public records. 

It has been well reported in literature that models founded upon estimations of population status 
relative to disease require significant extrapolation of disease behaviors and epidemiological statistics 
which may not be appropriate for poorly understood emergent pandemics. Via construction of an adapted 
VAR extrapolative model which accounts for past patterns of COVID-19 disease trends instead of 
theoretical representations of pandemic spreading, this paper proposes that existing data-driven estimations 
of viral dissemination carry significant utility for the real-time projection of regional disease futures. 
Relative to the ongoing escalation of COVID-19 caseload in many U.S. states, this model was able to 
predict the gradual increase in COVID cases in the NYC metropolitan region with relative accuracy for a 
projective period of up to 11-weeks, a highly practical utility especially for information of healthcare 
infrastructure readiness as well as local public policy related to continued disease containment goals. 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 

References 

1. World Health Organization (2021) Coronavirus disease (COVID-19): Weekly Epidemiological 
Report, 27 January 2021. Available from: https://www.who.int/publications/m/item/weekly-
epidemiological-update---27-january-2021. 

2. Bai Y, Yao L, Wei T, et al. (2020) Presumed asymptomatic carrier transmission of COVID-19. 
JAMA 323: 1406–1407. 

3. Bastos ML, Tavaziva G, Abidi SK, et al. (2020) Diagnostic accuracy of serological tests for covid-
19: systematic review and meta-analysis. BMJ 1: 370. 

4. Roda WC, Varughese MB, Han D, et al. (2020) Why is it difficult to accurately predict the 
COVID-19 epidemic? Infect Dis Modell 5: 271–281. 

5. Naudé W (2020) Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI Soc 35. 
6. Volpert V, Banerjee M, Petrovskii S (2020) On a quarantine model of coronavirus infection and 

data analysis. Math Modell Nat Phenom 15: 24. 
7. Zhao S, Chen H (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in 

China. Quant Biol 11: 1–9. 



136 
 

AIMS Public Health                                                                                                                    Volume 8, Issue 1, 124–136. 

8. Shen CY (2020) A logistic growth model for COVID-19 proliferation: experiences from China 
and international implications in infectious diseases. Int J Infect Dis. 

9. Elliott G, Stock JH (2001) Confidence intervals for autoregressive coefficients near one. J 

Econometrics 103: 155–181. 
10. Hsiao WC, Huang HY, Ing CK (2018) Interval Estimation for a First‐Order Positive 

Autoregressive Process. J Time Ser Anal 39: 447–467. 
11. Branas CC, Rundle A, Pei S, et al. (2020) Flattening the curve before it flattens us: hospital critical 

care capacity limits and mortality from novel coronavirus (SARS-CoV2) cases in US counties. 
medRxiv. 

12. Biswas K, Khaleque A, Sen P (2003) Covid-19 spread: Reproduction of data and prediction using 
a SIR model on Euclidean network. arXiv preprint arXiv:2003.07063. 2020 Mar 16. 

13. Postnikov EB (2020) Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest 
SIR model provide quantitative parameters and predictions? Chaos, Solitons Fractals 135: 109841. 

14. Metcalf CJ, Lessler J (2017) Opportunities and challenges in modeling emerging infectious 
diseases. Science 357: 149–152. 

15. Funk S, Camacho A, Kucharski AJ, et al. (2018) Real-time forecasting of infectious disease 
dynamics with a stochastic semi-mechanistic model. Epidemics 22: 56–61. 

16. He ZL, Li JG, Nie L, et al. (2017) Nonlinear state-dependent feedback control strategy in the SIR 
epidemic model with resource limitation. Adv Differ Equ 2017: 1–8. 

17. Dubey B, Dubey P, Dubey US (2015) Dynamics of an SIR Model with Nonlinear Incidence and 
Treatment Rate. Appl Appl Math 10: 718–737. 

18. Harjule P, Tiwari V, Kumar A (2021) Mathematical models to predict COVID-19 outbreak: An 
interim review. J Interdiscip Math 13: 1–26. 

19. Eker S (2020) Validity and usefulness of COVID-19 models. Humanit Soc Sci Commun 7: 1–5. 
20. Iwasaki A, Yang Y (2020) The potential danger of suboptimal antibody responses in COVID-19. 

Nat Rev Immunol 21: 1–3. 
21. To KK, Tsang OT, Leung WS, et al. (2020) Temporal profiles of viral load in posterior 

oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: 
an observational cohort study. Lancet Infect Dis. 

22. Bertozzi AL, Franco E, Mohler G, et al. (2020) The challenges of modeling and forecasting the 
spread of COVID-19. arXiv preprint arXiv:2004.04741.  

23. Nakamura G, Grammaticos B, Deroulers C, et al. (2020) Effective epidemic model for COVID-
19 using accumulated deaths. arXiv preprint arXiv:2007.02855. 

24. Bogg T, Milad E (2020) Slowing the Spread of COVID-19: Demographic, personality, and social 
cognition predictors of guideline adherence in a representative US sample. Available from: 
https://www.researchgate.net/publication/340427042_Slowing_the_Spread_of_COVID-
19_Demographic_Personality_and_Social_Cognition_Predictors_of_Guideline_Adherence_in_
a_Representative_US_Sample. 

25. Dowd JB, Andriano L, Brazel DM, et al. (2020) Demographic science aids in understanding the 
spread and fatality rates of COVID-19. P Natl Acad Sci USA 117: 9696–9698. 

© 2021 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


